
Detecting SIMDization Opportunities

through Static/Dynamic Dependence Analysis

Olivier Aumage, Denis Barthou, Christopher Haine,
Tamara Meunier

University of Bordeaux / INRIA Runtime

August 27, 2013

Detecting SIMDization Opportunities August 27, 2013 1 / 19

SIMD: Key for performance

SIMD instructions are essential for reaching high levels of
performance.

Detecting SIMDization Opportunities August 27, 2013 2 / 19

Hand vectorization

Explicit vectorization is complex and time consuming.

Assembly instructions or intrinsics are not portable

Language extensions such as GCC vector extensions only
offer limited subset of arithmetic operations

s1213 of TSVC benchmark

for (int i = 1; i < LEN-2; i++) {
b[i] = a[i+1]*d[i];
a[i+1] = b[i]+c[i+1];

}

for (int i = 4; i < LEN-4; i+=4) {
rA = _mm_loadu_ps(&a[i+1]);
rC = _mm_loadu_ps(&c[i+1]);
rD = _mm_load_ps(&d[i]);
rB = _mm_mul_ps(rA,rD);
rA = _mm_add_ps(rB,rC);
_mm_store_ps(&b[i],rB);
_mm_storeu_ps(&a[i+1],rA);

}

Detecting SIMDization Opportunities August 27, 2013 3 / 19

Hand vectorization

Explicit vectorization is complex and time consuming.

Assembly instructions or intrinsics are not portable

Language extensions such as GCC vector extensions only
offer limited subset of arithmetic operations

s1213 of TSVC benchmark

for (int i = 1; i < LEN-2; i++) {
b[i] = a[i+1]*d[i];
a[i+1] = b[i]+c[i+1];

}

for (int i = 4; i < LEN-4; i+=4) {
rA = _mm_loadu_ps(&a[i+1]);
rC = _mm_loadu_ps(&c[i+1]);
rD = _mm_load_ps(&d[i]);
rB = _mm_mul_ps(rA,rD);
rA = _mm_add_ps(rB,rC);
_mm_store_ps(&b[i],rB);
_mm_storeu_ps(&a[i+1],rA);

}

Detecting SIMDization Opportunities August 27, 2013 3 / 19

Compilers vectorization

Automatic vectorization can fail:

lack of semantic

data reshaping

reduction

...

Hints about what caused vectorization to fail are hard to
understand.

Examples with GCC 4.6.3:

tsc.c:1986: note: not vectorized, possible dependence between
data-refs b[D.18123_4] and b[i_46] (->s1213)

tsc.c:121: note: not vectorized: complicated access pattern.
tsc.c:5476: note: not vectorized: relevant stmt not supported:

*D.16720_10 = D.16721_11;

Detecting SIMDization Opportunities August 27, 2013 4 / 19

Our Contribution

A new tuning approach for vectorization based on binary
code:

Giving hints to the user about issues that hinder
vectorization
ex: loop transformation, resheduling, ...

Based on static and dynamic dependence analysis

Implemented in MAQAO
performance tuning tool, based on binary code analysis

Tested on TSVC benchmark
Maleki, S., Gao, Y., Garzarn, M.J., Wong, T., Padua, D.A.: An evaluation
of vectorization compilers. In: International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2011)
151 functions

Detecting SIMDization Opportunities August 27, 2013 5 / 19

Outline

1 Overview of MAQAO

2 Register dependences

3 Memory dependences

4 Analysis and hints

5 Evaluation on TSVC benchmark

Detecting SIMDization Opportunities August 27, 2013 6 / 19

1 - Overview of MAQAO

MAQAO: Performance tuning tool

Detecting SIMDization Opportunities August 27, 2013 7 / 19

2 - Register Dependence Analysis

Done statically, corresponding to static single assignment
(SSA) form analysis.

Differentiate dependences used in address computation from those used in actual
computation (to vectorize).
Address computation part: Information about indirections and control.

Figure: s119 of TSVC

Detecting SIMDization Opportunities August 27, 2013 8 / 19

2 - Register Dependence Analysis

MOVSS 0x76cc94(%RDX,%RAX,1),%XMM0

ADDSS 0x72cc80(%RCX,%RAX,1),%XMM0

0

MOVSS %XMM0,0x72cc84(%RDX,%RAX,1)

0

ADD $0x4,%RAX

1

1

1

1

CMP $0x3fc,%RAX

0

JNE 405760

Figure: s119 of TSVC

Detecting SIMDization Opportunities August 27, 2013 9 / 19

3 - Memory dependences : Collecting Memory Traces

Method: We use MAQAO for collecting traces

All loads and stores in innermost loops are traced

Addresses are compressed on the fly

for (int i = 1; i < 256; i++)
for (int j = 1; j < 256; j++)

aa[i][j] = aa[i-1][j-1]+bb[i][j];

code of s119

for i0 = 0 to 254
for i1 = 0 to 254

read 0x72cc80 + 1024*i0 + 4*i1

trace for aa[i-1][j-1]

Detecting SIMDization Opportunities August 27, 2013 10 / 19

3 - Memory dependences : Collecting Memory Traces

Method: We use MAQAO for collecting traces

All loads and stores in innermost loops are traced

Addresses are compressed on the fly

for (int i = 1; i < 256; i++)
for (int j = 1; j < 256; j++)

aa[i][j] = aa[i-1][j-1]+bb[i][j];

code of s119

for i0 = 0 to 254
for i1 = 0 to 254

write 0x72d084 + 1024*i0 + 4*i1

trace for aa[i][j]

