
 HOlistic Performance System Analysis-EU

 1

Deliverable D3.1

Requirements for the Interface between
System-level and Application-level

Performance Analysis

CONTRACT NO HOPSA-EU 277463

INSTRUMENT CP (Collaborative project)

CALL FP7-ICT-2011-EU-Russia

Due date of deliverable: August 1
st

, 2011

Actual submission date: August 15
th

, 2011

Start date of project: 1 FEBRUARY 2011 Duration: 24 months

Name of lead contractor for this deliverable: Felix Wolf, GRS

Abstract: This report provides the requirements for the interface between sys tem-level and
application level performance analysis. It documents the understanding of the interface between

both parts by all members of the project including our Russian project partners.

Project co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services) X

RE Restricted to a group specif ied by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 1

Table of Contents

1. EXECUTIVE SUMMARY ... 3

2. INTRODUCTION... 4

3. MAIN SECTION .. 5

3.1 TECHNICAL INTERACTION OF SYSTEMS AND TOOLS ..5
3.1.1 System-level monitoring ...5
3.1.2 Augmented application-centric measurement ...8

3.2 LIGHTWEIGHT APPLICATION PERFORMANCE MONITORING MODULE ..12

4. CONCLUSIONS ... 15

5. BIBLIOGRAPHY... 16

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 2

Glossary

Abbreviation /

acronym

Description

API Application Programming Interface

GUI Graphical User Interface

HOPSA HOlistic Performance System Analysis

HPC High Performance Computing

I/O Input/Output

MPI Message Passing Interface

(Programming Model for Distributed Memory Systems)

OpenMP Open Multi-Processing

(Programming Model for Shared Memory Systems)

REST Representational State Transfer (Inter-process Communication Protocol)

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 3

1. Executive summary

The objective of this work package is to combine and integrate the work on the HPC system-level
performance and on application-level performance into a coherent and holistic performance analysis
environment. This environment will provide a performance report compiling essential information from

system-level monitoring and application-centric measurements. When an application is found to have
performance problems, an automated workflow guides system administrators and application
developers in conducting more detailed analysis using a variety of mature performance tools. These

tools also take advantage of the tight integration, correlating data from both system-level and
application-level sources.

As an important prerequisite, this deliverable provides the formal requirements of an interface enabling
the exchange of performance-related results between the system-level, job-level, and low-level
application analysis on the one hand and high-level performance tools on the other hand. More

precisely, this deliverable

 identifies the key performance metrics which should be maintained in a system performance

database after job completion,

 defines the requirements of the interface to interchange these metrics between the system-
level, job-level, and low-level application analysis on the one hand and the high-level
performance tools on the other hand, and

 outlines the design of a low-overhead end-to-end performance analysis for all jobs running on
a given system from their submission to their completion.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 4

2. Introduction

To maximize the scientific output of a high-performance computing system, different stakeholders
pursue different strategies. While individual application developers are trying to shorten the time to
solution by optimizing their codes, system administrators are tuning the configuration of the overall

system to increase its throughput. Yet, the complexity of today’s machines with their strong
interrelationship between application and system performance presents serious challenges to
achieving these goals with non-correlated application and system-level tuning processes.

One of the goals of the HOPSA project is to close this gap and connect application and system-level
tuning by collecting system-level and application-level performance metrics and making them available

to both sides. At the interface between these two facets of our holistic approach, which is illustrated in
Figure 1, is the system-wide performance screening of individual jobs, pointing both at system-related
performance issues such as above-average waiting time in the queue and at inefficiencies of

individual applications such as high communication ove rhead. Once the screening pinpoints an
application for more detailed analysis, system administrators and application developers are provided
with hints on how to track down the source of the inefficiency effectively using our set of mature

performance tools. These tools can provide an enriched view of the application performance by
correlating data from both sources, e.g. imbalance in file I/O time (application-level data) caused by
heavy load on the I/O system by other jobs at the same time (system-level data). In this deliverable,

we summarize the formal requirements of this interface enabling the exchange of performance -related
results between the system level, job-level, and low-level application analysis on the one hand and
high-level performance tools on the other hand.

Figure 1: System- level tuning (bottom), application-level tuning (top), and system-wide
performance screening (center) use common interface for exchanging performance properties.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 5

3. Main section

3.1 Technical interaction of systems and tools

The following sections explain in which way system-level metrics are being collected and how they are

made available to be used by the application-centric performance tools in order to enrich their
presentation of performance data to the user.

