
 HOlistic Performance System Analysis-EU

 1

Deliverable D2.2

Final Tool Set

CONTRACT NO HOPSA-EU 277463

INSTRUMENT CP (Collaborative project)

CALL FP7-ICT-2011-EU-Russia

Due date of deliverable: November 1
st
, 2012

Actual submission date: January 15
th
, 2013

Start date of project: 1 FEBRUARY 2011 Duration: 24 months

Name of lead contractor for this deliverable: TUD

Abstract: This report describes the final status of the HOPSA integrated tool set for the
instrumentation, measurement and analysis of parallel programs consisting of the memory and
thread analyzer ThreadSpotter (RW), the trace visualizer Paraver including its measurement system
Extrae (BSC), the performance prediction tool Dimemas (BSC), the trace visualizer Vampir (TUD),
the performance measurement and analysis tool Scalasca (GRS, JSC), and the instrumentation and
measurement system Score-P (GRS, JSC, TUD).

Project co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 1

Table of Contents

1. EXECUTIVE SUMMARY .. 4

1.1 THE BROADER CONTEXT: THE HOPSA PROJECT .. 4
1.2 WORK PACKAGE 2: HPC APPLICATION-LEVEL PERFORMANCE ANALYSIS ... 5

1.2.1 The HOPSA workflow .. 5
1.2.2 HOPSA tool integration .. 6

2. DIMEMAS, EXTRAE, PARAVER (BSC) .. 8

2.1 BASIC DESCRIPTION ... 8
2.2 MAIN ACHIEVEMENTS ... 9

3. SCALASCA AND CUBE (GRS, JSC) ..11

3.1 BASIC DESCRIPTION ... 11
3.2 MAIN ACHIEVEMENTS ... 12

4. THREADSPOTTER (RW) ...13

4.1 BASIC DESCRIPTION ... 13
4.2 MAIN ACHIEVEMENTS ... 14

5. VAMPIR (TUD) ..15

5.1 BASIC DESCRIPTION ... 15
5.2 MAIN ACHIEVEMENTS ... 16

6. SCORE-P (GRS, JSC, TUD) ..17

6.1 BASIC DESCRIPTION ... 17
6.2 MAIN ACHIEVEMENTS ... 18

7. CONCLUSIONS ..19

8. BIBLIOGRAPHY ...20

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 2

Glossary

Abbreviation
/ acronym

Description

API Application Programming Interface

BSC Barcelona Supercomputing Center, Spain

CEPBA European Center for Parallelism of Barcelona (UPC, BSC)

CUBE Performance report explorer for Scalasca (JSC)

CUDA Compute Unified Device Architecture

(Programming Interface for Nvidia GPGPUs)

Dimemas Message passing performance analysis and prediction tool (BSC)

Extrae Instrumentation and measurement component for Paraver visualizer (BSC)

GRS German Research School for Simulation Sciences GmbH, Aachen, Germany

GPGPU General Purpose Graphical Processing Unit

GUI Graphical User Interface

HMPP Hybrid Multicore Parallel Programming

(Programming Model for Heterogeneous Architectures)

HOPSA HOlistic Performance System Analysis. EU FP7 project

HPC High Performance Computing

H4H Hybrid Programming For Heterogeneous Architectures. EU ITEA2 project

I/O Input/Output

JSC Jülich Supercomputing Centre

(of Forschungszentrum Jülich GmbH), Germany

MPI Message Passing Interface

(Programming Model for Distributed Memory Systems)

OpenCL Open Computing Language

(Programming interface for heterogeneous platforms consisting of CPUs and
other execution units like GPUs)

OpenMP Open Multi-Processing

(Programming Model for Shared Memory Systems)

OTF2 Open Trace Format Version 2

Paraver Event trace analysis and visualization tool (BSC)

RW Rogue Wave Software AB, Sollentuna, Sweden

Scalasca SCalable Analysis of LArge SCale Applications

(Performance instrumentation, measurement and analysis tool from JSC/GRS)

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 3

Score-P Scalable Performance Measurement Infrastructure for Parallel Codes

(Community open-source project of GRS, JSC, TUD and others)

SMPSs Pragma-based programming model for parallel task (Ss = Superscalar)
for shared memory parallel computers (SMP) from BSC

UPC Universitat Politècnica de Catalunya, Barcelona

ThreadSpotter Commercial memory and multi-threading performance analysis tool (RW)

TUD Technische Universität Dresden, Germany

Vampir Visualization and Analysis of MPI Resources

(Commercial event trace analysis and visualization tool from ZIH/TUD)

VampirTrace Instrumentation and measurement component for Vampir visualizer (ZIH/TUD)

ZIH Zentrum für Informationsdienste und Hochleistungsrechnen.

