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Glossary 

Abbreviation / 
acronym  

Description 

API Application Programming Interface 

Clustrx® An operating system for high-performance computing from Massive 
Solutions. In this document, the term is used to refer to Clustrx Watch, the 
associated monitoring, management and control system.  

GUI Graphical User Interface 

HOPSA HOlistic Performance System Analysis 

HPC High Performance Computing 

I/O Input/Output 

LWM2 Lightweight Measurement Module  

MPI Message Passing Interface 
(Programming Model for Distributed Memory Systems) 

OpenMP Open Multi-Processing 
(Programming Model for Shared Memory Systems) 

Score-P A unified performance measurement infrastructure for parallel programs 
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1. Executive summary 

This document describes the performance-analysis workflow defined in Task 3.2 of Work Package 3 
of the EU FP7 project HOPSA. The HOPSA project (HOlistic Performance System Analysis) sets out 
for the first time to develop an integrated diagnostic infrastructure for combined application and system 
tuning. The document guides application developers in the process of tuning and optimising their 
codes for performance. It describes which tools should be used in which order to accomplish common 
performance analysis tasks. Since the document addresses primarily the user’s perspective, it follows 
the style of a user guide. It does, however, not replace the user guides of individual performance-
analysis tools developed in HOPSA but rather connects them as it shows how to use the tools in a 
complementary way. At the centre of this document is the so-called lightweight measurement module 
(LWM2). Being responsible for the first step in the workflow, the system-wide mandatory collection of 
basic performance data, the module is covered in greater detail. Special emphasis is given to the 
interpretation of the job digest created with the help of LWM2. The metrics listed in this compact report 
indicate whether an application suffers from an inherent performance problem or whether application 
interference may have been at the root of dissatisfactory behaviour. They also provide a first 
assessment regarding the nature of a potential performance problem and help to decide on further 
diagnostic steps using any of the more powerful performance-analysis tools. For each of those tools, a 
short summary is given with information on the most important questions it can help to answer. 
Moreover, the document covers Score-P, a common measurement infrastructure shared by some of 
the tools. The performance data types supported by Score-P form a natural refinement hierarchy that 
can be followed to track down and represent even complex bottleneck situations at increasing levels of 
granularity. Finally, a brief excursion on system tuning explains how system providers can leverage 
the data collected by LWM2 to identify a suboptimal system configuration or faulty components. 
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2. Introduction 

This document describes the performance-analysis workflow defined in Task 3.2 of Work Package 3 
of the EU FP7 project HOPSA. The document guides application developers in the process of tuning 
and optimising their codes for performance. It describes which tools should be used in which order to 
accomplish common performance analysis tasks. Since the document addresses primarily the user’s 
perspective, it follows the style of a user guide. 

2.1 The broader context: The HOPSA project 
To maximise the scientific and commercial output of a high-performance computing system, different 
stakeholders pursue different strategies. While individual application developers are trying to shorten 
the time to solution by optimising their codes, system administrators are tuning the configuration of the 
overall system to increase its throughput. Yet, the complexity of today's machines with their strong 
interrelationship between application and system performance demands an integration of application 
and system programming. 

 

Figure 1: System-level tuning (bottom), application-level tuning (top), and system-wide 
performance screening (centre) use common interfaces for exchanging performance 

properties. 

 
The HOPSA project (HOlistic Performance System Analysis) therefore sets out for the first time to 
develop an integrated diagnostic infrastructure for combined application and system tuning. Using 
more powerful diagnostic tools application developers and system administrators will easier identify 
the root causes of their respective bottlenecks. With the HOPSA infrastructure, it is more effective to 
optimise codes running on HPC systems. More efficient codes mean either getting results faster or 
being able to get higher quality or more results in the same time.  
The work in HOPSA is carried out by two coordinated projects funded by the EU under call FP7-ICT-
2011-EU-Russia and the Russian Ministry of Education and Science, respectively. Its objective is the 
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new innovative integration of application tuning with overall system diagnosis and tuning to maximise 
the scientific output of our HPC infrastructures. While the Russian consortium will focus on the system 
aspect, the EU consortium will focus on the application aspect.  
At the interface between these two facets of our holistic approach, which is illustrated in Figure 1, is 
the system-wide performance screening of individual jobs, pointing at both inefficiencies of individual 
applications and system-related performance issues. 

2.2 About this document 
This document can be considered as a meta-user guide. It does not replace the user guides of 
individual performance-analysis tools developed in HOPSA but rather connects them as it shows how 
to use the tools in a complementary way. At the centre of this document is the so-called lightweight 
measurement module (LWM2). Being responsible for the first step in the workflow, the system-wide 
mandatory collection of basic performance data, the module is covered in greater detail. Special 
emphasis is given to the interpretation of the job digest created with the help of LWM2. The metrics 
listed in this compact report indicate whether an application suffers from an inherent performance 
problem or whether application interference may have been at the root of dissatisfactory behaviour. 
They also provide a first assessment regarding the nature of a potential performance problem and 
help to decide on further diagnostic steps using any of the more powerful performance-analysis tools. 
For each of those tools, a short summary is given with information on the most important questions it 
can help to answer. Moreover, the document covers Score-P, a common measurement infrastructure 
shared by some of the tools. The performance data types supported by Score-P form a natural 
refinement hierarchy that can be followed to track down and represent even complex bottleneck 
situations at increasing levels of granularity. Finally, a brief excursion on system tuning explains how 
system providers can leverage the data collected by LWM2 to identify a suboptimal system 
configuration or faulty components. 
 
