
Tracking a Value’s
Influence on Later
Computation
Philip C. Roth
Future Technologies Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN USA

2 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Value Influence Tracking
•  Understanding how values are propagated through time and

space helps us recognize:
–  Inefficient/unnecessary computation (e.g., cut-off distance)
–  Incorrect computation (e.g., this value should have been accessed)
–  Values for which high reliability is needed

•  A value is not the same as a variable: a variable holds a value
at a given point during a program run

•  We are researching an empirical approach for tracking how a
value contributes to later computation, called its influence

•  We are evaluating this approach by implementing the Value
Influence Tracking (VIT) tool, and applying it to parallel
applications

3 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Assigning and Combining Value Influence

•  A value’s influence is real number in [0,1]
•  When value is indicated as being of interest, we assign an

influence value of 1
•  Values that have not been assigned an influence value are

assumed to have influence value of 0
•  When a value is combined with other(s) by a program, we

combine their influence data and associate it with the output
•  Influence operators can be simple (e.g., AND, average) or

complex (e.g., max, something depending on input
magnitude)

u: 0.3!

v: 0.5!

dest: 0.4!
Opera&on:*u*+*v*
Influence*operator:*average*

4 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Variable Lifetime
•  At different times during a program run, different variables

may share the same location (register or memory)
•  Our approach respects variable lifetime naturally through

location initialization
Memory!
Location!
0x0…756!Time!

U live, with associated
influence IU!

U dead, but IU still
associated with the
location!

V live, with possible
associated IV!

V initialized, IU
disassociated from
location. Possibly
associate IV
computed from
whatever is used to
initialize V.!

Status of  
Memory  
Location!

5 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Tracking Influences for Multiple Values
• We can track influence for multiple values

–  Each variable has a vector of associated influence data
–  Each influence value has a color

• Combining function performs per-color combination,
and associates resulting vector to output location

u: {{0, 0.2},!
 {1, 0.4},!
 {2, 0.7}}!

v: {{0, 0.4},!
 {1, 0.5}!

dest: {{0, 0.3},!
 {1, 0.45},!
 {2, 0.35}}!

Opera&on:*u*+*v*
Influence*operator:*average*

6 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Multithreaded Programs
• We track influence data differently for values in

registers and in memory
–  All threads share influence of value in memory, just as all

threads share the actual value
– We use thread-local storage to store influence of values in

registers
– When running thread executes an operation that combines

values from registers and produces an output, we use
influence data from thread-local storage associated with
the active thread

• Thread-local storage plus natural variable lifetime
handling provides support for multithreaded
programs

7 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

MPI Programs
• Whenever data is transferred from one address

space to another, we need to:
–  Know what data is being transferred
–  Know where it is being transferred
–  Know when transfer is guaranteed to be done

• Our approach: use PMPI profiling interface to
interpose tool functionality whenever MPI function is
called

8 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

MPI Programs: Two-Sided, Collectives
• Within interposed function, transfer application data

and then any associated influence data
Task 0! Task 1!

A[0]: 0.3!
A[1]: 0.7!
A[2]: 0.4!
…!

MPI_Send(A,…)!

PMPI_Send of A!

PMPI_Send of I
A[0],!I

A[1], IA[2], …!

MPI_Recv(B,…)!

B[0]: 0.3!
B[1]: 0.7!
B[2]: 0.4!
…!

Main thread! Main thread!

9 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

MPI Programs: One-Sided
• Needs separate thread (Value Influence Service Thread,

VIST) for asynchronous access to influence data
•  PMPI_Win_fence needs to ensure value influence data

has been transferred before continuiing
Task 0! Task 1!

A[0]: 0.3!
A[1]: 0.7!
A[2]: 0.4!
…!

MPI_Put(A,…)!

PMPI_Put of A!

Transfer of I
A[0],!I

A[1], IA[2], …!

MPI_Recv(B,…)!

B[0]: 0.3!
B[1]: 0.7!
B[2]: 0.4!
…!

Main thread!VIST!Main Thread!

MPI_Win_fence! MPI_Win_fence  
(ensures A  
and IA[n]!
have arrived)!

