Detecting SIMDization Opportunities

through Static/Dynamic Dependence Analysis

Olivier Aumage, Denis Barthou, Christopher Haine,
Tamara Meunier

University of Bordeaux / INRIA Runtime

August 27, 2013

Detecting SIMDization Opportunities August 27, 2013

SIMD: Key for performance

SIMD instructions are essential for reaching high levels of
performance.

SSE vectors : 4 x 32-bit floats

128 bits

AVX vectors : 8 x 32-bit floats
[1]2][3]4][5]6]7 8]
256 bits

MIC vectors : 16 x 32-bit floats

[1]2]3]4]5]6]7]8]9]10[11]12]13]14]15]16]
512 bits

Detecting SIMDization Opportunities August 27, 2013

Hand vectorization

Explicit vectorization is complex and time consuming.

@ Assembly instructions or intrinsics are not portable

@ Language extensions such as GCC vector extensions only
offer limited subset of arithmetic operations

51213 of TSVC benchmark

for (int 1 = 1; i < LEN-2; i++) {
b[i] = al[i+l]lxd[i 1;
ali+l] = b[i J+c[i+1];

}

August 27, 2013 3/19

Detecting SIMDization Opportunities

Hand vectorization

Explicit vectorization is complex and time consuming.

@ Assembly instructions or intrinsics are not portable

@ Language extensions such as GCC vector extensions only
offer limited subset of arithmetic operations

for (int i = 4; i < LEN-4; i+=4) {
51213 of TSVC benchmark rA = _mm_loadu_ps(&a[i+1]);
rC = _mm_loadu_ps(&c[i+1]);

for (int i = 1; i < LEN-2; i++) { rD = _mm_load_ps(&d[il]);
b[i 1 = al[i+l]lxd[i]; rB = _mm_mul_ps(rA,rD);
ali+l] = b[i]+c[i+l]; rA = _mm_add_ps(rB,rC);
} _mm_store_ps(&b[i], rB);

_mm_storeu_ps(&a[i+1],rA);

Detecting SIMDization Opportunities August 27, 2013 3/19

Compilers vectorization

Automatic vectorization can fail:

@ lack of semantic
@ data reshaping
@ reduction

° ..

Hints about what caused vectorization to fail are hard to
understand.

Examples with GCC 4.6.3:

tsc.c:1986: note: not vectorized, possible dependence between
data-refs b[D.18123_4] and b[i_46] (->s51213)

tsc.c:121: note: not vectorized: complicated access pattern.

tsc.c:5476: note: not vectorized: relevant stmt not supported:
xD.16720_10 = D.16721_11;

Detecting SIMDization Opportunities August 27, 2013

Our Contribution

A new tuning approach for vectorization based on binary
code:

@ Giving hints to the user about issues that hinder
vectorization

ex: loop transformation, resheduling, ...
@ Based on static and dynamic dependence analysis

@ Implemented in MAQAO

performance tuning tool, based on binary code analysis

@ Tested on TSVC benchmark
Maleki, S., Gao, Y., Garzarn, M.J., Wong, T., Padua, D.A.: An evaluation
of vectorization compilers. In: International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2011)
151 functions

Detecting SIMDization Opportunities August 27, 2013

© Overview of MAQAO
@ Register dependences
© Memory dependences
@ Analysis and hints

© Evaluation on TSVC benchmark

Detecting SIMDization Opportunities August 27, 2013 6/19

1 - Overview of MAQAO

MAQAO: Performance tuning tool

Binary parser 1—‘ Binary code ‘

List of instructions

Y Instrumentation
Code representation 4)
- control flow graph Instrumented
- call graph Binary code
- dependences J

Structured code

\J

Performance analysis Execution Traces

- static analysis

- dynamic analysis Hints

Detecting SIMDization Opportunities August 27, 2013

2 - Register Dependence Analysis

Done statically, corresponding to static single assignment
(SSA) form analysis.

Differentiate dependences used in address computation from those used in actual
computation (to vectorize).
Address computation part: Information about indirections and control.

