
Light-Weight Measurement Module
Introduction and Usage

Aamer Shah

GRS Aachen

Agenda

• Introduction

• LWM2 Usage

• Profiling Output

• Time-based

• Multithreading

• MPI

• Interpreting Output

• Running on GraphIT

27-Nov-12 HOPSA Workshop @ Moscow 2

Introduction

27-Nov-12 HOPSA Workshop @ Moscow 3

LWM2 Introduction

 Light-Weight Measurement Module

 Light-weight profiler

 Low learning curve for usage

o No recompilation / relinking

o Simple and useful performance information

 Light usage of resources

o Low overhead during profiling

 Does not enable detailed performance analysis

27-Nov-12 HOPSA Workshop @ Moscow 4

Role of LWM2: Performance Screening

• Which tool to use to profile application?

• Every tool has its own strength

• High usage-curve to use a tool

27-Nov-12 HOPSA Workshop @ Moscow 7

Application

Tool A

Tool B

Tool C

Tool D

Profiling

Springboard for Tools

• LWM2 as springboard for performance tools

• Low usage-curve for profiling

• Simple output provides a guidance to use performance tool

27-Nov-12 HOPSA Workshop @ Moscow 8

Application

Tool A

Tool B

Tool C

Tool D

Profiling LWM2

 Application tuning

HOPSA Tools Workflow

27-Nov-12 HOPSA Workshop @ Moscow 9

Application

Tool A

Tool B

Tool C

Tool D

LWM2

LAPTA

system

Console

summary

User

System administrator

Online job

digest

System tuning

Other

sources

Sample Output

• Time spent in

various sections

• Multithreading

performance

• Hardware

counters

27-Nov-12 HOPSA Workshop @ Moscow 10

LWM2 Usage

27-Nov-12 HOPSA Workshop @ Moscow 11

LWM2 Usage

• No recompilation / relinking required when using LWM2

• Setting proper environment variables allow profiling with LWM2

• For MPI and hybrid applications:

• mpiexec –x –E LD_PRELOAD=<LWM2_library> …

• The format of passing on the value to LD_PRELOAD may change for different

MPI implementations

• For non-MPI applications

• LD_PRELOAD=<LWM2_library> <executable>

27-Nov-12 HOPSA Workshop @ Moscow 12

LWM2 Settings

• Some environment variables have to be set for proper LWM2 profiling

• LWM2_CONSOLE_SUMMARY

• Provide summary of profiling information on the console

• VERBOSE provides additional information in summary

• LWM2_WRITE_FILE

• NO means no output files are generated

• TIME_SLICE generates multiple files with detailed profiling information

• Any other value will generate output files with basic profiling information

27-Nov-12 HOPSA Workshop @ Moscow 13

LWM2 Settings

• LWM2_HWC_CONFIG

• Different settings to display different hardware counter values in the system

• For GraphIT:

i. LWM2_HWC_CPU_ONLY: Provides information about CPU related counters

only

ii. LWM2_HWC_MEM_ONLY: Provides information about Cache performance

only

• Other variables

• LWM2_IGNORE_LIST

• LWM2_OUTPUT_DIR

• LWM2_OUTPUT_FILENAME

• LWM2_JOBID_VAR

 27-Nov-12 HOPSA Workshop @ Moscow 14

Profiling Output

27-Nov-12 HOPSA Workshop @ Moscow 15

Console Summary

• Summary divided into many parts

• Output changes for the type of application profiled

• First part provides overview of the application

• Includes, besides others

• Job id

• Wall clock time

• Number of processes

• Rest of the sections contain profiling metrics

• For MPI applications, metrics are presented with

o Average, minimum and maximum values across processes

27-Nov-12 HOPSA Workshop @ Moscow 16

Time-based metrics

• Time spent in various parts of the application

• Times for MPI subtypes are shown as a percentage of whole execution

• Average values of subtypes should almost add up to the whole MPI time-spent

value

• Remaining time spent in other areas of MPI

• MPI_Init, MPI_Finalize, etc

27-Nov-12 HOPSA Workshop @ Moscow 17

Time-based metrics

• Values for CUDA applications are also subdivided

• Non-MPI application, so only one value

• Value represents the percentage time spent when the application was

active

Percentage

MPI = MPI time /
Total active

time

sleep() MPI comp. MPI comp. comp.

Application execution

27-Nov-12 HOPSA Workshop @ Moscow 18

MPI Communication

• Basic metrics about MPI communication

• Frequency is calculated using both active and inactive application execution

time

27-Nov-12 HOPSA Workshop @ Moscow 19

MPI Communication

• Transfer rate values consider the active time in communication calls

• Can result in high transfer rates for non-blocking communication

• Indicates good overlap between communication and computation

Transfer rate =
Total data

transferred /
MPI

communication

active time

Computation MPI MPI

Data transfer

Non-blocking

MPI

Non-blocking

MPI

27-Nov-12 HOPSA Workshop @ Moscow 20

CUDA Memory Transfer

• CUDA memory transfer details

• Frequency is calculated using both active and inactive application execution
time

27-Nov-12 HOPSA Workshop @ Moscow 21

Multithreading Performance

• The number of threads set for the application

• The effective number of threads active during execution

active

active

active suspended

Effective number

of threads = active time / Complete single

thread time

27-Nov-12 HOPSA Workshop @ Moscow 22

Hardware Counters

• Two configurations

• LWM2_HWC_CONFIG=LWM2_HWC_CPU_ONLY

• LWM2_HWC_CONFIG=LWM2_HWC_MEM_ONLY

27-Nov-12 HOPSA Workshop @ Moscow 24

Interpreting Output

27-Nov-12 HOPSA Workshop @ Moscow 25

Interpreting Output

• Figuring out application performance from output

• No set formula, as expected values change from application to application

• General bad values

• Low L1 hit ratio

• Check with ThreadSpotter or Paraver

• Low effective thread count

• Check with ThreadSpotter, Vampir or Paraver

27-Nov-12 HOPSA Workshop @ Moscow 26

Interpreting Output

• Time-based values depends upon application

• For time spend in MPI calls

• Check with Scalasca, Paraver, Vampir or Dimemas

• For time spend in CUDA calls

• Check with Vampir or Paraver

• Low transfer rates for MPI

• For non-blocking, bad overlap of communication and computation

• For blocking, bad topology, network congestion, latency, etc

• Check with Scalasca, Paraver, Dimemas or Vampir

27-Nov-12 HOPSA Workshop @ Moscow 28

Interpreting Output: Summary

Metrics Performance tools

L1 hit ratio ThreadSpotter, Paraver

Effective thread count ThreadSpotter, Vampir, Paraver

Time based metric - MPI Scalasca, Vampir, Paraver, Dimemas

Time based metric - CUDA Vampir, Paraver

Low transfer rates in MPI Scalasca, Paraver, Vampir, Dimemas

27-Nov-12 HOPSA Workshop @ Moscow 29

Running on GraphIT

27-Nov-12 HOPSA Workshop @ Moscow 30

Running of GraphIT

• cleo system used to submit batch jobs

• Have to set the variables in a script to properly configure LWM2

• The executable is called at the end in the script

• cleo-submit –np <processes> <script>

• -np <processes> specifies MPI processes

• For hybrid applications, total processors allocated are <processes> x

OMP_NUM_THREADS

27-Nov-12 HOPSA Workshop @ Moscow 32

Thank you

27-Nov-12 HOPSA Workshop @ Moscow 33