Please note that not all of the functionality described in the report is available at the time of writing. 
However, everything should be available at the time the project finishes. If not, it is explicitly indicated. 
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3.  Performance-Analysis Workflow 

3.1 Overview 
The performance-analysis workflow (Figure 2) consists of two basic steps.  During the first step, we 
identify all those applications running on the system that may suffer from inefficiencies. This is done 
via system-wide job screening supported by a lightweight measurement module (LWM2) dynamically 
linked to every executable. The screening output identifies potential problem areas such as 
communication, memory, or file I/O, and issues recommendations on which diagnostic tools can be 
used to explore the issue further. Available analysis tools include Paraver/Dimemas [LGP+1996], 
Scalasca [GWW+2010], ThreadSpotter [BH2004], and Vampir [NWH+1996]. In general, the workflow 
successively narrows the analysis focus and increases the level of detail at which performance data 
are collected. At the same time, the measurement configuration is optimised to keep intrusion low and 
limit the amount of data that needs to be stored. To distinguish between system and application-
related performance problems, some of the tools allow also system-level data to be retrieved and 
displayed. The system administrator, in contrast, has access to global performance data. He can use 
this data to identify potential system performance bottlenecks and to optimise the system configuration 
based on current workload needs. In addition, the administrator can identify applications that 
continuously underperform and proactively offer performance-consulting services. In this way, it 
becomes possible to reduce the unnecessary waste of expensive system resources. 

         

Mandatory job 
screening with 

LWM2 and 
ClustrX 

System 
performance 

database 

Basic  
application  

& system  
metrics Application tuning 

System tuning Vampir 

ThreadSpotter 

Paraver 

Inter-node  
performance 

Job digest 

Global 
workload data 

Intra-node 
performance 

Scalasca (Cube) 

In-depth analysis 

User 

Administrator 

Traces with 
application &  

system metrics 

Pro-active 
performance  

consulting 

 
Figure 2: Overview of the performance analysis workflow. 
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3.2 Performance Screening 
This step decides whether an application behaves inefficiently. On the side of the user, nothing has to 
be done except running the application as usual. Upon application start, LWM2 is automatically and 
transparently linked to the executable through library pre-loading. At runtime, the module collects 
basic performance data via low-overhead sampling. The performance data characterise various 
aspects such as sequential performance, parallel performance, and file I/O.  At the end of execution, 
the user receives a job digest that contains the most important performance metrics. The digest also 
recommends further diagnostics in the case certain key metrics show unexpected values, which may 
often be indicative of a performance problem. If needed, the user can disable LWM2, for example, to 
avoid interference with the analysis tools used in subsequent stages of the tuning process. 

3.2.1 The Lightweight Measurement Module LWM2 

The lightweight measurement module LWM2 collects basic performance data for every process of a 
parallel application. It supports applications based on MPI and multithreaded applications based on 
POSIX Threads or any higher-level model implemented on top of it, which usually includes OpenMP. 
Multithreaded MPI applications and applications that additionally use CUDA are supported as well.  
To keep the overhead at a minimum, the module applies a combination of sampling and careful direct 
instrumentation via interposition wrappers. Direct instrumentation is needed to track the state of a 
thread (e.g., whether it executes inside or outside an MPI function) and to access relevant 
communication or I/O parameters such as the number of bytes sent or written to disk. Based on the 
state tracking performed by the instrumentation, sampling partitions the execution time into different 
components such as computation, communication, or I/O. LWM2 refrains from direct time 
measurements as far as possible. Hardware counters deliver basic information on single-node 
performance. To save storage space, the performance data of individual threads are folded into per-
process metrics such as the average number of threads. 
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Figure 3: LWM2 maps selected performance metrics collected during program execution onto a 
time-and-space grid. The space dimension consists of system nodes, while the time dimension 

consists of time slices of length 10s, which are synchronized across the entire system to 
correlate performance data from jobs whose executions overlap in time. 

 
 
In addition to dividing program execution on the cluster into distinct processes, LWM2 also divides the 
time axis into disjoint slices, recording selected metrics related to the use of shared resources at this 
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finer granularity. The slices have a length of 10s and are synchronized across the entire machine. 
Together with the location of each process on the cluster, which LWM2 records along with the 
performance data, LWM2 provides performance data for each active cell of a cluster-wide time-space 
grid (Figure 3). The discretised time axis constitutes the first dimension, the nodes of the system the 
second one. The purpose of organising the performance data in this way is threefold: First, by 
comparing the data of different jobs that were active during the same time slice, it becomes possible to 
see signs of interference between applications. Examples include reduced communication 
performance due to overall network saturation or low I/O bandwidth due to concurrent I/O requests 
from other jobs. Second, by looking at the performance data of the same node across a larger number 
of jobs and comparing it to the performance of other nodes during the same period, anomalies can be 
detected that would otherwise be hidden when analysing performance data only on a per-job basis. 
Third, collecting synchronised performance data from all the jobs running on a given system will open 
the way for new directions in the development of job scheduling algorithms that take the performance 
characteristics of individual jobs into account. For example, to avoid file-server contention and waiting 
time that may occur in its wake, it might be wiser not to co-schedule I/O-intensive applications. In this 
way, overall system utilisation may be further improved.   
After the expiration of every time slice, LWM2 passes the data of the current time slice on to Clustrx 
Watch, a system-monitoring infrastructure running on each node. Clustrx augments these data with 
system data collected using various sensors and forwards them to the system performance database, 
as shown in Figure 4. 
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Figure 4: Interaction between LWM2 and Clustrx Watch. 

 
Finally, studying the performance behaviour of the entire job mix will allow conclusions on the optimal 
system configuration for the given workload. For example, system providers will learn whether 
communication requirements were over- or underestimated. Also, performance data of the same 
application collected over an extended period of time will document the tuning and scaling history of 
this application.  

3.2.2 How to disable LWM2 

While the low runtime overhead of LWM2 guarantees the undisturbed program execution under normal 
circumstances, it may interfere with some of the other performance tools that employ similar 
mechanisms to collect their performance data. For this reason, a user can disable the preloading of 
LWM2 in the batch script. The precise way of specifying this option still needs to be determined. The 
most likely solution is to set an LWM2-specific batch system variable for disabling LWM2 for the current 
batch job. 

3.2.3 Job digest 

How to access it 
The job digest is accessible after job completion through a web-based interface. When the user logs 
onto the performance database, a list of completed jobs will appear. After selecting a specific job, 
summary metrics for this particular job will be displayed. For those metrics, for which time-sliced data 
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is available, the user can view graphs that show the evolution of these metric over time. An important 
feature is the ability to correlate the evolution of different metrics over time by comparing their graphs. 
Since the graphs for a single application run cover the same time interval, correlation can be easily 
observed. 