0x40577b: ADD $0x4,%RAX e

0

0x40577f: CMP $0x3fc,%RAX

1 0x405785 : INE 405760

0x405772 : MOVSS %XMMO,0x72cc84(%RDX,%RAX,1)

Figure: s119 of TSVC

Detecting SIMDization Opportunities August 27, 2013

2 - Register Dependence Analysis

ADD $0x4,%RAX 31 JNE 405760
0
CMP $0x3fc,%RAX

MOVSS 0x76cc94(%RDX,%RAX,1),%XMMO

ADDSS 0x72cc80(%RCX,%RAX,1),%XMMO

MOVSS %XMMO0,0x72cc84(%RDX,%RAX,1)

Figure: s119 of TSVC

Detecting SIMDization Opportunities ust 27, 2013 9/19

3 - Memory dependences : Collecting Memory Traces

Method: We use MAQAO for collecting traces

@ All loads and stores in innermost loops are traced

@ Addresses are compressed on the fly

for (int i = 1; i < 256; i++) for i0 = 0 to 254
for (int j = 1; j < 256; j++) for il = 0 to 254
aal[ill[j] = aali-1]1[j-1]1+bb[i][j]; read 0x72cc80 + 1024xi0 + 4xil
code of s119 trace for aa[i-1][j-1]

Detecting SIMDization Opportunities August 27, 2013 10/19

3 - Memory dependences : Collecting Memory Traces

Method: We use MAQAO for collecting traces

@ All loads and stores in innermost loops are traced

@ Addresses are compressed on the fly

for (int i = 1; i < 256; i++) for i0 = 0 to 254
for (int j = 1; j < 256; j++) for il = 0 to 254
aal[il[j] = aali-1]1[j-1]+bb[i][]]; write 0x72d084 + 1024%i0 + 4*il
code of s119 trace for aalil[j]

Detecting SIMDization Opportunities August 27, 2013 11/19

3 - Memory Dependence Analysis

Distance vector is computed from memory traces:

for i0 = 0 to 254 for jO = 0 to 254
for i1 = 0 to 254 for jl = 0 to 254
read 0x72cc80 + 1024%i0 + 4xil write 0x72d084 + 1024x%j0 + 4xj1

Write and read access the same memory location for
i0=j0+1andil =j1+1.
— distance vector =1, 1

Detecting SIMDization Opportunities August 27, 2013 12/19

3 - Memory Dependence Analysis

Distance vector is computed from memory traces:

for 10 = 0 to 254
for i1 = 0 to 254
read 0x72cc80 + 1024%i0 + 4xil

for jO = 0 to 254
for jl = 0 to 254
write 0x72d084 + 1024x%j0 + 4xj1

Write and read access the same memory location for
i0=j0+1andil =j1+1.
— distance vector =1, 1

General case:

@ no dependence if no intersection

@ "*"if unmatching boundaries or strides

Detecting SIMDization Opportunities

August 27, 2013

3 - Memory Dependence Analysis

ADD $0x4,%RAX 31 JNE 405760

MOVSS 0x76cc94(%RDX,%RAX,1),%XMMO
stride : 1024, 4

CMP $0x3fc,%RAX

ADDSS 0x72cc80(%RCX,%RAX,1),%XMMO
stride : 1024, 4

MOVSS %XMMO0,0x72cc84(%RDX,%RAX,1)
stride : 1024, 4

Figure: s119

Detecting SIMDization Opp

4 - SIMDization Analysis and Hints

The code is SIMDizable if for the
computational part of its graph:

ADDSS 0x612070(%RAX),%XMMO
stride : 4

@ Thereis no cycle

@ Or for each cycle:

MOVSS %XMMO0,0x4(%RDX,%RAX,1)
stride : 4

@ The cumulative weight
is greater than the
width of the SIMD
vectors.

@ Or all the instructions of
the cycle are one of the
following types: add,
mul, max, min.

— Reduction

Figure: subgraph of s424

ADDSS %XMM2,%XMMO

ADDSS %XMM1,%XMMO0

Figure: subgraph of s221

Detecting SIMDization Opportunities August 27, 2013

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

@ Data alignment
first address offset is not a multiple of the vector

Detecting SIMDization Opportunities August 27, 2013 15/19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

@ Data alignment
first address offset is not a multiple of the vector

@ Rescheduling
dependences of distance 1 on scalars, with no cycle

Detecting SIMDization Opportunities August 27, 2013

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

@ Data alignment
first address offset is not a multiple of the vector
@ Rescheduling
dependences of distance 1 on scalars, with no cycle

@ Loop transformations, loop reversal
strides in the wrong way, or negative strides

Detecting SIMDization Opportunities August 27, 2013

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

@ Data alignment
first address offset is not a multiple of the vector
@ Rescheduling
dependences of distance 1 on scalars, with no cycle
@ Loop transformations, loop reversal
strides in the wrong way, or negative strides
@ Data reshaping required
the smallest stride does not correspond to the data length

Detecting SIMDization Opportunities August 27, 2013

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

@ Data alignment
first address offset is not a multiple of the vector
@ Rescheduling
dependences of distance 1 on scalars, with no cycle
@ Loop transformations, loop reversal
strides in the wrong way, or negative strides
@ Data reshaping required
the smallest stride does not correspond to the data length
@ Versioning required
control or indirection - traces depend on data

