
 HOlistic Performance System Analysis-EU

 1

Deliverable D3.4

UNITE Package

CONTRACT NO HOPSA-EU 277463

INSTRUMENT CP (Collaborative project)

CALL FP7-ICT-2011-EU-Russia

Due date of deliverable: December 1
st
, 2012

Actual submission date: April 5
th

, 2012

Start date of project: 1 FEBRUARY 2011 Duration: 24 months

Name of lead contractor for this deliverable: JUELICH

Abstract: The goal of UNITE (UNiform Integrated Tool Environment) is to provide a robust,
portable, and integrated environment for the debugging and performance analysis of parallel MPI,
OpenMP, and hybrid MPI/OpenMP programs on high-performance compute clusters. It consists of a
set of well-accepted portable, mostly open-source tools, together with a “meta”-installation tool
allowing downloading, configuring, building, and installing all tools as one portable and coherent
package.

Project co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 1

Table of Contents

1. EXECUTIVE SUMMARY .. 4

2. INTRODUCTION ... 6

2.1 THE BROADER CONTEXT: THE HOPSA PROJECT ... 6
2.2 HOPSA WORK PACKAGE 2: HPC APPLICATION LEVEL ANALYSIS .. 7

2.2.1 Short description of the HOPSA performance tools ... 7
Paraver .. 7
Dimemas ... 7
Scalasca .. 7
Score-P .. 8
ThreadSpotter .. 8
Vampir ... 8

2.2.2 HOPSA tool integration ... 8
2.3 HOPSA WORK PACKAGE 3: INTEGRATION OF SYSTEM AND APPLICATION PERFORMANCE ANALYSIS 9

2.3.1 The HOPSA workflow ... 10
2.3.2 The need for a UNITE package .. 11

3. THE UNITE PACKAGE ..12

3.1 SUPPORTED TOOL PACKAGES .. 12
3.2 IMPLEMENTED TOOL INTEGRATION .. 13

4. CONCLUSION ..15

5. BIBLIOGRAPHY ...16

6. ANNEXES ...17

6.1 ANNEX A: UNITE USER GUIDE ... 17
6.2 ANNEX B: UNITE INSTALLATION GUIDE ... 17

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 2

Glossary

Abbreviation
/ acronym

Description

API Application Programming Interface

BSC Barcelona Supercomputing Center, Spain

CEPBA European Center for Parallelism of Barcelona (UPC, BSC)

ClustrX Cluster monitoring system (T-Platform)

CUBE Performance report explorer for Scalasca (JSC) and Score-P (GRS, JSC, TUD)

CUDA Compute Unified Device Architecture

(Proprietary Programming Interface for Nvidia GPGPUs)

Dimemas Message passing performance analysis and prediction tool (BSC)

Extrae Instrumentation and measurement component for Paraver visualizer (BSC)

GRS German Research School for Simulation Sciences GmbH, Aachen, Germany

GPGPU General Purpose Graphical Processing Unit

GUI Graphical User Interface

HMPP Hybrid Multicore Parallel Programming

(Proprietary Programming Model for Heterogeneous Architectures)

HOPSA HOlistic Performance System Analysis. EU FP7 project

HPC High Performance Computing

H4H Hybrid Programming For Heterogeneous Architectures. EU ITEA2 project

I/O Input/Output

JSC Jülich Supercomputing Centre

(of Forschungszentrum Jülich GmbH), Germany

LAPTA Database and analysis system for cluster monitoring data (MSU)

LWM2 Light Weight Monitoring Module (GRS)

(Used for system-wide application performance screening)

MPI Message Passing Interface

(Programming Model for Distributed Memory Systems)

MSU Moscow State University

OpenCL Open Computing Language

(Programming interface for heterogeneous platforms consisting of CPUs and
other execution units like GPUs)

OpenMP Open Multi-Processing

(Programming Model for Shared Memory Systems)

OTF2 Open Trace Format Version 2

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 3

PAPI Performance Application Programming Interface

(Library for portable access to hardware performance counter)

Paraver Event trace analysis and visualization tool (BSC)

PMPI Standard monitoring API for MPI

RW Rogue Wave Software AB, Sollentuna, Sweden

Scalasca SCalable Analysis of LArge SCale Applications

(Performance instrumentation, measurement and analysis tool from JSC/GRS)

Score-P Scalable Performance Measurement Infrastructure for Parallel Codes

(Community open-source project of GRS, JSC, TUD and others)

SMPSs Pragma-based programming model for parallel task (Ss = Superscalar)
for shared memory parallel computers (SMP) from BSC

UPC Universitat Politècnica de Catalunya, Barcelona

T-Platforms Russian HPC cluster vendor

ThreadSpotter Commercial memory and multi-threading performance analysis tool (RW)

TUD Technische Universität Dresden, Germany

UNITE UNiform Integrated Tool Environment

(Unified documentation and installation procedures for HPC tools)

Vampir Visualization and Analysis of MPI Resources

(Commercial event trace analysis and visualization tool from ZIH/TUD)

VampirTrace Instrumentation and measurement component for Vampir visualizer (ZIH/TUD)

ZIH Zentrum für Informationsdienste und Hochleistungsrechnen.