10 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Implementation
• VIT: Value Influence Tracker
• Uses dynamic instrumentation to propagate influence

data
–  Intel Pin: VIT is a pintool
–  Uses trace instrumentation mode: when executing a

program, VIT sees a sequence of instructions to be
executed (a “trace”) at a time

–  VIT examines each instruction in the trace to see if it writes
to a destination (memory or register); if so, VIT instruments
the instruction

–  VIT instrumentation combines influence data from inputs,
associates resulting influence value with output

11 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Tool Control
• C-based API for control

–  VIT_Track: to start tracking a value
–  VIT_Report: to output influence data
–  VIT_Reset: to forget any influence data

• Why a C API? Only thing that makes sense:
–  Variable is in scope
–  Variable is live
–  (Hopefully) variable has been initialized

12 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

VIT Output
• Sequence of (address, influence) pairs
•  Implementation does not currently report influence

data for values in registers
• With care, can convert address into symbolic name

using symbol information and something like GNU’s
Binary File Descriptor library or SymtabAPI library

assuming the program is counting its main loop iterations using
the variable iteration_number.

This approach to specifying for which values to track
influence, and when to start tracking, provides flexible control
over when to start tracking but requires the user to insert
calls to VIT_Track in their application. When designing
VIT, we considered adding support for a command-line switch
taking an address of a memory location to be tracked, and
adding that location to the VIT location-influence map before
the program begins to execute. Because the pre-execution
influence value would be overwritten when the variable if
first initialized (see Section II-C), specifying an address of a
variable to be tracked at tool startup is probably only useful for
variables whose addresses are known at link time and whose
value is not initialized (e.g., those in the .rodata section
within an ELF program executable on Linux). Because of
its limited usefulness, we do not support the command-line
switch mechanism in our current VIT implementation. At this
time, VIT does not support initializing tracking for values in
registers.

In our prototype implementation, VIT outputs the value
influence data to standard output when the program completes.
VIT also provides an API function VIT_Reset for resetting
the value influence data. Optionally, this function can write the
influence data to the program’s standard output before resetting
the data. The combination of VIT_Track and VIT_Reset

allows a program to observe a variable’s influence for a
particular interval during a program’s execution, such as a
certain phase or a particular iteration of the program’s main
loop.

IV. STATUS

At the time of this writing, the basic intra-process VIT
functionality has been implemented, and we are implementing
the inter-process influence tracking functionality for two-sided
and some collective MPI data transfers. For this prototype
implementation, we are using the average operation when
combining influences, regardless of the instruction’s operation.

To demonstrate VIT’s intra-process functionality, we ap-
plied it to a self-written application that solves the two-
dimensional heat equation @T/@t = ↵r2

T (where T is
the temperature of the material and ↵ is its thermal dif-
fusivity) using an explicit discretization and forward time-
centered space (FCTS) method [5] with a five point stencil.
The program keeps the problem state in a two-dimensional
array of double precision values where each value represents
a point in the discretization of the problem domain. (As a
performance optimization, the program maintains two arrays.
One array holds the current state and its values are used to
compute the updated state in the other. Before the next time
step, the program switches its notion of which array holds
the current state. In this manner, the current state alternates
between the arrays throughout the program’s execution.) This
implementation is single threaded. Figure 6 is a visualization
of the program’s output for select time steps for heat transfer
through water at 25� C. We discretized the domain using a
64 ⇥ 64 mesh. Because the heat from the “hot bar” in the
inital state (Figure 6a) quickly dissipates, we use a log scale
to retain feature visibility for the later time steps.

VIT_Report called

In memory:

0x000000000192cc98: 1.80845e-05

0x000000000192ce90: 1

0x000000000192ce98: 0.000711323

0x000000000192cea0: 1.20563e-05

0x000000000192d098: 6.02816e-06

0x0000000001934ea0: 0.166667

0x0000000001934ea8: 0.00347222

Fig. 8: Example VIT output.