Performance metrics 
Below, we provide a detailed list of metrics contained in the job digest. For all metrics where it is 
applicable, the digest lists minimum, average and maximum values across processes. In addition to 
defining metrics, we also provide guidance in interpreting them and make recommendations on further 
analyses if a given metric or group of metrics does not match expectations. In general, it is highly 
application-dependent whether a metric value should be considered too high or too low. We therefore 
do not define any fixed thresholds but rather refer to the expectations a user may have.  

General information 

• Duration of the job in terms of wall clock time 
• Number of MPI processes 

Message-passing performance 

• Time spent in all MPI calls [%] 
• Time spent in MPI point-to-point calls [%] 
• Time spent in MPI collective calls [%] 
• Average size of point-to-point messages [Byte] 
• Average size of collective messages sent [Byte] 
• Average size of collective messages received [Byte] 
• Frequency of MPI point-to-point calls [/s] 
• Frequency of MPI collective calls [/s] 
• MPI point-to-point transfer rate [Byte/s]. Ratio of the number of bytes sent and the time spent in 

MPI point-to-point communication 
• MPI collective transfer rate [Byte/s]. Ratio of the number of bytes sent and the time spent in MPI 

collective communication 

In general, message passing means communication or synchronisation as opposed to computation 
and therefore does not directly contribute to the calculation of results. Therefore, communication 
should be minimized as much as possible and the fraction of time spent in MPI kept low. If the fraction 
of time spent in MPI calls grows with the number of processes, the application has usually a scalability 
problem. If communication is dominated by larger numbers of small messages, network latency may 
be the limiting factor. In contrast, if the majority of messages are large, the limiting factor may be 
network bandwidth.  Asymmetries in the MPI time across processes, indicated by different minimum 
and maximum times, can be signs of load or communication imbalance, a performance property that 
usually prevents scaling to larger processor counts. In any case, as the workflow in Figure 2 suggests, 
Scalasca is the first tool that should be used to analyse communication performance. After identifying 
the main problems using Scalasca, further, more detailed analysis can follow using Paraver/Dimemas 
or Vampir. Finally, low communication performance may also be caused by application interference 
when multiple jobs that run simultaneously compete for the network. This can be verified by comparing 
the temporal evolution of communication metrics such as the frequency of MPI point-to-point calls with 
the system-wide communication volume during a given interval.  

I/O performance 

• Time spent in MPI file I/O calls [%] 
• Time spent in POSIX file I/O calls [%] 
• Amount of data written to files [Byte] 
• Amount of data read from files [Byte] 
• Write bandwidth [Byte/s]. Ratio of the number of bytes written to files and the time spent in write 

functions 
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• Read bandwidth [Bytes/s]. Ratio of the number of bytes written to files and the time spent in read 
functions 

These metrics indicate whether the application places too much load on the I/O subsystem. The user 
should always check whether I/O of the given application coincides with I/O of other applications, 
which is visible in the web-based digest. In such a case, the I/O performance may improve in 
subsequent runs when such interference is absent. In general, I/O performance is subject to variation 
and may change significantly between runs. This means, diagnosing an I/O bottleneck usually 
requires multiple runs under different overall load conditions. Scalasca may help identify expensive I/O 
calls, while Vampir can help visually discern the overall I/O pattern. 

Multithreaded performance 

• Average number of threads for the execution: Ratio of the total number of samples and the 
number of samples taken on the master thread 

• Total number of threads in the execution 

The average number of threads tells whether the degree of concurrency is as expected. For example, 
long periods of sequential execution in OpenMP applications may degrade concurrency and limit the 
benefits of parallel regions for the overall program. Again, Scalasca can help identify places in the 
code where the concurrency is low, while Paraver and Vampir may provide detailed insights into the 
change between sequential and parallel phases. Moreover, if the application fails to scale linearly 
when adding more threads, it could mean that the increased pressure on the memory subsystem 
causes threads to stall for increasing amounts of time. ThreadSpotter may help figure out the reason.  

Sequential performance 

• Average cycles per instruction (CPI) 
• Fraction of floating-point operations among all instructions [%] 
• L1 data cache hit ratio 
• Last-level miss frequency 

Sequential-performance metrics tell how well the cores of the underlying machine are utilized. If the 
cycles per instructions are much higher than the theoretical minimum, then memory access latency or 
pipeline hazards may be the reason. Also, some operations such as complex floating-point operations 
may simply take longer than others. The fraction of floating-point operations tells to which degree 
floating-point performance is the dominant theme. A low L1 hit ration usually indicates low locality and 
may explain a high CPI value. The last-level miss frequency is equivalent to the frequency of main-
memory accesses and may point to memory-bandwidth saturation. Note that a platform may miss 
some of the hardware counters required for the full set of sequential performance metrics or that some 
of the required hardware counters cannot be measured simultaneously. In this case, LWM2 provides 
only a subset of the above metrics. ThreadSpotter is the first candidate to explore memory 
performance issues. The folding analysis of Paraver can also shed light on high CPI values as it 
shows correlations with other hardware metrics [SLG+2010]. 
 
CUDA performance 
• Time spent in CUDA calls [%] 
• Average data volume transferred from host to device [Byte] 
• Average data volume transferred from device to host [Byte] 
• Frequency of data transfers [/s] 
These metrics provide just a very rough indicator of CUDA performance. If these metrics show 
unexpected values, Scalasca may help identify expensive CUDA calls. Paraver and Vampir may give 
additional insight. 

System-oriented metrics 

In addition to the more application-oriented metrics listed above, we also plan to include system-
oriented metrics related to CPU usage and network communication health, which are collected by 
Clustrx. 
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Application interference 
As LWM2 is used with every job running on the system, and the data from the system side is also 
collected continuously from the complete system, it is possible to present global summary metrics in 
the job digest. The main examples for application interference are: 

• Average I/O load: If the file system was in heavy use by other jobs running on the system at 
the time the current job was trying to access the file system, it is possible that this interference 
caused significant performance degradation. 

• Average network load: If the communication network was in unusually heavy use at certain 
time intervals during the execution of the current job, it is important to be able to identify these 
time periods. If the current job had unusually low network performance in this interval, the 
reason was probably the interference from other jobs, and not a performance problem with the 
job itself. 