(Center for information services and HPC of TUD).

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 4

1. Executive summary

The goal of UNITE (UNiform Integrated Tool Environment) is to provide a robust, portable, and integrated
environment for the debugging and performance analysis of parallel MPI, OpenMP, and hybrid MPI/OpenMP
programs on high-performance compute clusters. It consists of a set of well-accepted portable, mostly open-
source tools.

High-performance clusters often provide multiple MPI libraries and compiler suites for parallel programming.
This means that parallel programming tools which often depend on a specific MPI library, and sometimes on
a specific compiler, need to be installed multiple times, once for each combination of MPI library and
compiler which has to be supported. In addition, over time, newer versions of the tools get released and
installed. One way to manage many different versions of software packages, used by many computing
centres all over the world, is the "module" software (see [13]). However, each centre provides a different set
of tools, has a different policy on how and where to install different software packages, and how to name the
different versions. This makes it harder for HPC application developers to use these tools to debug,
analyze and optimize the performance of their scientific applications because when they start using a cluster
at a new HPC centre, they first need to find out about these local conventions and special instructions on
how to use the debugging and performance tools even if they have used the same tools at other sites before.

UNITE tries to improve this situation for debugging and performance tools by

• specifying exactly how and where to install the different versions of tool software packages (including
integrating the tools to the maximum possible degree),

• defining standard module names for tools and their different versions, and

• supplying pre-defined module files which provide standardized, well-tested tool configurations,

• but still being flexible enough to be able to co-exist with site-local installations, restrictions, and policies.

This way, the HPC application developers only need to learn once how to invoke and facilitate the debugging
and performance tools for their applications (at least at sites which use the UNITE package).

HPC cluster system administrators have another problem. In order to provide all these tools for their
users, for each tool they have to find out where and how to download the tool, and how to configure, build
and install it. As often with open-source software, these steps are very different for the different tools. As the
administrators are typically not tool users or even tool experts, they do not know much about the specific
features provided by the tools, and especially they miss opportunities to install the tools in a way so they are
as much as possible integrated with each other. Furthermore, new versions of the tools get released with
new features, bug fixes or changes compared to older versions, often as much as twice a year (typically for
the ISC conference in June and the SC conference in November), so the tool installations have to be
updated all the time (as users of course want to use the latest features).

UNITE tries to help the system administrators by providing a ”meta”-installation tool (the UNITE installer)
which is capable of configuring, building, and installing all supported tools as a common package according
to the UNITE specifications but hiding tool-specific aspects of the various phases. It can also be used to
update an existing UNITE installation with new tools or tool versions.

On the UNITE website [14], we provide a single package consisting of the UNITE installer, the UNITE
module files, as well as a large set of open-source debugging and performance tools together with a user
guide (for application developers) and an installation guide (for system administrators).

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 5

This work is based on a successful prototype developed as part of the EU ITEA-2 project ParMA [15] which
could handle Scalasca, Cube3, Vampir, and VampirTrace as well as a few other open-source tools
(PDToolkit, Marmot). As part of the EU FP7 project HOPSA, this prototype was enhanced in many ways:

• The UNITE module file package was re-designed and re-implemented so that an existing UNITE
installation can be updated with newer versions without losing site-specific adaptations and changes.

• Support for configuring, building and installing new packages has been added:

o The HOPSA light-weight monitoring module LWM
2

o The BSC tools Extrae and Paraver which made it necessary to also support the additional
development packages libdwarf, libunwind, boost, wxpropgrid

o The Score-P components scorep, otf2, cube4, and opari2 as well as scalasca2

o The TAU package of the University of Oregon (a contributor and member of the Score-P
community project)

o The new binary installation packages of Vampir and VampirServer introduced with version 7

• The much larger number of packages and the trend to “componentize” tool modules allowed to greatly
enhancing the integration among the different packages. This required implementing much more
complicated configuration, build and install procedures so that for example when installing an updated
version of a tools package it is still integrated with already existing and installed versions of other tool
components.