3.1.1 System-level monitoring

System-level tuning tries to identify system-related bottlenecks, such as network problems
(congestion, driver issues, etc.) or hardware failures, which could potentially slow down an application.

On a more technical level, these bottlenecks can be assessed through node-level and system-level
metrics. The Russian partners are developing a system to collect and aggregate both kinds of metrics
in a system-performance database. The overall system consists of two parts, HOPSA-I refers to data

collection and HOPSA-II refers to analysis. Figure 2 shows the general architecture of the system.
Agents, aggregration layer, and agent modules together form the data collection part and the other
components belong to the analysis part.

Design of HOPSA-I – Data collection

The agents in the system are low-overhead processes running on the individual nodes. They collect

different kind of metrics and pass this data to the aggregation layer. Node-level metrics, as listed in
Table 1, will be collected by agents using ClustrX Watch, which is part of the ClustrX cluster-
monitoring suite developed by T-Platforms [5]. These kinds of agents interface with various modules

collecting sensor information. Among the metrics measured by the sensors are hardware performance
counters for all relevant subsystems in a particular node.

Another type of agents, interfacing with the batch system itself, provides further system-level
metrics, as listed in Table 2. This includes metrics for system components that cannot host a
monitoring agent themselves, but can be queried, e.g. Network switches, SAN front-ends, RAID

controllers, power meters, room climate information. Again, these are also sent to the aggregation
layer from where the metrics are made accessible to the system. This aggregation layer combines the
metrics collected by the different agents and provides some first, simple analysis, for example, to

check the range of the values in the aggregated metrics. For different data collectors, or different
locations (different clusters) the layer can be made up of several processes. It is worth noting that
additional metrics might be identified in the next steps.

Design of HOPSA-II - Analysis

The logic part of the system is shown in Figure 2 in the upper part of the diagram. The control server

keeps information about the system configuration, i.e. available modules, agents, connection topology
etc. To accomplish this, it connects to the aggregation layer and retrieves information about all
sensors and agents. For fault tolerance and performance reasons there can be more than one control

server in the system. It is also responsible for managing all modules in the system, i.e. starting when
needed as well as terminating them if not needed anymore. Modules encapsulate functionality for
storing the metrics (database modules), performing some kind of analysis (analysis modules), or

visualizing data for some user.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 6

Figure 2. Architectural overview of the cluster -wide measurement system. Green rectangles
denote the Control API while purple rectangles denote the API Consumer -Agent.

While one aspect of the system is the collection and storing of these metrics, it is also possible to
perform post-mortem analysis, especially historical analysis to allow investigating job related

properties over time beyond a single execution. In order to process large amounts of data occurring in
large-scale high-performance computing installations, special tools are required. Currently, special
data-processing definition language, HOPLANG, is being developed. The main goal of this language

is scalable processing large amounts of data, which can be obtained from several data sources, even
in the scope of a single query. Such data sources include, among others, SQL databases, LDAP
bases, log files, custom databases, distributed databases such as Cassandra [6] and direct monitoring

data. Several instances of ordinary SQL databases may be joined into a single data source, in order to
increase performance and scalability of data processing.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 7

HOPLANG is aimed to be scalable, and to process data quickly, so that it would be possible to get fast
response for queries which process small amounts of data.

These metrics – both online and post-mortem – are made available in different ways. One way of
accessing the data will be using well -known and proven interface technologies, for example, using a

REST-style web service. Especially for the performance tools in the HOPSA project, however, there
will also be a C API provided to access the metrics in an efficient manner. It is particularly important
that the C API has a minimal impact on the client, i.e., not blocking the control flow, not requiring extra

threads, or high memory consumption.

Table 1: Node-level metrics.