In both of these cases, heavy system load happening at the same time when the current job is trying 
to use the shared resources leads to performance degradation. Therefore, it is crucial to be able to 
correlate performance data that was measured at the same time. As these metrics are collected in a 
time-sliced manner, we can correlate events happening at the same time with a granularity of 10 
seconds, which is the default value for the length of time slices. 

3.2.4 How to access the performance database 

There are multiple use cases for accessing the database, with widely different characteristics: 
• When a user accesses the database, he can view metric data collected about his own jobs, 

which gives him insight into the performance characteristics of a single job, and also allows for 
comparison between different executions of the same executable. 

• When the system administrator accesses the database, he can get a complete overview about 
all jobs in a given time interval, which allows for pinpointing jobs with sub-standard execution 
performance characteristics. 

• A special case of the previous use case is when a data mining algorithm is ran on the 
database to pinpoint problematic jobs automatically, making the system administrator’s work 
much more efficient. 

3.3 Performance Diagnosis 
This step decides why an application behaves inefficiently. It is only needed if the screening identifies 
a potential performance problem. Depending on the recommendation made by LWM2, the user 
chooses one or more of the performance-analysis tools offered by the HOPSA tool environment. The 
general strategy of the diagnosis is to start with an overview and then to go deeper as more 
information on the problem’s root cause becomes available.  

3.3.1 Overview of the performance-analysis tool suite 

 Inter-node 
performance 

Intra-node performance I/O 

Overview ThreadSpotter Scalasca (Cube) Scalsca (Cube) 

In-depth analysis ThreadSpotter, 
Paraver, Dimemas 

Scalasca trace analyser + 
Cube, Paraver, Vampir 

Vampir 

Table 1: Classification of tools based on problem class and level of detail. 

An overview of the HOPSA performance analysis tool suite is presented in Table 1. For the analysis of 
intra-node performance, ThreadSpotter is the primary tool, with the possibility of more detailed 
analyses using Paraver. For investigating inter-node performance, looking at a performance profile 
using Scalasca’s Cube browser is a good starting point. For even more detailed analyses, the results 
of the Scalasca trace-analyser can be displayed in Cube, or the Vampir and Paraver/Dimemas tools 
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can be used for a detailed visual exploration of the traces. For understanding I/O-related issues, 
profiles displayed in the Cube browser give a good overview, while Vampir can be used for more in-
depth analysis. A detailed description of individual tools can be found in the appendix. 

3.3.2 The Score-P measurement system  

The Score-P [MBB+2012] measurement infrastructure is a highly scalable and easy-to-use tool suite 
for profiling, event tracing, and online analysis of HPC applications. It collects performance data that 
can be analysed using the HOPSA tools Scalasca and Vampir. In addition, it supports the 
performance tools Persicope [GO2010] and TAU [SM2006] developed outside the HOPSA project. 
Score-P has been created in the projects SILC and PRIMA funded by the German Ministry of 
Education and Research and the US Department of Energy, respectively. It will be maintained and 
further enhanced in a number of follow-up projects including HOPSA. 
The main performance data formats produced by Score-P are CUBE-4 [GSS+2012] for profiles and 
OTF2 [EWG+2011] for event traces. Profiles provide a compact performance overview, while event 
traces allow the in-depth analysis of parallel performance phenomena. While classic profiles 
aggregate performance metrics across the entire execution, time-series profiles treat individual 
iterations of the application’s main loop separately, which allows studying the temporal evolution of the 
performance behaviour. They provide less detail than event traces, but can cover longer executions.  
Together, the above-mentioned options form a hierarchy of performance data types with increasing 
level of detail. The main advantage of Score-P is that a user needs to become familiar with only one 
set of instrumentation commands to produce all theses data types, which can be analysed using the 
majority of the tools listed in Table 1.  Figure 5 provides and overview of the different performance 
data types supported by Score-P and the tools that can be used to analyse them. Below we cover the 
individual data types in more detail. 

Profiles 
Profiles in the CUBE-4 format map a set of performance metrics such as the time spent on some 
activity or the number of messages sent or received onto pairs of call paths and processes (or threads 
in multithreaded applications). Metrics with a specialization (i.e., subset) relationship can be arranged 
and displayed in a hierarchy. The call path dimension forms the natural call-tree hierarchy. Processes 
and threads are also arranged in an inclusion hierarchy together with hardware components such as 
the nodes they reside on. In addition, it is possible to define Cartesian process topologies to represent 
network or virtual topologies. Profiles can be visually explored using the Cube browser. Compared to 
its predecessor CUBE-3, CUBE-4 files have been optimized for fast writing by storing the metric 
values in a binary file. 

Time-series profiles 

Time-series profiles are like normal CUBE-4 profiles except that they maintain a separate sub-tree in 
the call tree for each iteration of the time-step loop. This allows the user to distinguish individual 
iterations and to observe the evolution of the performance behaviour along the time axis. Time-series 
profiles are created by annotating the body of the time-step loop with special instrumentation, which 
tells Score-P when an iteration ends and when a new one begins. They can be analysed using the 
normal Cube display. A future version of Cube (to be completed after this project ends) will provide 
special iteration diagrams that offer an easy way to judge how the performance changes over time. To 
avoid that profiling data exceeds the available buffer space, the profiling data can be dynamically 
compressed using an online clustering algorithm. For this purpose, the user specifies the maximum 
number of iteration clusters the Score-P runtime system should keep in the buffer. 

Event traces 
Event traces include all events of an application run that are of interest for later examination, together 
with the time they occurred and a number of event-type-specific attributes. Typical events are entering 
and leaving of functions or sending and receiving of messages. Event traces produced by Score-P are 
stored in the Open Trace Format Version 2 (OTF-2), a new trace format whose design is based on the 
experiences with the two predecessor formats OTF [KBB+06] and EPILOG [WM2004], the former 
native formats of Vampir and Scalasca, respectively. The main characteristics of OTF-2 are similar to 
other record-based parallel event trace formats. It contains events and definitions and distributes data 
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storage over multiple files. In addition, it is more memory efficient, offering the possibility to achieve 
measurements with less perturbation due to memory buffer flushes. In contrast to OTF, the event 
traces are stored in a binary format, which reduces the size of the trace files without the need for a 
separate compression step. OFT-2 traces are the foundation for further analysis. Vampir can display 
OTF-2 traces visually using different kinds of displays, including a zoomable timeline. The Scalasca 
trace analyser identifies wait states and their root causes, producing a CUBE-4 file that provides a 
higher-level view of the application performance data. This is typically recommended to get an idea of 
key performance issues before visually exploring the traces directly using a trace browser. Moreover, 
there is on-going work to convert the traces to the Paraver format so that they can be analysed using 
Paraver (visual exploration) and Dimemas (what-if analysis). 
 

