
	
 	
 	
 	
 	
 	
 	
 HOlistic	
 Performance	
 System	
 Analysis-­‐EU	
 	

	

 1

Deliverable D3.3

Lightweight	
 Measurement	
 Module	

	

CONTRACT NO HOPSA-EU 277463
INSTRUMENT CP (Collaborative project)
CALL FP7-ICT-2011-EU-Russia

Due date of deliverable: August 15th, 2012

Actual submission date: January 31st, 2013

Start date of project: 1 FEBRUARY 2011 Duration: 24 months

Name of lead contractor for this deliverable: GRS
Name of reviewers for this deliverable: Felix Wolf, Bernd Mohr

Abstract: This deliverable specifies the requirements and design of the lightweight measurement
module. It specifies the internal working of the module, along with the output produced by it.

Revision 1.0

Project co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013)

Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services) X
CO Confidential, only for members of the consortium (including the Commission Services)

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 1

Table of Contents

1.	
 EXECUTIVE SUMMARY ... 3	

2.	
 INTRODUCTION ... 4	

2.1	
 THE BROADER CONTEXT: THE HOPSA PROJECT .. 4	

2.2	
 ABOUT THIS DOCUMENT .. 5	

3.	
 LIGHTWEIGHT MEASUREMENT MODULE .. 6	

3.1	
 ROLE OF LWM2 IN HOLISTIC ANALYSIS ENVIRONMENT ... 6	

3.1.1	
 Integration with LAPTA system .. 7	

3.1.2	
 Performance data access .. 7	

3.2	
 ARCHITECTURE .. 7	

3.2.1	
 Requirements .. 7	

3.2.2	
 Profiling methodology .. 8	

3.2.3	
 Supported technologies ... 8	

3.2.4	
 Modular design .. 9	

3.2.5	
 Time slices ... 9	

3.2.6	
 Thread handling ... 10	

3.2.7	
 Architectural design ... 11	

3.3	
 USAGE & OUTPUT ... 12	

4.	
 CONCLUSIONS .. 14	

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 2

Glossary

Abbreviation /
acronym

Description

API Application Programming Interface

HOPSA HOlistic Performance System Analysis

HPC High Performance Computing

I/O Input/Output

LWM2 Lightweight Measurement Module

MPI Message Passing Interface
(Programming Model for Distributed Memory Systems)

PMPI Profiling MPI

PAPI Performance Application Programming Interface
(Library for accessing system hardware counters)

OpenMP Open Multi-Processing
(Programming Model for Shared Memory Systems)

POSIX Portable Operating System Interface

CUDA Compute Unified Device Architecture
(Programming Model for nVidia Accelerators)

CUPTI CUDA Profiling Tools Interface

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 3

1. Executive summary

This document describes the architecture of the Lightweight Measurement Module (LWM2), including
the profiling output of the tool, developed in the course of this project and defined by Task 3.3 of Work
Package 3 of the EU FP7 project HOPSA. The HOPSA project (HOlistic Performance System
Analysis) sets out for the first time to develop an integrated diagnostic infrastructure for combined
application and system tuning. The documents provide an overview of the architecture of the
lightweight measurement module and a snapshot of its internal working. This document then further
explains the profiling output of LWM2 and gives a glimpse of how to use the tool. First, the document
lists the design requirements the LWM2 has to fulfil in order to perform its role of an integrated profiler
in the holistic environment of the project. It then describes the architecture of LWM2, covering issues
such as profiling methodology and storage of data. It then describes the concept of time slices, a novel
method of data aggregation allowing cross application analysis. Finally, in architectural issues, the
issue of thread handling and its effect on data storage and time slicing is discussed. At the end, the
profiling output of LWM2 is described and a glimpse of its usage is given.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 4

2. Introduction

This document describes the architecture of the Lightweight Measurement Module (LWM2), developed
in the course of this project and defined by Task 3.3 of Work Package 3 of the EU FP7 project
HOPSA. The document covers the technical design of LWM2 in brief, describing the central issues of
design requirements, profiling methodologies and data storage. Moreover, it also discusses issues like
thread-safety and its effect on the architecture of the tool. At the end, it describes the profiling metrics
collected by LWM2.