Detecting SIMDization Opportunities August 27, 2013

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

@ Data alignment
first address offset is not a multiple of the vector
@ Rescheduling
dependences of distance 1 on scalars, with no cycle
@ Loop transformations, loop reversal
strides in the wrong way, or negative strides
@ Data reshaping required
the smallest stride does not correspond to the data length
@ Versioning required
control or indirection - traces depend on data
@ Idiom Recognition
simple pattern matching on dependence graph (dot product, mem
copy)

Detecting SIMDization Opportunities August 27, 2013

4 - Code Transformations Hints : Example

ICC 13.0.1 Output:

tsc.c(1420): (col. 4) remark: loop was not vectorized:
existence of vector dependence.

GCC 4.6.3 Output:

tsc.c:1419: note: not vectorized: complicated access pattern.

tsc.c:1420: note: not vectorized, possible dependence between
data-refs bb[D.18342_9][i_45] and bb[j_46][i_45]

s126
int k = 1;
for(int i = 0; i < LEN2; i++){
for(int j = 1; j < LEN2; j++){
bb[j1[i] = bb[j-11[i] +
array[k-1] * cc[j1[i];
++k;
}
++k;

}

August 27, 2013

Detecting SIMDization Opportunities

4 - Code Transformations Hints : Example

ICC 13.0.1 Output:

tsc.c(1420): (col. 4) remark: loop was not vectorized:
existence of vector dependence.

GCC 4.6.3 Output:

tsc.c:1419: note: not vectorized: complicated access pattern.
tsc.c:1420: note: not vectorized, possible dependence between
data-refs bb[D.18342_9][i_45] and bb[j_46][i_45]

Maqgao Output:

5126: Loop at line 1420 of tsc.c, function s126:
vectorizable with reduction (add)
uncontiguous data (stride: 1024):

need of interchange or transpose
code template:

int k = 1;
for(int i = 0; i < LEN2; i++){
for(int j = 1; j < LEN2; j++){
bb[j1[i] = bb[j-11[i] +

array[k-1] * cc[§11i]; - load (i, i+1, i+2, i+3) line 1421
K - load (j, j+256, j+512, j+768)
} and mul line 1421
- add line 1421
++k;

} - store (j, j+256, j+512, j+768) line 1421

Detecting SIMDization Opportunities August 27, 2013

5 - Evaluation on TSVC Benchmark

MAQAO vs GCC 4.6.3 and Intel ICC 13.0.1 compilers, on Intel
Core i5-2540M:

Tool Maqgao | GCC | ICC
Detected vectorizable cases 123 46 104
Corresponding MAQAO hint
- Reduction 30 15 24
- ldiom 8 3 7
- Data alignment issue 11 4 4
- Code restructuration 53 6 39
- Loop interchange or data transpose | 9 4 7
- Rescheduling 9 1 1
- Control 23 0 17

Detecting SIMDization Opportunities August 27, 2013 17/19

Related Works

@ Auto-vectorizing compilers for C code (GCC, ICC, IBM, ...) or
higher level (Scout)

@ Hybrid compile-time/run-time approach (profile guided
optimization)

@ E. Park, L.N.P.,, Cavazos, J., Cohen, A., Sadayappan, P.: Predictive
modeling in a polyhedral optimization space. Conf. on Code Generation
and Optimization (2011)

@ Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste, D.,
Cohen, A., Zaks, A.: Vapor SIMD: Auto-vectorize once, run everywhere.
Conf. on Code Generation and Optimization (2011)

@ Tournavitis, G., Wang, Z., Franke, B., OBoyle, M.F.: Towards a holistic ap-
proach to auto-parallelization: integrating profile-driven parallelism
detection and machine-learning based mapping. Conf. on Programming
Language Design and Implementation (2009)

@ Approach similar to us, but less information in input (no

compressed trace, no dependence graph)

Holewinski, J., Ramamurthi, R., Ravishankar, M., Fauzia, N., Pouchet, L.N.,
Rountev, A., Sadayappan, P.: Dynamic trace-based analysis of vectorization
potential of applications. Conf. on Programming Language Design and
Implementation (2012)

Detecting SIMDization Opportunities August 27, 2013

Conclusion

@ Providing hints about transformations necessary for
SIMDization
combining static (for registers) and dynamic (for memory)
dependence analysis

@ Promising results on TSVC benchmark

@ Plan to expand our work:
e going further on the analysis (loop distribution, reroll)
e implementing for various architectures (currently: ARM)
e predicting performance gain

Detecting SIMDization Opportunities August 27, 2013