Identifier Alias name Identifier Alias name

1010 MON_CPU_TEMP 1234 MON_V_1_4

1018 MON_CPU_FREQ 1235 MON_V_1_5

1020 MON_CPU_FAN 1236 MON_V_3_3VSB

1030 MON_CPU_VCORE 1237 MON_V_5VSB

1050 MON_CPU_USAGE_USER 1238 MON_V_BAT

1051 MON_CPU_USAGE_NICE 1239 MON_V_1_1

1052 MON_CPU_USAGE_SYSTEM 1240 MON_V_1_8

1053 MON_CPU_USAGE_IDLE 1241 MON_V_N12

1054 MON_CPU_USAGE_IOWAIT 1280 MON_A_INSTANT

1055 MON_CPU_USAGE_IRQ 1281 MON_W_INSTANT

1056 MON_CPU_USAGE_SOFTIRQ 1250 MON_MEMORY_TOTAL

1080 MON_CPU_MCE_TOTAL 1251 MON_MEMORY_VMALLOC

1130 MON_V_MEM 1252 MON_MEMORY_SWAP_TOTAL

1210 MON_SYS_TEMP 1253 MON_MEMORY_SWAP_FREE

1211 MON_MEM_TEMP 1254 MON_MEMORY_TOTAL _FREE

1220 MON_SYS_FAN 1300 MON_PS_INP_VOLTS

1225 MON_CHASSIS_FAN 1303 MON_PS_INP_WATTS

1230 MON_V_3_3 1310 MON_PS_OUTP_VOLTS

1231 MON_V_5 1314 MON_PS_OUTP_LOAD

1232 MON_V_12 1320 MON_PS_TEMP

1233 MON_V_1_2 1330 MON_PS_FAN

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 8

3.1.2 Augmented application-centric measurement

Application tuning has been performed using specialized tools which measure, for example,
communication patterns of distributed, parallel programs; memory performance and memory access

patterns; as well as how processes utilize file I/O. With these measurements, many application -caused
performance problems can be identified, diagnosed and presented to the user. Unfortunately, these
metrics only look at the operations an application performs itself. Based on the system-level

monitoring system, however, the holistic performance analysis environment will provide a performance
report including not only application-centric metrics but also system-level metrics. Such a report will
give an overview about the essential performance properties, for instance, by visualizing the runtime

behavior in time-line browsers such as Vampir [3] and Paraver [2].

To give examples of the current capabilities of these tools and to exemplify potential visualization

options of system-specific performance metrics, Figures 3 and 4 show traces displayed in time lines
using the Paraver tool. Figure 3 compares the amount of memory accesses in computation regions
before and after optimization in the Gromacs molecular dynamics code, while Figure 4 shows the level

1 data cache misses of the same application in the same interval. The original version shows more
variability and higher (dark blue) values in both metrics, with the optimized version showing smoot her
patterns and lower (bright green) values. Figure 5 shows a different view of the same traces in

Paraver, a histogram displaying the level 1 data cache misses. Here the wide dispersion of values in
the original traces shows suboptimal performance, with the optimized version showing much less
variability.

Table 2: System-level metrics.

Identifier Alias name

2000 MON_RX_PACKETS

2001 MON_TX_PACKETS

2002 MON_RX_BYTES

2003 MON_TX_BYTES

2004 MON_RX_ERRORS

2005 MON_TX_ERRORS

2006 MON_RX_DROPPED

2007 MON_TX_DROPPED

2008 MON_MULTICAST

2009 MON_COLLISIONS

2100 MON_FS_BYTES_USAGE

2101 MON_FS_INODES_USAGE

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 9

Figure 3: Paraver displaying traces collected from the Gromacs code before (top) and after

(bottom) optimization. The metric displayed shows the amount of data loaded from main
memory during computation regions.

Figure 4: Paraver displaying traces collected from the Gromacs code before (top) and after
(bottom) optimization. The metric displayed is the level 1 data cache misses during
computation regions.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 10

Figure 5: Paraver displaying a histogram view of traces collected from the Gromacs code
before (top) and after (bottom) optimization. Displayed are level 1 data cache misses.

Figure 6 gives an example of displaying traces of the NPB BT benchmark in Vampir, showing a variety
of different views. In the top left it shows an overview time line of the different processes with
computation in yellow and communication in red. In the bottom left time lines of two hardware counter

values are displayed, number of floating-point operations and level 2 cache misses. In the lower right
corner a communication matrix is included, showing the amount of data transmitted between each pair
of processes. In HOPSA, these same displays can be used to display system-level data collected and

provided by HOPSA-I and HOPSA-II, for example network or I/O system load, in parallel with the
usual application-level metrics. Correlation both data sources will give developers new insight into
their applications. In addition to visualizing trace data, the performance report shall include hints about

potential performance deficiencies and how to verify their presence with other tools, for instance, by
applying Scalasca [1] or ThreadSpotter [4]. Again to give examples of the current capabilities of these
tools and to exemplify potential visualization options of system-specific performance metrics, Figure 7

shows an example of a t race displayed in CUBE, the GUI component of Scalasca. After automatically
analyzing the traces to identify patterns of inefficient communications behavior, the time wasted in the
“Late Sender” inefficiency pattern has been separated from the actual message t ransfer part of the

point-to-point communication time. The pane on the right shows the distribution of this useful
communication time on an important call path among all the processes of the communication.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 11

Figure 6: Vampir displaying traces collected from the NPB BT benchmark, showing a variety of
different views of the same execution.