         

Event 
trace 

OTF-2 

Time-series 
profile 

CUBE-4 

Profile 
CUBE-4 

Scalasca wait-
state analysis 

Event 
trace 

Paraver 
Converter 

Paraver / 
Dimemas Vampir Cube Cube* 

 
Figure 5: Performance data types supported by Score-P and the tools that can be used to 

analyse them. The * next to the second mentioning of Cube indicates a display type 
that will be provided in a future version.  

Overhead minimisation 
Another important aspect is the quality of the collected performance data in terms of intrusion and their 
size. To keep both intrusion and data size small, the Score-P measurement system offers a 
systematic approach of expanding the level of detail while at the same time narrowing the 
measurement focus: 
 

1. Generate a summary profile with generous instrumentation while measuring the overhead. If 
the overhead is too large (> 10%), reduce instrumentation, for example, through the 
application of filter lists. Measure overhead again and iterate until the overhead is satisfactory. 

2. Generate a new summary profile with acceptable overhead. This provides an overview of the 
performance behaviour across the entire execution time and allows the identification of 
suspicious call paths and processes. 

3. Generate a time-series profile, which provides a separate summary profile for every iteration 
of the time-step loop. This shows to which degree the performance behaviour changes as the 
simulation progresses and allows the identification of iterations that warrant deeper analysis. A 
semantic compression algorithm will ensure that the size of time-series profiles stays within 
reasonable limits. 

4. For the identified iterations, generate event traces. Event traces provide the highest level of 
detail and offer a number of interesting analysis options including automatic wait-state 
analysis and visual exploration.  
 



WORKFLOW REPORT CP-2011-277463 
 15/06/2012 

Confidential  Copyright © HOPSA Consortium  Page 14 

3.4 Integration among Performance Analysis Tools  
Sharing the common measurement infrastructure Score-P and its data formats and providing 
conversion utilities if direct sharing is not possible, the performance tools in the HOPSA environment 
and workflow already make it easier to switch from higher-level analyses provided by tools like 
Sclasca to more in-depth analyses provided by tools like Paraver or Vampir. To simplify this transition 
even further, the HOPSA tools are integrated in various ways. With its automatic trace analysis, 
Scalasca locates call paths affected by wait states caused by load or communication imbalance. 
However, to find and fix these problems in a user application, it is in some cases necessary to 
understand the spatial and temporal context leading to the inefficiency, a step naturally supported by 
trace visualizers like Paraver or Vampir. To make this step easier, the Scalasca analysis remembers 
the worst instance for each of the performance problems it recognizes. Then, the Cube result browser 
can launch a trace browser and zoom the timeline into the interval of the trace that corresponds to the 
worst instance of the recognized performance problems.  

 

Figure 6. Scalasca →Vampir or Paraver Trace browser integration. In a first step, when the user 
requests to connect to a trace browser, the selected visualizer is automatically started and the 
event trace, which was previously the basis of Scalasca’s trace analysis, is loaded. Now, in a 
second step, the user can request a timeline view of the worst instance of each performance 

bottleneck identified by Scalasca. The trace browser view automatically zooms to the right time 
interval. Now the user can use the full analysis power of these tools to investigate the context 

of the identified performance problem.  

 
In the future, the same mechanisms will be available for a more detailed visual exploration of the 
results of Scalasca’s root cause analysis as well as for further analyzing call paths involving user 
functions that take too much execution time. For the latter, ThreadSpotter will be available to 
investigate their memory, cache and multi-threading behaviour. If a ThreadSpotter report is available 
for the same executable and dataset, Cube will allow launching detailed ThreadSpotter views for each 
call path where data from both tools is available. 
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3.5 Opportunities for System Tuning 
Several opportunities for system tuning arise from the availability of historic performance data 
collected by LWM2. First, data on individual system nodes along an extended period of time in 
comparison to other nodes can be analysed to spot anomalies and detect deficient components. 
Second, data on the entire workload can be used to improve the understanding of the workload 
requirements and configure the system accordingly. The insights obtained may guide the evolution of 
the system and influence future procurement decision. Finally, knowledge of the resource 
requirements of individual jobs offers the chance to develop resource-aware scheduling algorithms 
that avoid oversubscription of shared resources such as the file system or the network. 
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4. Conclusions 

The HOPSA project creates an integrated diagnostic infrastructure for combined application and 
system tuning. Starting from system-wide basic performance screening of individual jobs, an 
automated workflow routes findings on potential bottlenecks either to application developers or system 
administrators with recommendations on how to identify their root cause using more powerful 
diagnostics. This document specifies the performance analysis workflow that connects the different 
steps. At the same time, it provides an impression of the overall vision behind the project.  The high-
level description is intended to make it readable also for non-tool experts. 
Although the specification is based on long experience with HPC application developers and how they 
tend to use performance tools, it is a blueprint that needs to be validated in practice. This validation is 
planned for the last quarter of the project at Moscow State University, once all the components are in 
place and, in particular, LWM2 has been fully completed, tested, and integrated into the overall 
environment. During this validation process, some of the details presented in this document may 
change and ultimately result in a new revision. We expect though that all major elements will be 
retained. 
Beyond the lifetime of the project, the HOPSA infrastructure is supposed to collect large amounts of 
valuable data on the performance of individual applications as well as the system workload as a 
whole. It will be of interest in three ways: to tune individual applications, to tune the system for a given 
workload, and finally to observe the evolution of this workload over time. The latter will allow the 
effectiveness of our strategy to be studied. An open research issue to be tackled on the way will be 
the reliable tracking of individual applications, which may change over time, across jobs based on the 
collected data. In this way, it will become possible to document the performance history of code 
projects and demonstrate the effects of our tool environment over time. 
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6. Appendix 

6.1 Descriptions of Individual Tools 

6.1.1 Dimemas 

Dimemas is a performance prediction tool for message-passing programs. The Dimemas simulator 
reconstructs the time behaviour of a parallel application using as input an event trace that captures the 
time resource demands (CPU and network) of a parallel application. The target machine is modeled 
by a reduced set of key factors influencing the performance that model linear components like the 
point-to-point transfer time as well as non-linear factors like resources contention or synchronisation. 
Using a simple model, Dimemas allows performing parametric studies (Figure 7) in a very short time 
frame. The supported target architecture is a cloud of parallel machines, each one with multiple nodes 
and multiples CPUs per node allowing the evaluation of a very wide range of alternatives, despite the 
most common environment is a computing cluster (Figure 8). Dimemas can generate as part of its 
output a Paraver trace file, enabling the user to conveniently examine the simulated run and 
understand the application behaviour. 
 