• Support for detecting more MPI library variants (MPICH version 3, BullX MPI, IBM POE MPI library for
x86 and x86_64 Linux (intelpoe) and PPC Linux (ibmpoe), and IBM Platform MPI) and configuring the
packages accordingly.

Finally, various versions of the UNITE package have been extensively tested on a large variety of HPC Linux
clusters all over the world.

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 6

2. Introduction

This section summarizes the performance instrumentation, measurement, analysis, visualization, and
modelling tools provided by the HOPSA project partners and describes the performance analysis workflow
which defines how to use all these tools in an effective and integrated way.

2.1 The broader context: The HOPSA project

To maximize the scientific and commercial output of a high-performance computing system, different
stakeholders pursue different strategies. While individual application developers are trying to shorten the
time to solution by optimizing their codes, system administrators are tuning the configuration of the overall
system to increase its throughput. Yet, the complexity of today's machines with their strong interrelationship
between application and system performance demands for an integration of application and system
programming.

Figure 1: System-level tuning (bottom), application-level tuning (top), and system-wide performance
screening (centre) use common interfaces for exchanging performance properties

The HOPSA project (HOlistic Performance System Analysis) therefore sets out for the first time for combined
application and system tuning in the HPC context developing an integrated diagnostic infrastructure. Using
more powerful diagnostic tools, application developers and system administrators can easier identify the root
causes of their respective bottlenecks. With the HOPSA infrastructure, it is more effective to optimize codes
running on HPC systems. More efficient codes mean either getting results faster or being able to get higher
quality or more results in the same time.

The work in HOPSA was carried out by two coordinated projects funded by the EU under call FP7-ICT-2011-
EU-Russia and the Russian Ministry of Education and Science. Its objective was the new innovative
integration of application tuning with overall system diagnosis and tuning to maximize the scientific output of

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 7

our HPC infrastructures. While the Russian consortium focused on the system aspect, the EU consortium
focused on the application aspect.

At the interface between these two facets of our holistic approach, which is illustrated in Figure 1, will be the
system-wide performance screening of individual jobs, pointing at both inefficiencies of individual
applications and system-related performance issues.

2.2 HOPSA Work package 2: HPC application level analysis

For HPC application tuning, developers can choose from a variety of mature performance-analysis tools
developed by the HOPSA-EU consortium: the memory and thread analyzer ThreadSpotter (RW), the trace
visualizer Paraver including its measurement system Extrae (BSC), the performance prediction tool
Dimemas (BSC), the trace visualizer Vampir (TUD), the performance measurement and analysis tool
Scalasca including its result browser Cube (GRS, JSC), and the instrumentation and measurement system
Score-P (GRS, JSC, TUD).

2.2.1 Short description of the HOPSA performance tools

This section gives a brief overview about the performance instrumentation, measurement and analysis tools
within the HOPSA project. For a longer description see the deliverable D2.2 (“Final Tool Set”).

Within work package 2 of the HOPSA project, the tools were further integrated and enhanced with respect to
scalability, depth of analysis, and support for asynchronous tasking, a node-level paradigm playing an
increasingly important role in hybrid programs on emerging hierarchical and heterogeneous systems. The
overall objective of work package 2 was to enhance and extend the already existing individual performance
measurement and analysis tools of the project partners to make them fit for the analysis of petascale
computations and beyond as well as integrating them with each other where useful. The idea here was not to
start new research directions but rather to finalize (i.e., “productize”) current research ideas and make them
part of the regular tool products. The tools are available as a combination of open-source offerings (Extrae,
Paraver, Dimemas, Scalasca, Cube, Score-P) and commercial products (Vampir, ThreadSpotter).

Paraver

Paraver [7][9] is a very flexible data browser that is part of the CEPBA-Tools toolkit developed by
BSC and is available for download under an LGPL open-source license. The tool allows a very
detailed and powerful exploration of the trace data. Programmable through configuration files,
Paraver can visualize performance data via timeline displays (showing metrics per process or thread
over time) or histogram displays (showing statistical data). Paraver’s measurement system is Extrae.
Extrae is capable of instrumenting applications based on MPI, OpenMP, pthreads, CUDA and StarSs
using different instrumentation approaches. The information gathered by Extrae typically includes
timestamped events of runtime calls, performance counters and source code references. Besides,
Extrae provides its own API to allow the user to manually instrument his or her application.

Dimemas

Dimemas [8] is a performance analysis tool for message-passing programs. The Dimemas simulator
reconstructs the time behaviour of a parallel application on a machine modelled by the key factors
influencing the performance. With a simple model Dimemas allows to simulate complete parametric
studies in a very short time frame. Dimemas generates as part of its output a Paraver trace file,
enabling the user to conveniently examine the simulator run.