(Center for information services and HPC of TUD).

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 4

1. Executive summary

This report describes the status of the integrated tool set for the instrumentation, measurement and
analysis of parallel application programs developed in work package 2 of the EU FP7 project HOPSA.

1.1 The broader context: The HOPSA project

To maximize the scientific and commercial output of a high-performance computing system, different
stakeholders pursue different strategies. While individual application developers are trying to shorten
the time to solution by optimizing their codes, system administrators are tuning the configuration of the
overall system to increase its throughput. Yet, the complexity of today's machines with their strong
interrelationship between application and system performance demands for an integration of
application and system programming.

The HOPSA project (HOlistic Performance System Analysis) therefore sets out for the first time for
combined application and system tuning developing an integrated diagnostic infrastructure. Using
more powerful diagnostic tools application developers and system administrators will easier identify
the root causes of their respective bottlenecks. With the HOPSA infrastructure, it is more effective to
optimize codes running on HPC systems. More efficient codes mean either getting results faster or
being able to get higher quality or more results in the same time.

The work in HOPSA is carried out by two coordinated projects funded by the EU under call FP7-ICT-
2011-EU-Russia and the Russian Ministry of Education and Science. Its objective is the new
innovative integration of application tuning with overall system diagnosis and tuning to maximize the
scientific output of our HPC infrastructures. While the Russian consortium will focus on the system
aspect, the EU consortium will focus on the application aspect.

Figure 1: System-level tuning (bottom), application-level tuning (top), and system-wide
performance screening (centre) use common interfaces for exchanging performance

properties.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 5

At the interface between these two facets of our holistic approach, which is illustrated in the Figure 1,
will be the system-wide performance screening of individual jobs, pointing at both inefficiencies of
individual applications and system-related performance issues.

1.2 Work package 2: HPC application-level performance
analysis

For HPC application tuning, developers can choose from a variety of mature performance-analysis
tools developed by the HOPSA-EU consortium: the memory and thread analyzer ThreadSpotter (RW),
the trace visualizer Paraver including its measurement system Extrae (BSC), the performance
prediction tool Dimemas (BSC), the trace visualizer Vampir (TUD), the performance measurement and
analysis tool Scalasca (GRS, JSC), and the instrumentation and measurement system Score-P (GRS,
JSC, TUD).

Within work package 2 of the HOPSA project, the tools were further integrated and enhanced with
respect to scalability, depth of analysis, and support for asynchronous tasking, a node-level paradigm
playing an increasingly important role in hybrid programs on emerging hierarchical and heterogeneous
systems. The overall objective of work package 2 was to enhance and extend the already existing
individual performance measurement and analysis tools of the project partners to make them fit for the
analysis of petascale computations and beyond as well as integrating them with each other where
useful. The idea here was not to start new research directions but rather to finalize (i.e., “productize”)
current research ideas and make them part of the regular tool products. The tools are available as a
combination of open-source offerings (Extrae, Paraver, Dimemas, Scalasca, CUBE, Score-P) and
commercial products (Vampir, ThreadSpotter). At the end of the project (January 2013), a single
unified installation package for all tools will be provided.

Work package 2 contains all research and technical development which only involves EU partners.
Integration with the system-level analysis of the Russian HOPSA partners is the subject of work
package 3 and therefore not covered in this deliverable. In the next chapter, the final status of the
HOPSA application-level tools is described and the work done as part of work package 2 of the
HOPSA-EU project is briefly summarized. A more complete and detailed description of this work is
provided by deliverable D1.2 (“Final Progress Report”).

1.2.1 The HOPSA workflow

The indented usage and application of the HOPSA performance tools is specified by the HOPSA
performance-analysis workflow (Figure 2). It consists of three basic steps. During the first step
(“Performance Screening”), we identify all those applications running on the system that may suffer
from inefficiencies. This is done via system-wide job screening supported by a lightweight
measurement module (LWM

2
) dynamically linked to every executable. The screening output identifies

potential problem areas such as communication, memory, or file I/O, and issues recommendations on
which diagnostic tools can be used to explore the issue further in a second step (“Performance
Diagnosis”). If a more simple, profile-oriented static performance overview is not enough to pin-point
the problem, a more detailed, trace-based, dynamic performance analysis can be performed in a third
step (“In-depth analysis”). Available application performance analysis tools include Paraver/Dimemas
[7, 8, 9], Scalasca [1, 2, 3], ThreadSpotter [4], and Vampir [5]. The data collected by LWM

2
 is also fed

into the Clustrx.Watch hierarchical cluster monitoring system [10] which combines it with system and
hardware data and forwards it to the LAPTA cluster monitoring and analysis system [11] for further
analysis by system administrators.