2.1 The broader context: The HOPSA project
To maximise the scientific and commercial output of a high-performance computing system, different
stakeholders pursue different strategies. While individual application developers are trying to shorten
the time to solution by optimising their codes, system administrators are tuning the configuration of the
overall system to increase its throughput. Yet, the complexity of today's machines with their strong
interrelationship between application and system performance demands an integration of application
and system programming.

Figure 1: System-level tuning (bottom), application-level tuning (top), and system-wide
performance screening (centre) use common interfaces for exchanging performance

properties.

The HOPSA project (HOlistic Performance System Analysis) therefore sets out for the first time to
develop an integrated diagnostic infrastructure for combined application and system tuning. Using
more powerful diagnostic tools application developers and system administrators will easily identify the
root causes of their respective bottlenecks. With the HOPSA infrastructure, it is more effective to
optimise codes running on HPC systems. More efficient codes mean either getting results faster or
being able to get higher quality or more results in the same time.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 5

The work in HOPSA is carried out by two coordinated projects funded by the EU under call FP7-ICT-
2011-EU-Russia and the Russian Ministry of Education and Science, respectively. Its objective is the
new innovative integration of application tuning with overall system diagnosis and tuning to maximise
the scientific output of our HPC infrastructures. While the Russian consortium will focus on the system
aspect, the EU consortium will focus on the application aspect.
At the interface between these two facets of our holistic approach, which is illustrated in Figure 1, is
the system-wide performance screening of individual jobs, pointing at both inefficiencies of individual
applications and system-related performance issues. The measurement module supposed to perform
this task is the subject of this report.

2.2 About this document
This document provides a brief description of the architecture of the lightweight measurement module,
developed during the course of the project. The document first lists the design requirements the LWM2
has to fulfil in order to perform its role of a silent profiler in the holistic environment of the project. It
then describes the architecture of LWM2, covering issues such as profiling methodology and storage
of data. It then describes the concept of time slices, a novel method of data aggregation allowing cross
application analysis. Furthermore, the issue of thread handling and its effect on data storage and time
slicing is discussed. At the end, the list of metrics collected by LWM2 is described. This document can
be considered as a high-level design document of LWM2, which also lists major requirements of the
tool.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 6

3. Lightweight Measurement Module

The lightweight measurement module is a low overhead profiler developed during the course of the
HOPSA project. It can profile applications without any modification by a user. This section first
describes the role of LWM2 in the holistic performance analysis environment. It then describes the
architecture and the output generated by LWM2.

3.1 Role of LWM2 in holistic analysis environment
The Lightweight Measurement Module (LWM2) functions as an integrated application profiler in the
holistic performance analysis environment of the project. Its role is to mandatorily screen all the
applications running on the system for performance. The information from application screening is
stored in a central performance database, which can be accessed by a user to identify application
performance problems and to select the appropriate tool for the application’s performance problem.
Figure 2 below presents the role of LWM2 as a springboard for application performance analysis tools
in the holistic environment. The information gathered from LWM2 can also be used to identify inter-
application interference.

System-wide
job screening

with LWM2

LAPTA
System

performance
database

Basic
application

+ system
metrics

Performance Screening

Application-level
tuning

Job
digest

User

ThreadSpotter

Inter-node
performance

Intra-node
performance

Scalasca (Cube)

Performance Diagnosis

System-level
tuning

 Global
workload data
+ job digests

Administrator

Pro-active
performance

consulting

LAPTA system-level analysis

Job info of user

full
access

Vampir

Paraver

In-depth analysis

Traces with
application +

system metrics

The HOPSA performance analysis workflow is described in detail in deliverable D3.2.

Figure 2: Overview of the planned performance analysis workflow.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 7

3.1.1 Integration with LAPTA system

The lightweight measurement module forms the core of the automatic screening process on the
holistic performance environment of the project. It integrates with the LAPTA system, developed by
Moscow State University, to form a seamless analysis environment. At the end of execution of an
application running in the holistic environment, LWM2 generates multiple files containing the
performance summary and the time-sliced information about the application’s performance. The files
are written to a specific directory, which is constantly scanned by an agent of the LAPTA system. The
profiling data read by the agent is stored in the central database of the LAPTA system, which also
contains performance data from hardware sources of the system.