Scalasca

Scalasca [1][2][3] supports the performance optimisation of parallel programs by measuring and
analysing their runtime behaviour. The analysis identifies potential performance bottlenecks – in
particular those concerning communication and synchronisation – and offers guidance in exploring
their causes. The user of Scalasca can choose between two different analysis modes: (i)
performance overview on the call-path level via runtime summarisation (aka profiling) and (ii) in-
depth study of application behaviour via event tracing. Scalasca, which is jointly developed by JSC
and GRS, is available for download under the New BSD open-source license.

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 8

Score-P

Score-P [6] is a new open source measurement system developed by TUD and JSC in cooperation
with other project partners outside the HOPSA project. Starting 2013, it replaces the measurement
systems of Scalasca (EPIK) and Vampir (VampirTrace). It features a new trace (OTF2) and profile
(CUBE4) format.

ThreadSpotter

The ThreadSpotter [4] performance optimization technology is developed by Rogue Wave AB – a
spin-out from research at Uppsala University in Sweden. While an ordinary binary is running in a
production environment, this new performance debugger collects sparse information about its
execution behaviour into a ”fingerprint” file. Based on this information, the cache performance of any
size cache, any size cache line and several replacement policies can be estimated off-line.
ThreadSpotter’s analysis technology also detects performance bugs in the applications, i.e. certain
access patterns that result in a sub-optimal performance. ThreadSpotter organizes such
performance bugs into four issue groups: bandwidth issues, latency issues, thread interaction issues
and cache pollution issues.

Vampir

Vampir (”Visualisation and Analysis of MPI Resources”) is a very well-known event trace
visualisation software [5] which is available since 1996 as a commercial product. It offers intuitive
parallel event trace visualisation with many displays showing different aspects of the parallel
performance behaviour. The corresponding VampirTrace instrumentation and run-time measurement
package is available as open source. Vampir is developed by ZIH, TU Dresden and is commercially
distributed by the technology transfer company GWT-TUD GmbH.

2.2.2 HOPSA tool integration

Sharing the common measurement infrastructure Score-P [6] and its data formats, and providing conversion
utilities if direct sharing is not possible, the performance tools in the HOPSA environment and workflow
already make it easier to switch from higher-level analyses provided by tools like Scalasca to more in-depth
analyses provided by tools like Paraver or Vampir. To simplify this transition even further, the HOPSA tools
are integrated in various ways (Figure 2). With its automatic trace analysis, Scalasca locates call paths
affected by wait states caused by load or communication imbalance. However, to find and fix these
problems in a user application, it is in some cases necessary to understand the spatial and temporal context
leading to the inefficiency, a step naturally supported by trace visualizers like Paraver or Vampir. To make
this step easier, the Scalasca analysis remembers the worst instance for each of the performance problems
it recognizes. Then, the Cube result browser can launch a trace browser and zoom the timeline into the
interval of the trace that corresponds to the worst instance of the recognized performance problems. In order
to allow the use of Paraver for this analysis, the BSC team implemented an OTF2 to Paraver trace format
conversion.

In the future, it is planned to use the same mechanisms for a more detailed visual exploration of the results
of Scalasca's root cause analysis as well as for further analyzing call paths involving user functions that take
too much execution time. For the latter, ThreadSpotter will be available to investigate their memory, cache
and multi-threading behaviour. If a ThreadSpotter report is available for the same executable and dataset,
Cube will allow launching detailed ThreadSpotter views for each call path where data from both tools is
available. The necessary interfaces have been designed and implemented as a prototype during the HOPSA
project.

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 9

Figure 2: HOPSA Performance Tool Integration

Finally, a tight integration of Dimemas and Paraver allows users to investigate various “what-if scenarios” to
further analyze performance properties of their applications.

2.3 HOPSA Work package 3: Integration of system and application
performance analysis

The objective of the HOPSA work package 3 was to combine the work done for the HPC system-level
performance analysis (implemented by the Russian partners) and for application-level performance analysis
(implemented by work package 2) into a coherent and holistic performance analysis environment. It provides

• Low-overhead and end-to-end performance analysis for all jobs on a given system from their submission
to their completion

• Identification of key performance issues and notification of the user and system performance database
after job completion

• Detailed scalable performance analysis for petascale applications based on well-accepted and robust
measurement and analysis tools.

Key to achieving these objectives was to define an overall performance tool process and workflow which
guides application developers in the process of tuning and optimizing their codes for performance as well
as providing a single package for system administrators (or expert users) allowing to configure, built, and
install all HOPSA performance tools as one portable and coherent installation.