 
Figure 7: Dimemas parametric study example. 

 
Figure 8: Dimemas’s architectural model. 

Typical questions Dimemas helps to answer  

§ How would my application perform in a future system? 
§ Can increasing the network bandwidth help to improve the application performance? 
§ Would my application benefit from asynchronous communication? 
§ Is my application limited by the network or by serialisation and dependency chains in my code?  
§ What is the sensitivity of my application to different system parameters?  
§ What would be the impact of optimising or accelerating specific regions of my code? 
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Supported programming models 

Dimemas targets message-passing programming models as well as task-oriented programs. The 
current instrumentation allows using Dimemas with MPI or MPI+OmpSs applications. 

Input sources 

The analyses offered by Dimemas rely on event traces in the Dimemas format generated by the 
Paraver to Dimemas trace translator prv2dim or directly by the runtime measurement system Extrae. 

Simulations with Dimemas 

Dimemas enables two main types of analyses: “what-if” studies to simulate how an application 
would perform in an hypothetical scenario (e.g., would reducing the network latency by a factor of two 
have more impact than moving to a CPU twice as fast?), and parametric studies running multiple 
simulations to analyse the sensitivity of the application to the system parameters (e.g., to plot the 
execution time when varying the network bandwidth from 100Mb/s to 16Gb/s). 
A first step to use Dimemas is to translate a Paraver trace file to the Dimemas trace format. It can be 
the full application execution as well as a representative region with a reduced number of iterations. 
Then the user specifies through the Dimemas GUI the application trace file to use as input, the 
architectural parameters of the target machine (such as the latencies and bandwidths for inter-node 
and intra-node communications, number of network devices...) and the mapping of the tasks onto the 
different nodes. This information is saved in a file that will be passed as parameter to the simulator. 
Typically, the user will add an option to generate as output a Paraver trace file that can be later 
compared with the original run using the Paraver tool. 

Instrumentation 

Dimemas traces are typically translated from a Paraver trace, but they can also be directly generated 
by the Extrae tool. Refer to the Paraver section for further details on the available instrumentation 
mechanisms. 

License model 

Dimemas is available open source under the terms of the GNU Lesser General Public License (LGPL) 
v2.1. 

Further documentation 

§ Website: www.bsc.es/dimemas 
§ Support email: tools@bsc.es 

6.1.2 Paraver 

Paraver is a very flexible data browser that is part of the CEPBA-Tools toolkit. Its analysis power is 
based on two main pillars. First, its trace format has no semantics; extending the tool to support new 
performance data or new programming models requires no changes to the visualiser – just capturing 
such data in a Paraver trace. The second pillar is that the metrics are not hardwired in the tool but can 
be programmed. To compute them, the tool offers a large set of time functions, a filter module, and a 
mechanism to combine two timelines. This approach allows displaying a huge number of metrics with 
the available data. To capture the expert’s knowledge, any view or set of views can be saved as a 
Paraver configuration file. After that, re-computing the view with new data is as simple as loading the 
saved file. The tool has been demonstrated to be very useful for performance analysis studies, giving 
much more details about the application behaviour than most other performance tools.  
Performance information in Paraver is presented with two main displays that provide qualitatively 
different types of information. The timeline display represents the behaviour of the application along 
time and processes, in a way that easily conveys to the user a general understanding of the 
application behaviour and simple identification of phases and patterns. The statistics display provides 
numerical analysis of the data that can be applied to any user-selected region, helping to draw 
conclusions on where and how to focus the optimisation effort. See Figures 9 and 10 for an example 
of Paraver’s main displays. 



WORKFLOW REPORT CP-2011-277463 
 15/06/2012 

Confidential  Copyright © HOPSA Consortium  Page 21 

Figure 9: Paraver timeline display. 
 

 
Figure 10: Paraver histogram display. 

 

Typical questions Paraver helps to answer  

§ What is the parallelisation efficiency and the performance effect of communication? 
§ What are the differences that can be observed between two different executions? 
§ Does the behaviour of the application change over time? 
§ Are performance or workload variations the cause of load imbalances in computation? 
§ Which performance issues do the microprocessor's hardware counters reflect? 

Supported programming models 

Paraver is not tied to any programming model as long as the model used can be mapped onto the 
three levels of parallelism expressed in the Paraver trace. An example of a two-level parallelism would 
be hybrid MPI + OpenMP applications. The runtime measurement system Extrae that generates 
Paraver traces currently supports the programming interfaces MPI, OpenMP, pthreads, OmpSs and 
CUDA. 

Input sources 

The analyses offered by Paraver rely on event traces in the Paraver format generated by the runtime 
measurement system Extrae. 

Performance analyses 

The analysis with Paraver typically starts from a set of pre-conceived configuration files that are 
available to the user. Each configuration describes a certain view of the performance data, such as the 
time distribution of functions, MPI primitives or parallel loops called, the value of a given performance 
metric (e.g., cache misses, floating-point operations, or network bandwidth), and statistics (e.g., profile 
of the MPI calls – average duration, percentage of time, number of invocations – histogram of the 
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computation regions duration, correlation between duration and instructions). The tool provides an 
extensive initial set of configurations that cover those parameters that are usually of highest interest to 
study, and applying them is as easy as loading a file. 
The typical analysis cycle then consists of loading one or more views, zooming into the details of 
specific processes or code phases, computing histograms and profiles, classifying the data, identifying 
performance issues, and correlating where these issues happen through the execution, in a process 
that goes back and forth from the timelines to the statistics. 
The tool offers a very flexible way to combine multiple views, so as to generate new representations of 
the data and more complex derived metrics. Once a desired view is obtained, it can be stored in a 
configuration file to apply it again to the same trace or to a different one. Sharing the traces and the 
corresponding configuration files allows views of the trace and the information obtained to be easily 
shared. 