3.1.2 Performance data access

The profiling information generated by LWM2 can be accessed through a command line query or
through a web interface. The web interface provides an online job digest, with graphical representation
of metrics collected through LWM2 and other performance data sources. The command line query
uses HTTP POST request and executes a HOPLANG query to fetch the data, in a csv-list format. The
following is a sample query, which fetches the MPI collective call count metric for a job with id 1868.
The sample output is also given.

Query:

o = each x in post_lwm2_coll_call_count here x.time>0

 if x.task_id == '1868'

 yield x

 end

end

print o

Output:

n,node,task_id,time,value

0,cn05,1868,1357213230000000,10002

0,cn08,1868,1357213230000000,10002

0,cn05,1868,1357213230000000,10002

0,cn08,1868,1357213230000000,10002

0,cn05,1868,1357213230000000,10002

0,cn08,1868,1357213230000000,10002

3.2 Architecture
LWM2 performs the role of an integrated application profiler in the holistic performance environment of
the project. This role places some specific requirements on the design on LWM2 that it has to fulfil.

3.2.1 Requirements

LWM2 has to meet the following requirements
• Profiling of application without user interaction: As LWM2 has to act as a silent profiler, it has

to profile applications without requiring a user to modify the application. LWM2 uses library
preloading and dynamic function interposing to fulfil this requirement.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 8

• Low resource utilization: As LWM2 will be active by default, any resources consumed by LWM2
will not be available to applications running on the system. For this reason, LWM2 has to have
a low overhead to keep the overall system utilization high.

• Basic performance information aggregation: The profiling information from LWM2 will be stored
in a central database, for all the applications running on the system. To keep storage
requirements in realistic range, LWM2 has to capture and provide basic, but useful,
performance information about an application.

3.2.2 Profiling methodology

The lightweight measurement module uses a hybrid approach to profile an application. It samples the
profiled application at regular intervals to keep track of application activity. To keep the overhead low,
LWM2 avoids stack unwinding at each application sample. Instead, it utilizes direct instrumentation to
earmark regions of interest in an application. When an application is sampled, the earmarks are
checked to identify the region of application execution. As a result, LWM2 is able to profile application
with reasonable knowledge of application activity while maintaining low overhead. This hybrid
approach also allows LWM2 to keep track of the time spent by an application in different regions of
execution without directly measuring the time in these regions. All these approaches contribute to low
overhead of LWM2.
The hybrid profiling approach is also used to collect additional data of interest for some specific
application activities. This includes the MPI communication calls and the amount of data transfer, the
POSIX file I/O calls and associated data transfers, etc. This selected collection approach contributes
to keeping the profiling information of LWM2 small, as required by its role.

3.2.3 Supported technologies

The lightweight measurement module targets a typical HPC system, with a view on emerging
technologies. It profiles MPI using the PMPI interface provided for profiling while it profiles POSIX file
I/O by dynamic function interposing. It also measures the performance of multithreading in an
application by estimating the effective thread count. Finally, CUDA applications are profiled through
the CUPTI interface while the system hardware counters are profiled to collect the sequential
performance information about the application.

MPI performance
The PMPI interface is used to directly instrument MPI calls. In direct instrumentation, only a few
parameters of interests are recorded, while also setting earmarks for identifying MPI regions during
sampling. The parameters of interest include communication information, like number of MPI collective
and point-to-point communication calls, amount of data transferred in communication calls, etc.

File I/O performance
The file I/O parameters include both the MPI file I/O and POXIS file I/O parameters, which are
instrumented separately. MPI file I/O instrumentation relies on PMPI, while POSIX file I/O is caught
through dynamic symbol loading. Besides earmarking the region, the number of I/O operations and
amount of data read/written are also recorded.

Multithreading performance
The multithreading performance of an application is estimated without making many assumptions
about the underlying technology. A minimum assumption of a pthread-based runtime is made. The
technique relies on the fact that every active thread is sampled separately, when an application is
sampled. The ratio of how many samples were taken during an application execution to the maximum
samples that can be taken of a single thread during an application’s execution gives a measure of
effective threading performance of the application.