Furthermore, other than displaying traces in time lines and doing automatic analysis looking for higher-
level inefficiency patterns, the report should also allow comparing performance behavior with past
reports of the same application to survey the success of analysis and tuning.

Of course, these performance tools require certain functions of the system-level monitoring system.
The first is retrieving a hierarchical inventory of available metrics and their locations. This inventory will

contain all available metrics using a consistent naming scheme. The metrics will b e associated with a
set of system components (locations) e.g. CPU core, CPU socket, node, rack, switch, SAN component
or power supply unit. Furthermore, details about the individual metrics will be provided. These details

will include a description of the metric’s unit, a specification of the mode, depicting whether the metric
is an absolute value or accumulated over a period of time, and the time scope, i.e., if the sample is
valid (since the last sample, since the very beginning of the measurement, until the next sample, or

only right now). For metrics with a fixed sampling interval this is also supplied.

Performance data is accessed by specifying the metric and a location. For general access, different

modes are required: synchronous, where the client fetches the momentary or most recent value for
the local entity, asynchronous, where the system sends updated samples to the client, and post -
mortem, where the performance tool requests a sequence of past samples of metrics for a given time

period. For the latter case, it is assumed that the metrics are constantly stored in the system’s
database module. If this will not be the case, an additional mechanism to start and stop the storage of
metrics is required.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 12

 Figure 7: Cube, the GUI component of Scalasca displaying a trace of the 132.zeusmp2
benchmark from the SPEC MPI 2007 benchmark suite.

Moreover, it should be possible to allow the performance tools to specify a combination of metrics, i.e.
arithmetic operations with different metrics or to receive aggregated metrics, i.e. the
minimum/maximum/average of a set of metrics. Another important point is adequate time

synchronization between all locations and monitoring clients in order to accurately attribute metrics
to tracing events especially in the case of post-mortem retrieval of metrics for a particular time period.

3.2 Lightweight application performance monitoring module

As the goal of the project is to define a comprehensive performance measurement and analysis
methodology, a lightweight parallel performance collection module, capturing basic performance

metrics such as execution time or message-passing metrics, is necessary to cover an end-to-end
performance analysis from job submission to completion. This module will be implemented as a
shared library, so that it can be preloaded before the execution of a parallel job by the job launcher (or

linked statically using a compiler wrapper if dynamic linking is not available).

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 13

More precisely, the lightweight module will run in parallel to applications on th e cluster and collect
basic performance information about the running application. It will not only enable the basic end-to-
end performance analysis of potential performance bottlenecks but will also provide the general

system state along with information about the scheduling process a given job went through. The end -
to-end performance analyses will be mostly performed using measurements gathered by the module
itself. Measured metrics include

 the message-passing behavior of distributed applications,

 the runtime profile of multi-threaded codes (OpenMP, pthreads), and

 memory access.

Further information about the general system state and about the handling of individual jobs will be
retrieved from the system-level metric interface discussed above. This enables the module to inform
the user about the time his job spent in a batch queue, potentially why it spent time there, and give

reasons for certain scheduling decisions. In addition, it will be possible to notify the user about certain
system events affecting running jobs. For example, i f a job using message passing fails because of a
physical network interruption between nodes the user will be informed that it was an external problem
and not necessarily a problem with the application itself.

Light-weight module architecture

The module itself is composed of several sub-modules, which enables a user to select on a fine-

granular level which metrics shall be collected during an application’s run or which analysis shall be
performed post-mortem. A schematic overview of the architecture is shown in Figure 8.

Measurement modules are responsible for measuring and collecting information about the

application’s runtime behavior. With the main requirements being maintaining low-overhead and
having as less influence on the application itself as possible, statistical sampling is used instead of, for
example, event tracing. This results in a lot less measurement points (signals), which have to be

collected, stored, and managed.