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 10

2.3.1 The HOPSA workflow

The intended usage and application of the HOPSA performance tools is specified by the HOPSA
performance-analysis workflow (Figure 3). It consists of three basic steps. During the first step (“Performance
Screening”), we identify all those applications running on the system that may suffer from inefficiencies. This
is done via system-wide job screening supported by a lightweight measurement module (LWM

2
) dynamically

linked to every executable. The screening output identifies potential problem areas such as communication,
memory, or file I/O, and issues recommendations on which diagnostic tools can be used to explore the issue
further in a second step (“Performance Diagnosis”). If a more simple, profile-oriented aggregated
performance overview is not enough to pin-point the problem, a more detailed, trace-based, dynamic
performance analysis can be performed in a third step (“In-depth analysis”) using the HOPSA tool set. The
data collected by LWM

2
 is also fed into the Clustrx.Watch hierarchical cluster monitoring system [10] which

combines it with system and hardware data and forwards it to the LAPTA cluster monitoring and analysis
system [11] for further analysis by system administrators.

In general, the workflow successively narrows the analysis focus and increases the level of detail at which
performance data is collected. At the same time, the measurement configuration is optimised to keep
intrusion low and limit the amount of data that needs to be stored. To distinguish between system and
application-related performance problems, Paraver and Vampir also allow system-level data to be retrieved
and displayed. The system administrator, in contrast, has access to global performance data. He can use
this data to identify potential system performance bottlenecks and to optimise the system configuration
based on current workload needs. In addition, the administrator can identify applications that consistently
underperform and proactively offer performance-consulting services to the effected users. In this way, it
facilitates reducing the unnecessary waste of expensive system resources.

Figure 3: The HOPSA Performance-Analysis Workflow

More details about the HOPSA performance-analysis workflow and tool integration can be found in the
Deliverable D3.2 (“Workflow Report”) as well in [12]. The light-weight measurement module (LWM

2
) is

described in more detail in Deliverable D3.3 (“Light-weight Monitoring Module”).

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 11

2.3.2 The need for a UNITE package

High-performance clusters often provide multiple MPI libraries and compiler suites for parallel programming.
This means that parallel programming tools which often depend on a specific MPI library, and sometimes on
a specific compiler, need to be installed multiple times, once for each combination of MPI library and
compiler which has to be supported. In addition, over time, newer versions of the tools also get released and
installed. One way to manage many different versions of software packages, used by many computing
centres all over the world, is the "module" software (see [13]). However, each centre provides a different set
of tools, has a different policy on how and where to install different software packages, and how to name the
different versions. This makes it harder for HPC application developers to use these tools to analyze and
optimize the performance of their scientific applications because when they start using a cluster at a new
HPC centre, they first need to find out about these local conventions and special instructions on how to use
the performance tools even if they have used the same tools at other sites before.

UNITE tries to improve this situation for debugging and performance tools by

• specifying exactly how and where to install the different versions of tool software packages (including
integrating the tools to the maximum possible degree),

• defining standard module names for tools and their different versions, and

• supplying pre-defined module files which provide standardized, well-tested tool configurations,

• but still being flexible enough to be able to co-exist with site-local installations, restrictions, and policies.

This way, the HPC application developers only need to learn once how to invoke and facilitate the
performance tools for their applications (at least at sites which use the UNITE package).

HPC cluster system administrators have another problem: in order to provide all these tools (for example
the HOPSA tool set) for their users, for each tool they have to find out where and how to download the tool,
and how to configure, build and install them. As often with open-source software, these steps are often
different for the different tools. As they are typically not tool users or even tool experts, they do not know
much about the specific features provided by the tools, and especially they miss opportunities to install the
tools in a way so they are as much as possible integrated with each other. On top of this, new versions of the
tools get released with new features or changes compared to older versions, often as much as twice a year
(typically for the ISC conference in June and the SC conference in November), so the tool installations have
to been updated all the time (as user of course want to use the latest features).

UNITE tries to help the system administrators by providing a ”meta”-Installation tool (the UNITE installer)
which is capable of configuring, building, and installing all supported tools as a common package according
to the UNITE specifications but hiding tool-specific aspects of the various phases. It can also be used to
update an existing UNITE installation with new tools or tool versions.

On the UNITE website [14], we provide a single package consisting of the UNITE installer, the UNITE
module files, as well as a large set of public-domain performance tools together with a user guide (for
application developers) and an installation guide (for system administrators).