CUDA performance

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 9

The CUPTI interface is used to keep track of all the CUDA runtime calls. This provides a method to
earmark CUDA activities on the host side. The runtime calls are also used to track memory transfers
between the host and the device.

Sequential performance
The hardware counters provide an overview of the performance of an application on a single
processor and on a single node. This sequential performance information is captured using the PAPI
library for hardware-counter access.

3.2.4 Modular design

LWM2 has a modular design, with each module responsible for profiling a different technology. The
choice of hybrid profiling methodology means LWM2 has both active and passive parts that gather
profiling information. The passive parts are called as a result of direct instrumentation of application
activities, while the active parts are those that are executed to sample the application. The profiling
information from both of these methodologies is collected in a central storage module.

3.2.5 Time slices

The lightweight measurement module, when integrated into the holistic environment, also enables
inter-application interference identification and correlation analysis. This is made possible through the
novel concept of time slices. The profiling information collected by LWM2 is aggregated and
summarized for the whole execution of an application. To make cross application analysis possible,
the profiling information is also aggregated for small segments of time, called time slices. This
aggregation into time slices in effect creates small profiles of the application, as the application is
executing, resulting in capturing the changing dynamics of the application. Figure 3 shows the
aggregation of profiling information for the complete application execution and for time slices.

Application execution

Time-slice 4 Time-slice 2 Time-slice 3 Time-slice 1

Time-slice 1
profile

Time-slice 2
profile

Time-slice 3
profile

Time-slice 4
profile

Time-slice
synchronized with

system time

Complete
execution

profile

The boundaries for aggregation of profiling information into time slices are synchronized along the
global system time. This results in time-slice boundaries for all the applications executing on the
system occurring at the same time. The small profiles created for the applications executing on the
system are aligned to each other, and hence allow for analysis across applications.

Figure 3: Aggregation of profiling information for the complete execution and for
time slices.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 10

Time

S
ystem

 nodes

Metric intensity

Job A

Job B

Job C

Job D
J

o
b

in

t
e

r
f

e
r

e
n

c
e

 N o d e h i s t o r y

The time-sliced profiles of all the applications running at a time can be mapped on a space-time grid.
Figure 4 shows such a grid, which makes inter-application interference evident. The discretised time
axis constitutes the first dimension, the nodes of the system the second one. The purpose of
organising the performance data in this way is threefold: First, by comparing the data of different jobs
that were active during the same time slice, it becomes possible to see signs of interference between
applications. Examples include reduced communication performance due to overall network saturation
or low I/O bandwidth due to concurrent I/O requests from other jobs. Second, by looking at the
performance data of the same node across a larger number of jobs and comparing it to the
performance of other nodes during the same period, anomalies can be detected that would otherwise
be hidden when analysing performance data only on a per-job basis. Third, collecting synchronised
performance data from all the jobs running on a given system will open the way for new directions in
the development of job scheduling algorithms that take the performance characteristics of individual
jobs into account. For example, to avoid file-server contention and waiting time that may occur in its
wake, it might be wiser not to co-schedule I/O-intensive applications. In this way, overall system
utilisation may be further improved.

3.2.6 Thread handling

The lightweight measurement module is designed to profile multithreaded applications. As a result of
the profiling methodology used, LWM2 by itself has to be thread safe in its handling of profiling
information to properly support multithreaded applications. The sampling approach and the direct
instrumentation approach for profiling both offer different thread safety opportunities. In direct
instrumentation, thread level mutual exclusion constructs can be used to safely store profiling
information. Such features are not available in the sampling parts, where a special technique had to
be developed to ensure thread-safety.

Figure 4: LWM2 maps selected performance metrics collected during program execution
onto a space-time grid. The space dimension consists of system nodes, while the time
dimension consists of time slices, which are synchronized across the entire system to

identify inter-application interferences from data of jobs executing simultaneously.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 11

3.2.7 Architectural design

The LWM2 is designed to be a thread-safe profiler, with both active and passive parts, storing profiling
information in a central module, while also aggregating the information for small time segments. This
led to some challenges in designing the software.