In general, the workflow successively narrows the analysis focus and increases the level of detail at
which performance data are collected. At the same time, the measurement configuration is optimised
to keep intrusion low and limit the amount of data that needs to be stored. To distinguish between
system and application-related performance problems, Paraver and Vampir allow also system-level
data to be retrieved and displayed. The system administrator, in contrast, has access to global
performance data. He can use this data to identify potential system performance bottlenecks and to
optimise the system configuration based on current workload needs. In addition, the administrator can

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 6

identify applications that continuously underperform and proactively offer performance-consulting
services to the effected users. In this way, it facilitates reducing the unnecessary waste of expensive
system resources.

Figure 2: The HOPSA Performance-Analysis Workflow

More details about the HOPSA performance-analysis workflow can be found in the Deliverable D3.2
(“Workflow Report”) as well in [12]. The lightweight measurement module (LWM

2
) is described in more

detail in Deliverable D3.3 (“Light-weight Monitoring Module”).

1.2.2 HOPSA tool integration

Sharing the common measurement infrastructure Score-P [6] and its data formats and providing
conversion utilities if direct sharing is not possible, the performance tools in the HOPSA environment
and workflow already make it easier to switch from higher-level analyses provided by tools like
Sclasca to more in-depth analyses provided by tools like Paraver or Vampir. To simplify this transition
even further, the HOPSA tools are integrated in various ways (Figure 3). With its automatic trace
analysis, Scalasca locates call paths affected by wait states caused by load or communication
imbalance. However, to find and fix these problems in a user application, it is in some cases
necessary to understand the spatial and temporal context leading to the inefficiency, a step naturally
supported by trace visualizers like Paraver or Vampir. To make this step easier, the Scalasca analysis
remembers the worst instance for each of the performance problems it recognizes. Then, the Cube
result browser can launch a trace browser and zoom the timeline into the interval of the trace that
corresponds to the worst instance of the recognized performance problems. In order to allow the use
of Paraver for this analysis, the BSC team implemented an OTF2 to Paraver trace format conversion.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 7

Figure 3: HOPSA Performance Tool Integration

In the future, it is planned to use the same mechanisms for a more detailed visual exploration of the
results of Scalasca's root cause analysis as well as for further analyzing call paths involving user
functions that take too much execution time. For the latter, ThreadSpotter will be available to
investigate their memory, cache and multi-threading behaviour. If a ThreadSpotter report is available
for the same executable and dataset, Cube will allow launching detailed ThreadSpotter views for each
call path where data from both tools is available. The necessary interfaces have been designed and
prototypically implemented during the HOPSA project.

Finally, a tight integration of Dimemas and Paraver allows users to investigate various “what-if
scenarios” to further analyze performance properties of their applications.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 8

2. Dimemas, Extrae, Paraver (BSC)

2.1 Basic description

Paraver (http://www.bsc.es/paraver) is a very flexible data browser that is part of the CEPBA-Tools
toolkit [7, 8]. Its analysis power is based on two main pillars. First, its trace format has no semantics;
extending the tool to support new performance data or new programming models requires no changes
to the visualizer, just to capture such data in a Paraver trace. The second pillar is that the metrics are
not hardwired into the tool but programmed. To compute them, the tool offers a large set of time
functions, a filter module, and a mechanism to combine two timelines. This approach allows displaying
a huge number of metrics with the available data. To capture the experts knowledge, any view or set
of views can be saved as a Paraver configuration file. After that, re-computing the view with new data
is as simple as loading the saved file. The tool has been demonstrated to be very useful for
performance analysis studies, giving much more details about the applications behaviour than most
performance tools.

Figure 4. Paraver’s two main types of views: timelines and histograms.

Dimemas (http://www.bsc.es/dimemas) is a performance analysis tool for message-passing programs.
The Dimemas simulator reconstructs the time behaviour of a parallel application on a machine
modelled by the key factors influencing the performance [9]. With a simple model Dimemas allows to
simulate complete parametric studies in a very short time frame. The supported target architecture is a
cloud of parallel machines, each one with multiple nodes and multiples CPUs per node allowing
evaluating a very high range of alternatives. Dimemas generates as part of its output a Paraver trace
file, enabling the user to conveniently examine any performance problems indicated by a simulator
run.

http://www.bsc.es/paraver
http://www.bsc.es/dimemas

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 9

Figure 5. Dimemas parametric study example.

Extrae is the CEPBA-Tools instrumentation package and is composed of a set of programs and
libraries to generate or translate Paraver and Dimemas traces. Extrae can instrument different
programming models (MPI, OpenMP, POSIX threads, StarSs, CUDA, Cell and their combinations).

CEPBA-Tools have been successfully used for the analysis of large-scale runs in the range of ten
thousand processes. Today CEPBA-Tools are developed by BSC and are available for download
under an LGPL open-source license.