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 12

3. The UNITE package

The work on a new version (1.1) of UNITE in the HOPSA project was based on a successful prototype
(Version 1.0) developed as part of the EU ITEA-2 project ParMA [15] which could handle Scalasca, Cube3,
Vampir, and VampirTrace as well as a few other open-source tools (PDToolkit, Marmot). This section
provides more details on the tool packages supported by the new version 1.1 and the work which was done
as part of HOPSA for each of the packages, as well as the implemented integration between the tool
packages.

3.1 Supported Tool Packages

Table 1 gives an overview of all tool packages supported by the latest 1.1 version of the UNITE package and
UNITE installer. Besides adding configuration, building, and installation support for Score-P components
(scorep, opari2, otf2, cube), the new Scalasca Version 2 based on Score-P, the TAU tool from the University
of Oregon, the BSC tools Extrae and Paraver (which in turn need support for the additional development
packages libdwarf, libunwind, boost, wxpropgrid), and the HOPSA Light-weight monitoring module (LWM2),
a significant amount of time was spent on testing of new tool versions once they were published to ensure
the implemented UNITE support is still working.

Table 1: Tool packages supported by the UNITE installer version 1.1

Package Download site OSV
1 Work done as part of HOPSA

UNITE
Installer

http://apps.fz-juelich.de/unite/ — • Enhanced to support additional
packages (see below)

• More integration between tool
and utility packages

• Support for more MPI library
variants

UNITE
Module Files

http://apps.fz-juelich.de/unite/ 1.0 • Enhanced to support additional
packages (see below)

• Re-designed and re-implemented
to allow update of existing UNITE
installations without losing site-
specific adaptations and changes

cube http://www.scalasca.org/ 3.3 • Tested versions 3.4.x

cube4 http://www.score-p.org/ 4.0 • Added in UNITE 1.1

• Tested versions 4.0.x, 4.1.x

Extrae(**) http://www.bsc.es/paraver 2.2 • Added in UNITE 1.1

• Tested version 2.2.x, 2.3.x

Marmot http://www.hlrs.de/organization/av/amt/re
search/marmot

2.4.0 —

LWM2 http://www.hopsa-project.eu/tools/ 1.1 • Added in UNITE 1.1

• Tested versions 1.0, 1.1

1
 Oldest Supported Version

http://apps.fz-juelich.de/unite/
http://apps.fz-juelich.de/unite/
http://www.scalasca.org/
http://www.score-p.org/
http://www.bsc.es/paraver
http://www.hlrs.de/organization/av/amt/research/marmot
http://www.hlrs.de/organization/av/amt/research/marmot
http://www.hopsa-project.eu/tools/

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 13

OTF http://www.tu-dresden.de/zih/otf/ 1.5.0 • Tested versions 1.7.x to 1.12.x

OTF2 http://www.score-p.org/ 1.0 • Added in UNITE 1.1

• Tested versions 1.0, 1.1.x

opari2 http://www.score-p.org/ 1.0 • Added in UNITE 1.1

• Tested versions 1.0.x

Paraver (**) http://www.bsc.es/paraver 4.3 • Added in UNITE 1.1

• Tested versions 4.3.x to 4.4.x

pdtoolkit http://www.cs.uoregon.edu/research/pdt/ 3.15 • Tested versions 3.16.x to 3.19.x

Scalasca-1.X http://www.scalasca.org/ 1.3.0 • Tested versions 1.4.x

Scalasca-2.X http://www.scalasca.org/ 2.0 • Added in UNITE 1.1

Score-P http://www.score-p.org/ 1.0 • Added in UNITE 1.1

• Tested version1.0, 1.1.x

TAU http://tau.uoregon.edu/ 2.20 • Added in UNITE 1.1

• Tested versions 2.20.x to 2.22.x

VampirTrace http://www.tu-
dresden.de/zih/vampirtrace/

5.8 • Tested version 5.9.x to 5.14.x

UniMCI http://www.tu-dresden.de/zih/unimci/ 1.0.1 —

Vampir (*) http://www.vampir.eu/ 5.0 • Support for new binary installer

• Tested version 7.x, 8.x

VampirServer
(*)

http://www.vampir.eu/ 1.0 • Support for new binary installer

• Tested versions 7.x, 8.x

(*) The commercial tool packages for Vampir and VampirServer are also supported, but these always need
to be downloaded separately. The corresponding installation packages which you get after purchasing the

Vampir software can simply be added to the packages directory of the UNITE installer. In addition,

individual license file(s) have to be copied to the location reported by the UNITE installer configure script. For
Linux systems, one can also download a time-limited demo version of Vampir 8 from the Website
www.vampir.eu/download and use this package in the installation. The necessary demo license file will be
emailed to you after giving your registration data at the Vampir website. Demo versions for other platforms or
for VampirServer are available on request. For this, please contact service@vampir.eu.