Information about the usage of libraries is collected using a combination of instrumentation and
sampling. In the case of the message passing behavior of an application, signals are collected using

an MPI wrapper, which intercepts function calls to MPI functions using the PMPI profiling interface. In
these instrumented calls a flag is set when the intercepted function is currently active. A so-called
signal handler is called repeatedly after a certain amount of time by the operating system, and – if an

instrumented function is active during the invocation of the signal handler – creates a signal indication
that the instrumented function was active at a certain point of time.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 14

In a similar way information about the behavior of multi-threaded applications is collected using
interception of certain functions of the pthreads threading library, which is available on most high-
performance computing platforms. In most cases it is also the underlying library of implementations of

the OpenMP standard, a widely used shared-memory parallelization paradigm, thus allowing the
module to collect metrics about applications using OpenMP as well.

If the high-performance computing system supports it, hardware counter information can also be
collected, for example, to allow the module to gain insights into the memory usa ge pattern of the
application. Hardware performance counters can either be collected using the cross-platform PAPI

library, retrieved from the system-wide measurement system, or other libraries/interfaces can easily be
attached to the monitoring module due to well-defined interfaces.

All measurement modules store their collected signals in an aggregated form in a central data
repository. This repository stores all similar signals in a compressed form, which allows for efficient
storage and fast access times.

Analysis modules operate just before the end of an application and mine the data collected by the
measurement modules in order to detect (potential) performance problems. In addition they provide

advice and guidance to the user on how to proceed in the performance analysis with more advanced
performance analysis tools.

Figure 8: General architecture of the light-weight monitoring module.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 15

4. Conclusions

The HOPSA project creates an integrated diagnostic infrastructure for combined application and
system tuning. Starting from system-wide basic performance screening of individual jobs, an
automated work flow routes findings on potential bottlenecks either to application developers or system

administrators with recommendations on how to identify their root cause using more powerful
diagnostics. The objective of this work package is to combine and integrate the work on the HPC
system-level performance and on application-level performance into a coherent and holistic

performance analysis environment. As an important prerequisite, this deliverable provides the formal
requirements of an interface enabling the exchange of performance-related results between the
system-level, job-level, and low-level application analysis on the one hand and high-level performance

tools on the other hand. On a more technical level, this deliverable (i) identifies the key performance
metrics which should be maintained in a system performance database after job completion, (ii)
defines the requirements of the interface to interchange these metrics between the system-level, job-

level, and low-level application analysis on the one hand and the high-level performance tools on the
other hand, and (iii) outlines the design of a low-overhead end-to-end performance analysis for all jobs
running on a given system from their submission to their completion.

In future work, we will implement an interface with the described functionality. The interface designed
in this way will enable a system-wide performance screening without exception which will distinguish

the codes that utilise the underlying hardware well from those which do not and could therefore benefit
from optimisation. Although many application performance problems can and should be addressed by
the developer himself, for example, via re-coding relevant parts or replacing components with more

efficient alternatives, some issues are in fact symptoms of a system-level bottleneck that may affect
more than one application. Given that the tools being part of this project will also have a much wider
sets of metrics available for their individual analysis, the tools will also be substantially enhanced,

allowing the user to gain deeper insights into performance issues and, thus, to yield better optimisation
results. In addition to the enhancement of individual tools, their effectiveness will also be promoted
through closer integration.

API Requirements Report CP-2011-277463
 15 AUG 2011

Confidential Copyright © HOPSA Consortium Page 16

5. Bibliography

[1] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, and B. Mohr. The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Experience,
22(6):702–719, April 2010.

[2] J. Gimenez, J. Labarta. Parallel Processing for Scientific Computing, chapter 2: Performance
Analysis: From Art to Science. SIAM, 2006.

[3] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mick ler, M. S. Müller, and W. E.
Nagel. The Vampir performance analysis tool-set. In M. Resch, R. Keller, V. Himmler, B.
Krammer, and A. Schulz, editors, Tools for High Performance Computing, pages 139–155.

Springer Verlag, July 2008.

[4] Rogue Wave Software AB. Acumem performance productivity tools. http://www.acumem.

com.

[5] T-Platforms. Clustrx product family.
http://www.t-platforms.com/products/software/clustrxproductfamily.html.

[6] Apache Foundation. Apache Cassandra http://cassandra.apache.org/