2.2 Main achievements

In the framework of WP2, BSC efforts during the second year of HOPSA with respect to the tools
integration has been focused on:

 A new functionality has been added to Paraver to launch an external analysis tool. The first
target has been to run Dimemas simulations driven by Paraver GUI. The user selects an area
of analysis and a target configuration and Paraver cuts the tracefile and executes the
Dimemas simulation being able to load the output tracefile generated.

 The generation of CUBE files from Extrae folded samples has been extended to include the
information required to launch Gnuplot or Paraver tools from CUBE using the interface
implemented by JSC and testing this new functionality provided by CUBE.

 A translator from the Score-P traces to Paraver format has been developed so Paraver can be
used for a very detailed analysis of the data instrumented by Score-P.

With respect to the tools scalability enhancement, we continued on the working lines initiated during
the first year:

 The parallelization of Paraver engine has been extended to the statistics module. With this
parallelisation we are targeting local multi core platforms using the BSC programming model
OmpSs. The parallelization of the statistics module required some changes on the
intermediate structures to eliminate false dependencies between the table rows.

 The improvements on the scalability of Dimemas have been evaluated and validated. The
new version improves the performance between 15 and 20 times on traces in the scale of ten
thousand processes.

Impact of BW (L=8; B=0)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 4 16 64 256 1024

E
ff

ic
ie

n
c
y

NMM 512

ARW 512

NMM 256

ARW 256

NMM 128

ARW 128

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 10

Finally with respect to the tools functionality enhancement the main achievements are:

 Integrate the modeling of StarSs programming model in the Dimemas distribution. The
Dimemas distribution now simulates the tasks scheduling and their synchronization enabling
to predict the performance when varying the number of cores used by StarSs.

 Translate all the Paraver tutorial guidelines available to on-line format so they can be easily
used.

 Extrae allows to automatically initialize and finalize the instrumentation library without
requiring to have MPI or to add the corresponding API calls and link with the instrumentation
library.

 The instrumentation of Extrae has been extended to include the OpenMP tasks and to support
the new Intel MIC (Xeon Phi) accelerators.

 The Extrae support to the OmpSs programming model has been complemented and a
publication was presented at [13].

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 11

3. Scalasca and CUBE (GRS, JSC)

3.1 Basic description

Scalasca (“SCalable Analysis of LArge SCale Applications”) is a free software tool that supports the
performance optimization of parallel programs by instrumenting, measuring and analysing their
runtime behaviour [1, 2, 3]. The tool has been specifically designed for use on large-scale systems
including IBM Blue Gene and Cray XT, but is also well suited for small- and medium-scale HPC
platforms. The analysis identifies potential performance bottlenecks – in particular those concerning
communication and synchronization – and offers guidance in exploring their causes. Scalasca mainly
targets scientific and engineering applications based on the programming interfaces MPI and
OpenMP, including hybrid applications based on a combination of the two.

Figure 6. Scalasca result browser display CUBE. The left panel shows the hierarchy of
measured metrics. The middle panel shows the distribution of the selected metric over the call
tree of the program. Finally, the right panel shows the distribution of the selected metric at the

selected call path over the machine topology.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 12

The user of Scalasca can choose between two different analysis modes: (i) performance overview on
the call-path level via runtime summarization (aka profiling) and (ii) in-depth study of application
behaviour via event tracing. A distinctive feature of Scalasca is its ability to identify wait states that
occur, for example, as a result of load imbalance – even at very large scales. Analysis results of
Scalasca can be investigated with the result browser CUBE (see Figure 6).

The software is installed at numerous sites in several countries and has been successfully used to
optimize academic and industrial simulation codes. Scalasca, which is jointly developed by JSC and
GRS, is available for download under the New BSD open-source license at http://www.scalasca.org.

The currently available public version (Scalasca 1.4) is based on its own internal very scalable
instrumentation and measurement system. Starting 2013, Scalasca 2.x is based on the new
community-developed open-source measurement system Score-P (see Section 6).

3.2 Main achievements

Several enhancements have been made in 2011 and are already available in the last public release of
Scalasca (Version 1.4.2 of July 11, 2012) and CUBE (Version 3.4.2 of July 11, 2012):

 Integration of Scalasca with the Paraver and Vampir timeline visualizers ("worst-instance
tracking")

 Improved scalability of MPI communicator and group handling for Scalasca’s native
measurement system as well as for Score-P

The following enhancements are not part of a public release yet but are available to HOPSA project
partners:

 Design and implementation of a prototypical generic tool launch feature for CUBE. It allows
launching arbitrary commands from the context menu of metric and callpath nodes to display
further information connected with metrics or callpaths. A simple cookie-based communication
protocol between CUBE and the launched processes was also defined.