For demonstrating VIT functionality, we tracked the in-
fluence of one of the application’s boundary values as the
program executed its time step loop. Because the program uses
a five-point stencil, the value’s influence “diffuses” through the
problem state array by advancing one row and column per time
step. Figure 7 illustrates how the influence data propagates
through the program state array due to the use of the stencil.
In the figure, each cell represents a data value and cells with a
green background have non-zero influence data. Although the
stencil is applied to each value in the interior of the state array
on each time step, for clarity we only illustrate the use of the
stencil for memory locations that receive a non-zero influence
during the time step. Along the propagation front, a value with
non-zero influence at location L propagates that influence to
the values at locations L�(64·8), L+8, and L+(64·8) because
the program uses row-major ordering for its two-dimensional
state array, the size of a double precision floating point value
is 8 bytes, and the row width is 64 elements.

The bulk of VIT’s output is a sequence of
(address, influence) pairs (see Figure 8) for memory
locations with non-zero influence values. Our prototype
implementation does not report influence values associated
with registers. The output shown in the figure resulted from
a call to the VIT_Report function after the heat transfer
application’s second time step. Figure 9 shows visualizations
of VIT output for select time steps produced as influence was
propagated through the application’s state arrays. In the figure,
each cell represents a memory location in the array. Each cell
is colored according to the influence value associated with the
cell’s associated memory location. We wrote a simple utility to
convert from the addresses in VIT output to the indices of cells
within a two dimensional array. The influence values quickly
decrease from the initial value of 1, so the visualizations use
a log scale to retain contrast between the cells representing
memory locations with non-zero influence and those with
zero influence. Because the heat transfer application uses a
double buffering approach, the value influence “wavefront”
alternates between the two problem state arrays. Thus, for the
figure we display value influence data for one array after even
numbers of time steps and the other after odd numbers of
time steps. (If we showed the influence data propagation for
only one of the arrays, the wavefront would advance every
other time step, by two rows and two columns each time.)
Note that this influence propagation pattern is independent
of the heat transfer problem being solved. As expected, the
program took 62 time steps for the influence data to propagate
across the entire 64-element-wide problem state array since
the array boundary values are not updated and hence never

13 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Case Study
• Used VIT with 2D heat transfer application

–  Explicit discretization
–  Forward time-centered space with 5-point stencil
–  Double-buffered

Before time steps

After 500 time steps

After 4000 time steps

14 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Case Study (II)
• For this test, tagged a boundary value and “watched”

its influence propagate through the array
–  Each time around main loop, used API to dump current

influence data
–  Visualized this data using VisIt

15 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Case Study (III)

• Before time steps • After 1 time step

16 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Case Study (IV)

• After 2 time steps • After 3 time steps

17 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Case Study (IV)

• After 2 time steps • After 3 time steps

18 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Case Study (V)

• After 62 time steps • After 100 time steps

Non-zero influence “reaches” opposite
boundary, since array is 64x64 with boundary
of size 1

19 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Related Work
• Program slicing, chopping

– Our approach is data-centric, not code-centric
–  Unlike original slicing, dynamic and operates at machine

instruction level
–  Forward program slicing could be used in conjunction with

VIT to improve time for value influence analysis

• Taint Analysis
– Our approach uses a real-valued influences, not binary
– Our approach could be used to implement Taint Analysis

• Automated Differentation
–  Automatically evaluate derivative of a function/program
– May be usable for paper’s use case, but not clear that can

solve same problems in general

20 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Ongoing and Future Work
•  Implementing support for multiple address spaces

•  Addressing a problem in handling register-based addressing modes
–  We currently do not distinguish between using value of a register as an address in

indirect addressing mode versus using value in a register as an input to arithmetic
operation

–  Causes magnitude of influence values to decrease more quickly than expected
–  Can be solved in Pin by checking addressing modes on inputs

•  Support for SIMD instructions
–  Some compilers use SIMD instructions even for scalar operations because the

SIMD hardware gives higher performance
–  We support such scalar use of SIMD, but do not yet track handle SIMD instructions

that operate on multiple data items

•  Accelerator support
–  Distinct address spaces (not a stretch)
–  Lack of dynamic instrumentation infrastructure (analogous to Pin)

21 Value Influence Tracking – PROPER 2013 Workshop, 27 August 2013

Summary

• We are researching an empirical approach for tracking
how a value contributes to later computation, called its
influence

• We are evaluating this approach by implementing the
Value Influence Tracking (VIT) tool, and applying it to
parallel (MPI, multithreaded) applications

•  rothpc@ornl.gov
•  http://ft.ornl.gov/~rothpc