Thread-safe storage
The LWM2 storage module stores all the profiling information, both for the complete application
execution and for each time-slice. The complete application execution storage is fixed in size, and
aggregates the information for the whole execution while the storage for time slices increases linearly
with each time slice. The passive parts of LWM2, utilizing the multithreading synchronization
constructs available to them, store the captured profiling information directly into these two available
storages.
To accommodate the active parts in a thread-safe design and to minimize cache line sharing among
the threads, LWM2 creates a separate storage for each thread of the application. This thread specific
storage has parts both for storing complete application execution information and for time slices. Both
the storages are fixed in size and are aggregated into the process wide storage module, at the end of
execution for complete application storage and at the end of each time slice for time-slice storage.

Heartbeat thread
The time-sliced profile stored in thread specific storage is aggregated into the process wide storage at
the end of each time slice. This is done through a heartbeat thread, which has access to
multithreading synchronization constructs. The thread is activated at the end of each time slice and
aggregates the time-sliced profiles of each thread into the process wide storage. A dual buffer
approach is used to minimize the contention between the heartbeat thread and the passive parts of
LWM2 for the thread specific time-slice storage. One buffer is used to collect the profiling information,
while the second buffer is accessed by the heartbeat thread to aggregate thread specific profiling
information. The heartbeat thread switches these two buffers at the end of each time-slice before
aggregating the performance information. Figure 5 shows the steps taken by the heartbeat thread at
the end of a time-slice.

!"#$%&'()*#%+$'

!,-$.(/,0$'
123$#'

!,-$.(/,0$'
123$#'

4*-5/$)$'$6$027*8'123$#'

9#*0$(('()*#%+$'

4*-5/$)$'$6$027*8'123$#'

!,-$.(/,0$'
123$#':'

!,-$.(/,0$'
123$#';'

!,-$.(/,0$'
123$#'<'

=<>'?$#+$')"#$%&'&%)%'
@,)"'5#*0$(('&%)%'

=:>'A@,)0"'123$#('

=;>'B&&'8$@'123$#'C*#'
8$6)'7-$.(/,0$'

D$%#)1$%)')"#$%&'

Sampling data
The profiled application is periodically sampled by LWM2 during execution. The information from the
profiling is stored in the central storage module. In the case of multithreaded applications, each active
thread is sampled separately. In order to avoid conflicts in the storage module, each thread stores its

Figure 5: Storage handling at time-slice boundary.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 12

sampling information separately in its own thread specific storage. However, thread mutexes or locks
are not available during application sampling, and hence the heartbeat thread at the end of a time-
slice cannot safely aggregate the sampling information. As a result, the sampling information is only
provided for the whole execution, and not for each time-slice. The information from the threads is
aggregated into the process wide storage, at the end of an application execution, when all the threads
have finished execution.

As a result of these techniques, a LWM2 can safely handle the profiling information of multithreaded
applications, while still maintaining a hybrid profiling approach

3.3 Usage & output
LWM2 does not require any user effort to profile an application. It relies on library preloading for
profiling. This requires only setting some environment variables, which can be configured by default in
a batch system.

LWM2 collects specific metrics while profiling an application. These are collected through a
combination of sampling and direct instrumentation. These metrics are stored in a central database,
and optionally displayed immediately after an application execution, in the form of a job digest. Below,
a detailed list of metrics contained in the job digest is presented. For all metrics where it is applicable,
the digest lists minimum, average and maximum values across processes. In addition to defining
metrics, guidance in interpreting them and recommendations on further analyses is provided, if a given
metric or group of metrics does not match expectations.

General information

• Duration of the job in terms of wall clock time
• Number of MPI processes

Message-passing performance

• Time spent in all MPI calls [%]
• Time spent in MPI point-to-point calls [%]
• Time spent in MPI collective calls [%]
• Average size of point-to-point messages [Byte]
• Average size of collective messages sent [Byte]
• Average size of collective messages received [Byte]
• Frequency of MPI point-to-point calls [/s]
• Frequency of MPI collective calls [/s]
• MPI point-to-point transfer rate [Byte/s]. Ratio of the number of bytes sent and the time spent in

MPI point-to-point communication
• MPI collective transfer rate [Byte/s]. Ratio of the number of bytes sent and the time spent in MPI

collective communication

In general, message passing means communication or synchronisation as opposed to computation
and therefore does not directly contribute to the calculation of results. Therefore, communication
should be minimized as much as possible and the fraction of time spent in MPI kept low. If the fraction
of time spent in MPI calls grows with the number of processes, the application has usually a scalability
problem. If communication is dominated by larger numbers of small messages, network latency may
be the limiting factor. In contrast, if the majority of messages are large, the limiting factor may be
network bandwidth. Asymmetries in the MPI time across processes, indicated by different minimum
and maximum times, can be signs of load or communication imbalance, a performance property that
usually prevents scaling to larger processor counts.