 The prototype of Scalasca's root-cause analysis was optimized and extended to support
hybrid codes. The current version supports MPI, OpenMP and hybrid MPI/OpenMP
measurements, facilitating the analysis of wait-state propagation from MPI to OpenMP
synchronization points and vice versa. The prototype is currently being integrated into the
release brach of Scalasca.

 A prototype of Score-P with functionality for the dynamic compression of time-series profiling
data was created. The prototype supports hybrid applications (i.e., MPI combined with
OpenMP).

http://www.scalasca.org/

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 13

4. ThreadSpotter (RW)

4.1 Basic description

The ThreadSpotter performance optimization technology [4] was originally developed in the startup
Acumem AB – a spin-out from research at Uppsala University in Sweden. Acumem was acquired in
2010 and ThreadSpotter, as well as the original team, is now part of Rogue Wave Software AB. Since
the start, the focus has been on performance debugging tools that explains to a programmer what
actions need to be taken to achieve optimal performance. While an ordinary binary is running in a
production environment, this new performance debugger collects sparse information about its
execution behaviour into a ”fingerprint” file. Typically, only a couple of megabytes are needed to store
the fingerprint data from several hours of real execution. It should be noted that the information
collected in the fingerprint file is architecturally independent, i.e., it correctly represents the access
locality of the application at an abstract level. Based on this information, the cache performance of any
size cache, any size cache line and several replacement policies can be estimated off-line. Actually,
the curve showing the miss-rate as a function of cache size for the entire application, as well as per-
loop and per-instruction is generated at a fraction of a second off-line based on this data.

Figure 7. ThreadSpotter result display showing various detected performance issues (top left),
the affected code regions (right), and further explanations and instructions on how to resolve

the performance issues (bottom left).

While such curves could prove themselves useful for performance experts, the biggest strength of this
technology goes far beyond that. ThreadSpotter’s analysis technology also detects performance bugs
in the applications, i.e., certain access patterns that result in a sub-optimal performance.
ThreadSpotter organizes such performance bugs into four issue groups: bandwidth issues, latency
issues, thread interaction issues and cache pollution issues. For each issue group, the individual
performance bugs are sorted in a worst-first order and presented in a table form together with an
ample of statistics. Clicking on one such issue takes you to the source code where the performance

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 14

bug has been committed and opens up a window with more information guiding the programmer
towards a more efficient alternative. This enables even non-experts to tune their code towards optimal
performance.

4.2 Main achievements

The ThreadSpotter technology has been improved in several dimensions in this project.

In the task focusing on collection and analyse of profile-based performance data for a shared-memory
process based on timer interrupts, all the goals are met. The goals include the design of a new entry
point into ThreadSpotter based on this analysis and integrate with the existing issues-based
(bandwidth, latency, inter-thread and pollution issues) and loop-based views. Within this framework
the following steps have been implemented:

 A new profile-based sampling scheme has been implemented to synchronously sample
information from all threads.

 The profile-based sampling is done in an interleaved fashion with the existing reuse-distance
sampling.

 A time-based profiler GUI has been integrated in the ThreadSpotter GUI.

 This will get integrated in future releases of ThreadSpotter.

Also in the task of designing scalable method for collecting ThreadSpotter’s performance fingerprint
data from each of the MPI ranks running in a scalable system the goals have been met. This involves
designing a filtering function that identifies MPI ranks with similar performance characteristics, based
on the fingerprint and the new profile-based data. That way, a user will not have to wade through all
performance data collected from 1000s of ranks and can concentrate on the unique behaviour. The
following steps have been implemented:

 A scalable MPI launch mechanisms has been implemented

 Each MPI rank writes its own ”fingerprint file”

 ”Clustering” of fingerprint files based on k-mediods has been implemented to find MPI ranks
with similar behaviour.

 The effectiveness of this has been demonstrated to find ”similarities” between ranks
automatically for many applications.

 Example: Jacobi’s execution results in five ”similarity groups”: Inner, top, bottom, left, right.

 This will get integrated in future releases of ThreadSpotter.

Finally, the goal of exploring the possibilities of integration between timeline-based visualizers and
ThreadSpotter has been med. The following items have been achieved.

 We have come up with a seamless way to navigate between tools, e.g., between the Scalasca
Cube and ThreadSpotter.

 This is based on the least common denominator: Call-stack-based views -- allowing the
migration from one tool to the other while focusing on the same call-stack frame.

 A common representation of call stacks has been defined.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 15

5. Vampir (TUD)

5.1 Basic description

Vampir (”Visualization and Analysis of MPI Resources”) is a very well-known event trace visualization
software which is available since 1996 as a commercial product. It offers intuitive parallel event trace
visualization with many displays showing different aspects of the parallel performance behaviour [5]. It
provides interactive zooming and browsing to show either a broad overview or very small details.

