Quick Introduction to
Parallel Performance
Analysis

Bernd Mohr, Julich Supercomputing Centre

d

Performance Measurement Cycle

Ny
AN

Instrumentation |« = Insertion of extra code R
1 (probes, hooks) into application
- —
Measurement m Collection of data re!evant to gi
1 performance analysis __
©
Analysis m Calculation of metrics, identification g

of performance problems

m Transformation of the results into a
representation that can be easily
understood by a human user)

m Elimination of performance problems

HOPSA /APOS Training Nov 2012 JSC 2

oI

Performance Measurement —7;

« Two dimensions
= When performance measurement is triggered
= Externally (asynchronous) = indirect measurement
— Sampling
» Timer interrupt
» Hardware counters overflow
= Internally (synchronous) = direct measurement
— Code instrumentation
» Automatic or manual instrumentation
= How performance data is recorded
= Profile ::= Summation of events over time
— run time summarization (functions, call sites, loops, ...)
= Trace file ::= Sequence of events over time

HOPSA /APOS Training Nov 2012 JSC 3

Measurement Methods: Profiling |

« Recording of aggregated information
= Time
= Counts
= Calls
= Hardware counters
« about program and system entities

= Functions, call sites, loops, basic blocks, ...

= Processes, threads
- Result presentation as

= Histograms, pie charts, ...
= Tables

HOPSA /APOS Training Nov 2012 JSC

Measurement Methods: Tracing _7;%

* Recording information about significant points (events) during
execution of the program

= Enter/leave a code region (function, loop, ...)
= Send/receive a message ...
- Save information in event record
= Timestamp, location ID, event type
= plus event specific information
- Event trace := stream of event records sorted by time

« Can be used to reconstruct the dynamic behavior
= Abstract execution model on level of defined events

* Result presentation as time line diagrams

HOPSA /APOS Training Nov 2012 JSC 5

Event tracing

Process A

void foo() {
trc_enter("foo");

trc_send(B);
send(B, tag, buf);

trc_exit("foo");

}

instrument

Process B

void bar() {
trc_enter("bar");

recv(A, tag, buf);
trc_recv(A);

trc_exit("bar");

}

) Nov 20

MONITOR

4_@ éynchronize(@ @ -

MONITOR

Local trace A _7; %
Global trace
58| ENTER
62| SEND 58| A|ENTER | 1
64| EXIT 60| B | ENTER | 2
62| A|SEND | B
1 | foo 64| A | EXIT 1
68| B|RECVY | A
Local trace B ——— -
60| ENTER Tmerge
68| RECV unify
v
69| EXIT 1 | foo
2 | bar
1 | bar

Event Tracing: “Timeline” Visualization

1 | foo

2 | bar

3
58| A |ENTER | 1
60] B | ENTER | 2
62| A | SEND B
64| A | EXIT 1
68| B | RECV A
69| B | EXIT 2

HOPSA /APOS Training Nov 2012

CCCCCCCCCC

main
B foo
B bar

58 60 62 64 66 68 70

JSC 7

U
P

CAPACITIES
]

Questions

GaNTININ]

TR,