(**) Extrae and Paraver need some additional utility packages for installation: boost, libunwind, and
wxpropgrid (which are also included in the UNITE package for your convenience).

3.2 Implemented Tool Integration

The UNITE installer does not only allow configuring, building, and installing all the tool packages in a
coherent and portable single installation, but also tries to configure and build the single tool packages in a
way that there is maximum reuse of tool components and all possible integration between tools is enabled
(see for example Figure 2).

Package Package Integration (and Necessary Configuration Options)

cube • Configure and build remote control of Vampir (automatically configured if DBUS
available) and Paraver components if available

--with-paraver-cfg=<PARAVER_DIR>/<STATE-AS-IS-CFG-FILE>

http://www.tu-dresden.de/zih/otf/
http://www.score-p.org/
http://www.score-p.org/
http://www.bsc.es/paraver
http://www.cs.uoregon.edu/research/pdt/
http://www.scalasca.org/
http://www.scalasca.org/
http://www.score-p.org/
http://tau.uoregon.edu/
http://www.tu-dresden.de/zih/vampirtrace/
http://www.tu-dresden.de/zih/vampirtrace/
http://www.tu-dresden.de/zih/unimci/
http://www.vampir.eu/
http://www.vampir.eu/
http://www.vampir.eu/download
mailto:service@vampir.eu

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 14

cube4 • Configure and build remote control of Vampir (automatically configured if DBUS
available) and Paraver components if available

--with-paraver-cfg=<PARAVER_DIR>/<STATE-AS-IS-CFG-FILE>

lwm2 • Use external PAPI library if available
--with-papi-header=<PAPI_DIR>/include

--with-papi-lib=<PAPI_DIR>/{lib,lib64}

Scalasca-1.X • Use external PAPI and OTF libraries and PDToolkit and Opari2 components if
available
--with-papi=<PAPI_DIR>

--with-pdt=<PDT_DIR>

--with-otf=<OTF_DIR>

--with-opari2=<OPARI2_DIR>

Scalasca-2.X • Use external OTF2 library and CUBE4 component if available
--with-otf2=<OTF2_DIR>

--with-cube=<CUBE4_DIR>/bin

Marmot • Use external CUBE component if available
-DMARMOT_USE_CUBE=ON

-DCUBE_CONFIG=<CUBE_DIR>/bin/cube-config

UniMCI • Configure for MARMOT if available
-DMARMOT_HOME=<MRMT_DIR>

-DUSED_MPI_CHECKER=MARMOT

VampirTrace • Use external PAPI and UNIMCI libraries and PDToolkit component if available
--with-papi-dir=<PAPI_DIR>

--with-unimci-config=<MRMT_DIR>/bin/unimci-config

Extrae • Use external PAPI library if available
--with-papi=<PAPI_DIR>

• Use separately configured and installed boost, libdwarf, and libunwind development
packages

Paraver • Use separately configured and installed wxpropgrid development package

Score-P • Use external PAPI and OTF2 libraries and PDToolkit, Opari2 and CUBE4
components if available
--with-papi-header=<PAPI_DIR>/include

--with-papi-lib=<PAPI_DIR>/{lib,lib64}

--with-pdt=<PDT_DIR></ARCH>/bin

--with-otf2=<OTF2_DIR>

--with-opari2=<OPARI2_DIR>/bin

--with-cube=<CUBE4_DIR>/bin

TAU • Configure and build MPI, OpenMP, MPI/OpenMP versions each to

• Use external PAPI and OTF libraries and PDToolkit component if available
-papi=<PAPI_DIR>

-pdt=<PDT_DIR>

-otf=<OTF_DIR>

• Use TAU internal, Scalasca, VampirTrace, or Score-P measurement system
-scalasca=<SCALASCA_DIR>

-vampirtrace=<VT_DIR>

-scorep=<SCOREP_DIR>

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 15

4. Conclusion

UNITE (UNiform Integrated Tool Environment) provides a robust, portable, and integrated environment for
the debugging and performance analysis of parallel MPI, OpenMP, and hybrid MPI/OpenMP programs on
high-performance compute clusters. It consists of a set of well-accepted portable, mostly open-source tools.