The public version supports analysis of traces in OTF (Open Trace Format). These can be generated
with the open-source VampirTrace instrumentation and run-time measurement package which
supports not only MPI parallel programs but also OpenMP threads, POSIX threads, the IBM Cell
architecture, GPGPU computing with CUDA or OpenCL, and combinations of them.

The HOPSA work is based on an upcoming new version based on traces in the new OTF2 format and
the new Score-P run-time measurement package (see Section 6).

Figure 8. Vampir screen dump showing various displays: timeline views,
function summary, communication matrix view and process summary.

All recent versions of Vampir support parallel trace data processing; furthermore a special analysis
server allows to cope with very large traces: While the display component runs on the local desktop or
laptop machine, the server component processes extensive event trace data sets remotely and in
parallel on a part of an HPC system. By this means, Vampir is able to visualize traces with several
hundred thousand processes/threads and terabytes in size while still providing an interactive working
experience. Vampir is available for all major HPC platforms, including common Linux/Unix systems as
well as Windows HPC Server. Today, Vampir is developed by ZIH, TU Dresden and is commercially

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 16

distributed by the university-owned company GWT TU Dresden GmbH. Detailed information about
Vampir is available at http://www.vampir.eu. VampirTrace is distributed as open source under a BSD
license at http://www.tu-dresden.de/zih/vampirtrace/.

5.2 Main achievements

The work of TUD as part of HOPSA focused around tracing of large scale, long running applications
as well as the integration and analysis of system level performance data in application traces (see
Section 6). Several enhancements during the project have been made and are already available in the
latest release of Vampir 8.0 (November 2012):

 Vampir has been extended to visualize system background activities influencing all/several
processes/threads in a node/partition/system. This new feature has been integrated into the
"Counter Data Timeline" and "Performance Radar" and offers the possibility to visualize
metrics belonging to a group of processes such as a node of a cluster system. The
assignment of processes to a group is stored in the trace format accordingly.

 The implementation of the D-Bus remote interface of Vampir has been revised and extended
and offers now a richer set of remote control capabilities. New features include remote control
of display-specific properties such as the selection of the displayed performance data counter.

These enhancements are only available as a prototype to HOPSA project partners but will be part of
the next Vampir release in June 2013:

 The latest developer version of Vampir introduces partial loading of large trace files in time
and space dimensions and hence allows to visualize a specific segment of a trace without
loading the complete trace. The time option allows users to select and load a relevant data
section by means of a thumbnail view. This feature is only available if snapshots have been
created for the trace. The space option offers the opportunity to select particular
processes/threads to reduce the amount of data to be loaded. These two options can be
combined. While the partial loading with Vampir works well for OTF traces, it is not completely
enabled for OTF2 traces yet since the work on implementing the writing of snapshots for
OTF2 traces is still in progress.

http://www.vampir.eu/
http://www.tu-dresden.de/zih/vampirtrace/

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 17

6. Score-P (GRS, JSC, TUD)

6.1 Basic description

The Score-P measurement infrastructure
1
 is a highly scalable and easy-to-use tool suite for profiling,

event trace recording, and online analysis of HPC applications. As a community open-source project,
it forms the basic infrastructure for collaborative work on parallel performance tools. It was created in
the German BMBF project SILC (2009 to 2011) and the US DOE project PRIMA (mid 2009 to mid
2012), and will be maintained and enhanced in a number of follow-up projects (e.g., BMBF LMAC, EU
ITEA2 H4H, and also including EU FP7 HOPSA).

Score-P offers the user a maximum of convenience by supporting a number of analysis tools.
Currently, it works with Periscope from the Technical University Munich, TAU from the University of
Oregon, the HOPSA tools Scalasca and Vampir, and is open for other tools [6]. Score-P consists of
several reusable components:

 The Score-P instrumentation and run-time measurement is the central component and
incorporates all other components. It contains code instrumentation functionality using various
methods and performs the run-time data collection in the parallel environment.

 OTF2 (Open Trace Format 2) is a highly scalable, memory efficient event trace data format
plus support library. It will become the new standard trace format for Scalasca, Vampir, and
TAU and is open for other tools.

OTF2 is the common successor format for OTF (from Vampir) and the EPILOG trace format
(from Scalasca). It preserves the essential features as well as most record types of both and
introduces new features such as support for multiple read/write substrates, in-place time
stamp manipulation, and on-the-fly token translation. In particular, it will avoid copying trace
data during unification of parallel event streams.

 CUBE4 is a highly scalable, memory efficient, flexible profile format with support libraries, a
set of tools, and a GUI. It will become the new standard profile format for Scalasca and Score-
P and is open for other tools.

