
Quick Introduction to

Parallel Performance

Analysis

Bernd Mohr, Jülich Supercomputing Centre

 HOPSA / APOS Training Nov 2012 JSC 2

Performance Measurement Cycle

 Insertion of extra code

(probes, hooks) into application

Instrumentation

 Transformation of the results into a

representation that can be easily

understood by a human user

Presentation

Measurement

 Collection of data relevant to

performance analysis

Optimization

 Elimination of performance problems

Analysis

 Calculation of metrics, identification

of performance problems

T
o
o
l S

u
p
p
o
rt

 HOPSA / APOS Training Nov 2012 JSC 3

Performance Measurement

• Two dimensions

 When performance measurement is triggered

 Externally (asynchronous)  indirect measurement

– Sampling

» Timer interrupt

» Hardware counters overflow

 Internally (synchronous)  direct measurement

– Code instrumentation

» Automatic or manual instrumentation

 How performance data is recorded

 Profile ::= Summation of events over time

– run time summarization (functions, call sites, loops, …)

 Trace file ::= Sequence of events over time

 HOPSA / APOS Training Nov 2012 JSC 4

Measurement Methods: Profiling I

• Recording of aggregated information

 Time

 Counts

 Calls

 Hardware counters

• about program and system entities

 Functions, call sites, loops, basic blocks, …

 Processes, threads

• Result presentation as

 Histograms, pie charts, …

 Tables

 HOPSA / APOS Training Nov 2012 JSC 5

Measurement Methods: Tracing

• Recording information about significant points (events) during

execution of the program

 Enter/leave a code region (function, loop, …)

 Send/receive a message ...

• Save information in event record

 Timestamp, location ID, event type

 plus event specific information

• Event trace := stream of event records sorted by time

• Can be used to reconstruct the dynamic behavior

  Abstract execution model on level of defined events

• Result presentation as time line diagrams

 HOPSA / APOS Training Nov 2012 JSC 6

Event tracing

void foo() {

 ...

 send(B, tag, buf);

 ...

}

Process A

void bar() {

 ...

 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

s
y
n

c
h

ro
n
iz

e
(d

)

void bar() {

 trc_enter("bar");

 ...

 recv(A, tag, buf);

 trc_recv(A);

 ...

 trc_exit("bar");

}

void foo() {

 trc_enter("foo");

 ...

 trc_send(B);

 send(B, tag, buf);

 ...

 trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

 HOPSA / APOS Training Nov 2012 JSC 7

Event Tracing: “Timeline” Visualization

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A

 HOPSA / APOS Training Nov 2012 JSC 8

Questions?

Questions?