As high-performance clusters often provide multiple MPI libraries and compiler suites for parallel
programming, which requires separate versions of tools for each MPI library/compiler combination, and HPC
centres have different policies on how and where to install different software packages as well as how to
name the different versions, UNITE defines a portable and coherent tool installation setup by

• specifying exactly how and where to install the different versions of tool software packages (including
integrating the tools to the maximum possible degree),

• defining standard module names for tools and their different versions, and

• supplying pre-defined module files which provide standardized, well-tested tool configurations,

• but still being flexible enough to be able to co-exist with site-local installations, restrictions, and policies.

This way, HPC application developers only need to learn once how to invoke and facilitate the debugging
and performance tools for their applications (at least at sites which use the UNITE package).

UNITE helps HPC system administrators by providing a ”meta”-installation tool (the UNITE installer) which is
capable of configuring, building, and installing all supported tools as a common package according to the
UNITE specifications but hiding tool-specific aspects of the various phases. It can also be used to update an
existing UNITE installation with new tools or tool versions.

On the UNITE website [14], a single package consisting of the UNITE installer, the UNITE module files, as
well as a large set of open-source debugging and performance tools together with a user guide (for
application developers) and an installation guide (for system administrators) is provided.

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 16

5. Bibliography

[1] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, and B. Mohr. The Scalasca performance
toolset architecture. Concurrency and Computation: Practice and Experience, 22(6):702–719, April
2010.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, B. Mohr: A scalable tool architecture for diagnosing wait states in
massively parallel applications. Parallel Computing, 35(7):375-388, July 2009.

[3] B. J. N. Wylie, M. Geimer, F. Wolf: Performance measurement and analysis of large-scale parallel
applications on leadership computing systems. Scientific Programming, 16(2-3):167-181, 2008,
Special Issue Large-Scale Programming Tools and Environments.

[4] E. Hagersten, M. Nilsson and M. Vesterlund, Improving Cache Utilization Using Acumem VPE, Tools
for High-Performance Computing 2008, III, 115-135, DOI: 10.1007/978-3-540-68564-7_8

[5] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. Müller and W.E. Nagel, “The
Vampir Performance Analysis Tool-Set”, Tools for High Performance Computing, pp 139-155,
Springer Verlag, 2008.

[6] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorf, K. Diethelm, D. Eschweiler, M. Gerndt, D. Lorenz, A.
D. Malony, W. E. Nagel, Y. Oleynik, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B.
Wesarg, F. Wolf: Score-P - A Joint Performance Measurement Run-Time Infrastructure for Periscope,
Scalasca, TAU, and Vampir, Proceedings of 5th Parallel Tools Workshop, 2011.

[7] J. Labarta, Trace-Based Tools, Performance Tuning of Scientific Applications, Edited by D. H. Bailey,
R. F. Lucas and S. W. Williams, pp. 87–122, 2011.

[8] A. Snavely, X. Gao, C. Lee, L. Carrington, N. Wolter, J. Labarta, J. Giménez, P. Jones, Performance
Modeling of HPC Applications, Proceedings ParCo 2003.

[9] V. Pillet et al.: PARAVER: A Tool to Visualize and Analyze Parallel Code, in: 18th World OCCAM and
Transputer User Group Technical Meeting, April 1995.

[10] T-Platforms, Moscow, Russia. Clustrx HPC Software. http://www.t-platforms.com/products/
software/clustrxproductfamily.html, last accessed September 2012.

[11] A.V. Adinets, P.A. Bryzgalov, V. Vad, Voevodin, S.A. Zhumatiy, D.A. Nikitenko. About an approach to
monitoring, analysis and visualization of jobs on cluster system (In Russian). In: Numerical Methods
and Programming, vol. 12, pp. 90–93, 2011.

[12] Bernd Mohr, Vladimir Voevodin, Judit Giménez, Erik Hagersten, Andreas Knüpfer, Dmitry A. Nikitenko,
Mats Nilsson, Harald Servat, Aamer Shah, Frank Winkler, Felix Wolf, and Ilya Zhukov: The HOPSA
Workflow and Tools. In: Proceedings of the 6th International Parallel Tools Workshop, Stuttgart,
September 2012, Springer. To appear.

[13] The module software, http://modules.sourceforge.net/

[14] UNITE website, http://apps.fz-juelich.de/unite/

[15] EU Itea2 project ParMA, http://www.parma-itea2.org/

http://www.t-platforms.com/
http://modules.sourceforge.net/
http://apps.fz-juelich.de/unite/
http://www.parma-itea2.org/

UNITE Package CP-2011-277463
 5 APR 2013

Public Copyright © HOPSA Consortium Page 17

6. Annexes

6.1 Annex A: UNITE User Guide

6.2 Annex B: UNITE Installation Guide