CUBE4 is the successor profile format for the CUBE3 profile format from Scalasca. It
preserves the CUBE3 data model and extends its internal mechanisms for saving the profile
data. In particular, it is able to deal with large amounts of data, by dynamically loading and
incrementally writing data. In contrast to CUBE3, CUBE4 is a hybrid format, saving an XML
anchor file and set of binary files storing the profile data in a single binary archive.

For backward compatibility, CUBE4 will provide reading support for the CUBE3 profile format
(former Scalasca default).

 The Online Access Interface enables performance analysis tools to employ the Score-P
monitoring infrastructure at runtime remotely over TCP/IP. It is currently used by Periscope.
Highlights of the online performance analysis are more fine-grained measurement
configuration, the support for multiple performance experiments within one run, and remote
analysis with data acquisition over the network.

 OPARI2 is a source-to-source instrumentation tool for OpenMP and hybrid codes. It surrounds
OpenMP directives and runtime library calls with calls to the POMP2 measurement interface.

1
 The Score-P measurement infrastructure is called “SILC measurement system” in the HOPSA

proposal and DoW.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 18

6.2 Main achievements

A new public release (Score-P Version 1.1 from November 03, 2012) is available at http://www.score-
p.org as open source under a BSD license. Score-P enhancements as part of the HOPSA project
made in 2012 were focused around tracing of large-scale, long-running applications as well as
integration and analysis of system-level performance data in application traces:

 The Open Trace Format 2 has been extended with profile snapshots. The snapshots provide
all status information required to start reading trace events from predetermined breakpoints
without reading the preceding events. The additional data is generated by a post-processing
tool and will be used by Vampir for partial loading of OTF2 traces.

 A long-term event-trace recording mode was introduced to the Score-P monitoring
component. It allows to discard the preceding section of the event trace at certain rewind
control points or phase markers. The runtime decision whether to keep or discard a section
can depend on the presence or absence of certain behaviour patterns as well as on similarity
or difference with other sections. This mode is part of the latest public release.

 Improved scalability of MPI communicator and group handling.

The following enhancements are available to HOPSA project partners for now and will later be
included in a public release:

 The Score-P and OTF2 software infrastructure has been improved to enable the integration of
system-level performance data.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 19

7. Conclusions

This report summarized the status of the HOPSA integrated tool set for the instrumentation,
measurement and analysis of parallel programs developed as part of work package 2 of the EU FP7
HOPSA project. It consists of the memory and thread analyzer ThreadSpotter (RW), the trace
visualizer Paraver including its measurement system Extrae (BSC), the performance prediction tool
Dimemas (BSC), the trace visualizer Vampir (TUD), the performance measurement and analysis tool
Scalasca (GRS, JSC), and the instrumentation and measurement system Score-P (GRS, JSC, TUD).

The tools are already available as a combination of open-source offerings (Extrae, Paraver, Dimemas,
Scalasca, CUBE, Score-P) and commercial products (Vampir, ThreadSpotter). At the end of the
project (January 2013), a single unified installation package for all tools will be provided. This is
detailed in Deliverable D3.4 ("UNITE Package").

Rogue Wave Software AB, Technische Universität Dresden, and the Jülich Supercomputing Centre
are also project partners in the EU ITEA2 project H4H (Hybrid Programming For Heterogeneous
Architectures) running in parallel with HOPSA. In H4H, the tools Scalasca, ThreadSpotter, Score-P,
and Vampir are enhanced to better support the performance analysis of parallel programs for
heterogeneous architectures based on the programming paradigms CUDA, OpenCL, and HMPP. As
tool support for heterogeneous architectures was also a subject of the underlying EU FP7 call leading
to the HOPSA project, there are synergies with the H4H project relevant to the HOPSA project. In
2011 and 2012, the following H4H tool enhancements were made available to HOPSA:

 Improved OpenMP instrumentation and measurement including support for OpenMP 3.0 tasks
for the Scalasca measurement system and Score-P

 A new comparative analysis mode for the comparison of multiple trace files for Vampir

 Improvement of the function filtering mechanism based on filter rules that affects all charts for
Vampir

 New customizable performance metrics to Vampir's existing Counter Data Timeline and
Performance Radar

 Overview of performance metrics to Vampir’s Master Timline via an overlay functionality to get
a relation between performance metrics and the corresponding functions at a glance

 Also the scalability of Vampir analysis has been further improved

 The Score-P instrumentation and measurement support has been extended with CUDA
support based on the CUPTI callback API

 A prototype adaptor for HMPP from CAPS was developed which supports instrumentation and
measurement of HMPP constructs on the host side

 A prototype adaptor for OmpSs from BSC was developed which supports instrumentation and
measurement of OmpSs constructs

These enhancements are already included in the latest released versions of Scalasca and Vampir.
Using the HOPSA tool infrastructure, the scientific output rate of a system will be increased in three
ways: First, the enhanced tool suite will lead to better optimization results, expanding the potential of
the codes to which they are applied. Second, integrating the tools into an automated diagnostic
workflow will ensure that they are used both (i) more frequently and (ii) more effectively, further
multiplying their benefit. Finally, the HOPSA holistic approach will lead to a more targeted optimization
of the interactions between application and system.