Instrumentation 

Extrae enables four main modes of code instrumentation: manual source-code modification using the 
Extrae API, library interposition through static linking or dynamic pre-loading, and binary memory 
image modification at load time using the Dyninst instrumentor. OpenMP constructs are instrumented 
by wrapping the runtime calls through the dynamic interposition mechanisms, and MPI calls are 
intercepted through the PMPI profiling interface.  

License model 

Paraver is available as open source under the terms of the GNU Lesser General Public License 
(LGPL) v2.1. 

Further documentation 

§ Website: www.bsc.es/paraver 
§ Support email: tools@bsc.es 
§ Built-in tutorial (Help →Tutorials) 

6.1.3 Scalasca 

Scalasca is a free software tool that supports the performance optimisation of parallel programs by 
measuring and analysing their runtime behaviour. The tool has been specifically designed for use on 
large-scale systems including IBM Blue Gene and Cray XE, but is also well suited for small- and 
medium-scale HPC platforms. The analysis identifies potential performance bottlenecks – in particular 
those concerning communication and synchronization – and offers guidance in exploring their causes. 
The user of Scalasca can choose between two different analysis modes: (i) performance overview on 
the call-path level via profiling and (ii) the analysis of wait-state formation via event tracing. Wait states 
often occur in the wake of load imbalance and are serious obstacles to achieving satisfactory 
performance. Performance-analysis results are presented to the user in an interactive explorer called 
Cube (Figure 11) that allows the investigation of the performance behaviour on different levels of 
granularity along the dimensions performance problem, call path, and process. The software has been 
installed at numerous sites in the world and has been successfully used to optimise academic and 
industrial simulation codes. 

 

Typical questions Scalasca helps to answer  

§ Which call-paths in my program consume most of the time? 
§ Why is the time spent in communication or synchronisation higher than expected? 
§ Does my program suffer from load imbalance and why? 

 

Supported programming models 

Scalasca supports applications based on the programming interfaces MPI and OpenMP, including 
hybrid applications based on a combination of the two. Support for CUDA and StarSs is in progress. 
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Figure 11: Interactive exploration of performance behaviour in Scalasca along the dimensions 

performance metric (left), call tree (middle), and process topology (right). 

Input sources 

The analyses offered by Scalasca rest on profiles in the CUBE-4 format and event traces in the OTF-2 
format. Both performance data formats can be generated using Score-P. 

Performance analyses 

§ Summary profile: The summary profile can be used to identify the most resource-intensive call 
paths or processes. It tells how the execution time and other performance metrics including 
hardware counters are distributed across the call tree and the set of processes or threads.  

§ Time-series profile: The time-series profile can be used to analyse how the performance 
behaviour evolves over time – even if the application runs for a longer period. Essentially, a time-
series profile provides a separate summary profile for every iteration of the main loop.  

§ Wait state analysis: This analysis extracts from event traces the location of wait states. Detected 
instances are both classified and quantified. High amounts of wait states usually indicate load or 
communication imbalance. 

§ Delay analysis: The delay analysis extends the wait-state analysis in that it identifies the root 
causes of wait states. It traces wait states back to the call paths causing them and determines the 
amount of waiting time a particular call path is responsible for. It considers both direct wait states 
and those created via propagation.  

§ Critical-path analysis: This trace-based analysis determines the effect of imbalance on program 
runtime. It calculates a set of compact performance indicators that allow users to evaluate load 
balance, identify performance bottlenecks, and determine the performance impact of load 
imbalance at first glance. The analysis is applicable to both SPMD and MPMD-style programs. 

Instrumentation 

User code is instrumented in source code (automatically by compiler or PDT instrumentor, or manually 
with macros or pragmas). OpenMP constructs are instrumented in source code (automatically by the 
OPARI2 instrumentation tool). MPI calls are intercepted automatically through library interposition. 

License model 

The software is available under the New BSD license.   

Further documentation 

§ Website: www.scalasca.org 
§ Support email: scalasca@fz-juelich.de 
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§ Quick reference guide: installation directory under 
$SCALASCA_ROOT/doc/manuals/QuickReference.pdf 

§ Scalasca user guide:  installation directory under 
$SCALASCA_ROOT/doc/manuals/UserGuide.pdf 

§ CUBE user guide: installation directory under $CUBE_ROOT/doc/manuals/cube3.pdf 

6.1.4 ThreadSpotter 

ThreadSpotter is a commercial tool that will help programmers optimise their programs with respect to 
architectural bottlenecks such as cache size and memory system bandwidth and point out inefficient 
communication modes between threads. Its scope is a single process, including both single-threaded 
as well as multi-threaded applications. 
Some programming styles will exercise the memory system in suboptimal ways that can reduce 
performance drastically. Examples of these are failure to observe or exploit locality properties in code 
or data. Inappropriate communication through shared memory between threads may cause the 
coherence traffic to become a bottleneck. 
ThreadSpotter explains the inefficiencies of observed memory access patterns on a high level in a 
graphical user interface (Figure 12) and provides pointers to suggestions to optimise the code. It offers 
deep explanations on hardware level to back up the suggestions, educating the user as he uses the 
tool.  
 

 
Figure 12: Highlighting a “false sharing” situation. Top left part contains lists of problems. 

Lower left contains details, and annotated source code is to the right. 

Typical questions ThreadSpotter helps to answer  

§ How does my program abuse the memory system and what can I do about it? 
§ Do the threads of my program exchange data with each other in an inefficient way? 
§ When adjusting my program, are the changes actually helping to minimise the footprint of the 

application? 
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Supported programming models 

ThreadSpotter focuses on a single sequential or multi-threaded process at a time. In distributed 
environments the user may collect independent information from multiple ranks and investigate the 
behaviour of these separately. It operates completely on object code level and no particular 
requirements are expressed on how programs are written, compiled or linked. It supports all threading 
paradigms. 