I/O performance

• Time spent in MPI file I/O calls [%]

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 13

• Time spent in POSIX file I/O calls [%]
• Amount of data written to files [Byte]
• Amount of data read from files [Byte]
• Write bandwidth [Byte/s]. Ratio of the number of bytes written to files and the time spent in write

functions
• Read bandwidth [Bytes/s]. Ratio of the number of bytes written to files and the time spent in read

functions
These metrics indicate whether the application places too much load on the I/O subsystem. The user
should always check whether I/O of the given application coincides with I/O of other applications,
which is visible in the Web-based digest. In such a case, the I/O performance may improve in
subsequent runs when such interference is absent. In general, I/O performance is subject to variation
and may change significantly between runs. This means, diagnosing an I/O bottleneck usually
requires multiple runs under different overall load conditions.

Multithreaded performance

• Average number of threads for the execution: Ratio of the total number of samples and the
number of samples taken on the master thread

• Total number of threads in the execution

The average number of threads tells whether the degree of concurrency is as expected. For example,
long periods of sequential execution in OpenMP applications may degrade concurrency and limit the
benefits of parallel regions for the overall program.

Sequential performance

• Average cycles per instruction (CPI)
• Fraction of floating-point operations among all instructions [%]
• Level1 data cache hit ratio
• Last-level miss frequency

Sequential-performance metrics tell how well the cores of the underlying machine are utilized. If the
cycles per instructions are much higher than the theoretical minimum, then memory access latency or
pipeline hazards may be the reason. Also, some operations such as complex floating-point operations
may simply take longer than others. The fraction of floating-point operations tells to which degree
floating-point performance is the dominant theme. A low Level1 hit ratio usually indicates low locality
and may explain a high CPI value. The last-level miss frequency is equivalent to the frequency of
main-memory accesses and may point to memory-bandwidth saturation. Note that a platform may
miss some of the hardware counters required for the full set of sequential performance metrics or that
some of the required hardware counters cannot be measured simultaneously. In this case, LWM2
provides only a subset of the above metrics.

CUDA performance
• Time spent in CUDA calls [%]
• Average data volume transferred from host to device [Byte]
• Average data volume transferred from device to host [Byte]
• Frequency of data transfers [/s]
These metrics provide just a very rough indicator of CUDA performance.

LIGHTWEIGHT MEASUREMENT MODULE CP-2011-277463
 31 JAN 2013

Confidential Copyright © HOPSA Consortium Page 14

4. Conclusions

The HOPSA project creates an integrated diagnostic infrastructure for combined application and
system tuning. At the centre of this infrastructure is the lightweight measurement module, which acts
as a silent profiler. It mandatorily screens all the applications running on the system, providing a
feedback on application performance and guidance in selection of specialized performance analysis
tools. This document describes the architecture of LWM2, the requirements it had to fulfil to fill in the
role of a silent profiler and the strategies used by the tool to achieve thread safety. The final LWM2
software package will be available for download at the project website (www.hopsa-project.eu) and will
be distributed as part of the HOPSA UNITE package (deliverable D3.4).
Beyond the lifetime of the project, the HOPSA infrastructure is supposed to collect large amounts of
valuable data on the performance of individual applications as well as the system workload as a
whole. It will be of interest in three ways: to tune individual applications, to tune the system for a given
workload, and finally to observe the evolution of this workload over time. The latter will allow the
effectiveness of our strategy to be studied. An open research issue to be tackled on the way will be
the reliable tracking of individual applications, which may change over time, across jobs based on the
collected data. In this way, it will become possible to document the performance history of code
projects and demonstrate the effects of our tool environment over time.