Final Tool Set CP-2011-277463
 15 JAN 2013

Public Copyright © HOPSA Consortium Page 20

8. Bibliography

[1] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, and B. Mohr. The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Experience,
22(6):702–719, April 2010.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, B. Mohr: A scalable tool architecture for diagnosing wait states
in massively parallel applications. Parallel Computing, 35(7):375-388, July 2009.

[3] B. J. N. Wylie, M. Geimer, F. Wolf: Performance measurement and analysis of large-scale
parallel applications on leadership computing systems. Scientific Programming, 16(2-3):167-181,
2008, Special Issue Large-Scale Programming Tools and Environments.

[4] E. Hagersten, M. Nilsson and M. Vesterlund, Improving Cache Utilization Using Acumem VPE,
TOOLS FOR HIGHPERFORMANCE COMPUTING 2008, III, 115-135, DOI: 10.1007/978-3-540-
68564-7_8

[5] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. Müller and W.E. Nagel,
“The Vampir Performance Analysis Tool-Set”, Tools for High Performance Computing, pp 139-
155, Springer Verlag, 2008.

[6] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorf, K. Diethelm, D. Eschweiler, M. Gerndt, D. Lorenz,
A. D. Malony, W. E. Nagel, Y. Oleynik, P. Saviankou, D. Schmidl, S. Shende, R. Tschüter, M.
Wagner, B. Wesarg, F. Wolf: Score-P - A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir, Proceedings of 5th Parallel Tools
Workshop, 2011, (to appear).

[7] J. Labarta, Trace-Based Tools, Performance Tuning of Scientific Applications, Edited by D. H.
Bailey, R. F. Lucas and S. W. Williams, pages 87–122, 2011.

[8] V. Pillet et al.: PARAVER: A Tool to Visualize and Analyze Parallel Code, in: 18th World OCCAM
and Transputer User Group Technical Meeting, April 1995.

[9] A. Snavely, X. Gao, C. Lee, L. Carrington, N. Wolter, J. Labarta, J. Giménez, P. Jones,
Performance Modeling of HPC Applications, Proceedings ParCo 2003.

[10] T-Platforms, Moscow, Russia. Clustrx HPC Software. http://www.t-platforms.com/products/
software/clustrxproductfamily.html, last accessed September 2012.

[11] A.V. Adinets, P.A. Bryzgalov, Vad.V. Voevodin, S.A. Zhumatiy, D.A. Nikitenko. About an
approach to monitoring, analysis and visualization of jobs on cluster system (In Russian). In:
Numerical Methods and Programming, 2011, vol. 12, Pp. 90–93

[12] Bernd Mohr, Vladimir Voevodin, Judit Giménez, Erik Hagersten, Andreas Knüpfer, Dmitry A.
Nikitenko, Mats Nilsson, Harald Servat, Aamer Shah, Frank Winkler, Felix Wolf, and Ilya Zhujov:
The HOPSA Workflow and Tools. In: Proceedings of the 6th International Parallel Tools
Workshop, Stuttgart, September 2012, Springer. To appear.

[13] H. Servat, X. Teruel, G. Llort, A. Duran, J. Giménez, X. Martorell, E. Ayguadé, J. Labarta: On the
Instrumentation of OpenMP and OmpSs Tasking Constructs In: Proceedings of the
PROPER2012 Workshop, Springer. To appear.

http://www.t-platforms.com/

	1. Executive summary
	1.1 The broader context: The HOPSA project
	1.2 Work package 2: HPC application-level performance analysis
	1.2.1 The HOPSA workflow
	1.2.2 HOPSA tool integration

	2. Dimemas, Extrae, Paraver (BSC)
	2.1 Basic description
	2.2 Main achievements

	3. Scalasca and CUBE (GRS, JSC)
	3.1 Basic description
	3.2 Main achievements

	4. ThreadSpotter (RW)
	4.1 Basic description
	4.2 Main achievements

	5. Vampir (TUD)
	5.1 Basic description
	5.2 Main achievements

	6. Score-P (GRS, JSC, TUD)
	6.1 Basic description
	6.2 Main achievements

	7. Conclusions
	8. Bibliography