Input sources 

ThreadSpotter includes its own data collection agent, which monitors the application’s behaviour as it 
executes a representative workload. It sparsely collects platform-independent access patterns from 
the application and stores this data in a small file. This data is then analysed to produce a report. In 
distributed environments, each rank produces its own data and each one is the source of a separate 
report, allowing the user to explore runtime behaviour from different parts of the cluster. 

Performance analyses 

§ Overall performance verdict – quickly get a statement on the relative performance and existing 
problems. 

§ Summary – graphically and numerically see key metrics from the application as a whole. This can 
help the user further comparing behaviour between generations of his program on a high level. 

§ Advice: 
- Spatial locality problems – Explore the high level reasons why the program may not use all of 

the data that is brought to the cache 
- Temporal locality problems – Find opportunities to reorganise algorithms to use data in the 

cache more times 
- Prefetch analysis and cache pollution – Instruct the processor to bypass the cache where it 

makes sense. 
- Multi-threading problems – Find traces of inefficient patterns of data sharing between threads, 

such as false sharing. 
- Bandwidth and latency: Identify areas in the code where prefetching does not work. Identify 

program areas taxing the memory bandwidth the hardest. 
§ Statistics 

-­‐ Fundamental cache and bandwidth related metrics: fetch ratio, miss ratio, write-back ratio. 
-­‐ Higher level metrics: fetch utilisation, write-back utilisation and communication utilisation. 
-­‐ Metrics can be decomposed along different dimensions: 

o Program scope: global, function, loop, instruction 
o Per thread 
o Per type (capacity, coherence, compulsory, …) 

§ What-if analysis – Perform different experiments from one single fingerprint file: 
-­‐ Learn which optimisations are appropriate for different architectures. 
-­‐ See what the effect will be of binding threads differently. 

Instrumentation 

ThreadSpotter uses dynamic binary instrumentation. Thus, it operates on unmodified, production 
optimised binaries. If debug information is available for the binaries, then ThreadSpotter will be able to 
point to source code. 

License model 

The software is available under a commercial license.  

Further documentation 

§ Website: http://www.roguewave.com/products/threadspotter.aspx  
§ Support email: threadspottersupport@roguewave.com 
§ Manual: http://www.roguewave.com/support/product-documentation/threadspotter.aspx  
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6.1.5 Vampir 

Vampir is a graphical analysis framework that provides a large set of different chart representations of 
event-based performance data. These graphical displays, including  timelines and statistics, can be 
used by developers to obtain a better understanding of their parallel program's inner working and to 
subsequently optimise it. See Figure 13 for an impression of the Vampir GUI. 
Vampir is designed to be an intuitive tool, with a GUI that enables developers to quickly display 
program behavior at any level of detail. Different timeline displays show application activities and 
communication along a time axis, which can be zoomed and scrolled. Statistical displays provide 
quantitative results for the currently selected time interval. Powerful zooming and scrolling along the 
timeline and process/thread axis allows pinpointing the causes of performance problems. All displays 
have context-sensitive menus, which provide additional information and customisation options. 
Extensive filtering capabilities for processes, functions, messages or collective operations help to 
narrow down the information to the interesting spots. Vampir is based on Qt and is available for all 
major workstation operation systems as well as on most parallel production systems. The parallel 
version of Vampir, VampirServer, provides fast interactive analysis of ultra large data volumes. 
 

 
Figure 13: Vampir GUI. 

 

Typical questions Vampir helps to answer  

§ What happens in my application execution during a given time in a given process or thread? 
§ How do the communication patterns of my application execute on a real system? 
§ Are there any imbalances in computation, I/O or memory usage and how do they affect the 

parallel execution of my application? 

Supported programming models 

Vampir supports applications based on the programming interfaces MPI and OpenMP, including 
hybrid applications based on a combination of the two. Furthermore Vampir also analyses hardware 
accelerated applications using CUDA and/or OpenCL. 
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Input sources 

The analyses offered by Vampir rest on event traces in the OTF format generated by the runtime 
measurement system VampirTrace. The next Vampir release also supports OTF2 that is generated by 
Score-P. 

Performance analysis via timeline displays 

The timeline displays show the sequence of recorded events on a horizontal time axis that can be 
zoomed to any level of detail. They allow an in-depth analysis of the dynamic behavior of an 
application. There are several types of timeline displays. 
§ Master timeline: This display shows the processes of the parallel program on the vertical axis. 

Point-to-point messages, global communication, as well as I/O operations are displayed as 
arrows. This allows for a very detailed analysis of the parallel program flow including 
communication patterns, load imbalances, and I/O bottlenecks. 

§ Process timeline: This display focuses on a single process only. Here, the vertical axis shows the 
sequence of events on their respective call-stack levels, allowing a detailed analysis of function 
calls. 

§ Counter data timeline: This chart displays selected performance counters for processes  aligned to 
the master timeline or the process timelines. This is useful to locate anomalies indicating 
performance problems. 

Performance analysis via statistical displays 

The statistical displays are provided in addition to the timeline displays. They show summarised 
information according to the currently selected time interval in the timeline displays. This is the most 
interesting advantage over pure profiling data because it allows specific statistics to be shown for 
selected parts of an application, e.g., initialisation or finalisation, or individual iterations without 
initialisation and finalisation. Different statistical displays provide information about various program 
aspects, such as execution times of functions or groups, the function call tree, point-to-point 
messages, as well as I/O events. 

Instrumentation 

Application code can be instrumented by the compiler or with source-code modification (automatically 
by the PDT instrumentor, or manually using the VampirTrace/Score-P user API). OpenMP constructs 
can be instrumented by the OPARI tool using automatic source-to-source instrumentation. MPI calls 
are intercepted automatically through library interposition. 

License model 

Vampir is a commercial product distributed by GWT-TUD GmbH. For evaluation, a free demo version 
is available on the website. 

Further documentation 

§ Website: www.vampir.eu  
§ Support email: service@vampir.eu 
§ Vampir manual:  installation directory under $VAMPIR_ROOT/doc/vampir-manual.pdf 
 
 
 

 
 
 