Detecting SIMDization Opportunities August 27, 2013 11 / 19

3 - Memory Dependence Analysis

Distance vector is computed from memory traces:

for i0 = 0 to 254
for i1 = 0 to 254

read 0x72cc80 + 1024*i0 + 4*i1

for j0 = 0 to 254
for j1 = 0 to 254

write 0x72d084 + 1024*j0 + 4*j1

Write and read access the same memory location for
i0 = j0 + 1 and i1 = j1 + 1.
→ distance vector = 1, 1

General case:

no dependence if no intersection

" * " if unmatching boundaries or strides

Detecting SIMDization Opportunities August 27, 2013 12 / 19

3 - Memory Dependence Analysis

Distance vector is computed from memory traces:

for i0 = 0 to 254
for i1 = 0 to 254

read 0x72cc80 + 1024*i0 + 4*i1

for j0 = 0 to 254
for j1 = 0 to 254

write 0x72d084 + 1024*j0 + 4*j1

Write and read access the same memory location for
i0 = j0 + 1 and i1 = j1 + 1.
→ distance vector = 1, 1

General case:

no dependence if no intersection

" * " if unmatching boundaries or strides

Detecting SIMDization Opportunities August 27, 2013 12 / 19

3 - Memory Dependence Analysis

MOVSS 0x76cc94(%RDX,%RAX,1),%XMM0
stride : 1024, 4

ADDSS 0x72cc80(%RCX,%RAX,1),%XMM0
stride : 1024, 4

0

MOVSS %XMM0,0x72cc84(%RDX,%RAX,1)
stride : 1024, 4

0 1, 1

ADD $0x4,%RAX

1

1

1

1

CMP $0x3fc,%RAX

0

JNE 405760

Figure: s119

Detecting SIMDization Opportunities August 27, 2013 13 / 19

4 - SIMDization Analysis and Hints

The code is SIMDizable if for the
computational part of its graph:

There is no cycle

Or for each cycle:

The cumulative weight
is greater than the
width of the SIMD
vectors.
Or all the instructions of
the cycle are one of the
following types: add,
mul, max, min.
→ Reduction

ADDSS 0x612070(%RAX),%XMM0
stride : 4

MOVSS %XMM0,0x4(%RDX,%RAX,1)
stride : 4

0 64

Figure: subgraph of s424

ADDSS %XMM2,%XMM0

ADDSS %XMM1,%XMM0

0 1

Figure: subgraph of s221

Detecting SIMDization Opportunities August 27, 2013 14 / 19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

Data alignment
first address offset is not a multiple of the vector

Rescheduling
dependences of distance 1 on scalars, with no cycle

Loop transformations, loop reversal
strides in the wrong way, or negative strides

Data reshaping required
the smallest stride does not correspond to the data length

Versioning required
control or indirection - traces depend on data

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem

copy)

Detecting SIMDization Opportunities August 27, 2013 15 / 19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

Data alignment
first address offset is not a multiple of the vector

Rescheduling
dependences of distance 1 on scalars, with no cycle

Loop transformations, loop reversal
strides in the wrong way, or negative strides

Data reshaping required
the smallest stride does not correspond to the data length

Versioning required
control or indirection - traces depend on data

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem

copy)

Detecting SIMDization Opportunities August 27, 2013 15 / 19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

Data alignment
first address offset is not a multiple of the vector

Rescheduling
dependences of distance 1 on scalars, with no cycle

Loop transformations, loop reversal
strides in the wrong way, or negative strides

Data reshaping required
the smallest stride does not correspond to the data length

Versioning required
control or indirection - traces depend on data

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem

copy)

Detecting SIMDization Opportunities August 27, 2013 15 / 19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

Data alignment
first address offset is not a multiple of the vector

Rescheduling
dependences of distance 1 on scalars, with no cycle

Loop transformations, loop reversal
strides in the wrong way, or negative strides

Data reshaping required
the smallest stride does not correspond to the data length

Versioning required
control or indirection - traces depend on data

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem

copy)

Detecting SIMDization Opportunities August 27, 2013 15 / 19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

Data alignment
first address offset is not a multiple of the vector

Rescheduling
dependences of distance 1 on scalars, with no cycle

Loop transformations, loop reversal
strides in the wrong way, or negative strides

Data reshaping required
the smallest stride does not correspond to the data length

Versioning required
control or indirection - traces depend on data

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem

copy)

Detecting SIMDization Opportunities August 27, 2013 15 / 19

4 - Code Transformations Hints

Hints for code transformations required for SIMDization are
based on dependence graph, strides and control flow graph.

Data alignment
first address offset is not a multiple of the vector

Rescheduling
dependences of distance 1 on scalars, with no cycle

Loop transformations, loop reversal
strides in the wrong way, or negative strides

Data reshaping required
the smallest stride does not correspond to the data length

Versioning required
control or indirection - traces depend on data

Idiom Recognition
simple pattern matching on dependence graph (dot product, mem

copy)

Detecting SIMDization Opportunities August 27, 2013 15 / 19

4 - Code Transformations Hints : Example

ICC 13.0.1 Output:
tsc.c(1420): (col. 4) remark: loop was not vectorized:

existence of vector dependence.

GCC 4.6.3 Output:
tsc.c:1419: note: not vectorized: complicated access pattern.
tsc.c:1420: note: not vectorized, possible dependence between

data-refs bb[D.18342_9][i_45] and bb[j_46][i_45]

s126:

int k = 1;
for(int i = 0; i < LEN2; i++){

for(int j = 1; j < LEN2; j++){
bb[j][i] = bb[j-1][i] +

array[k-1] * cc[j][i];
++k;

}
++k;

}

Maqao Output:
Loop at line 1420 of tsc.c, function s126:
vectorizable with reduction (add)
uncontiguous data (stride: 1024):

need of interchange or transpose
code template:
- load (i, i+1, i+2, i+3) line 1421
- load (j, j+256, j+512, j+768)

and mul line 1421
- add line 1421
- store (j, j+256, j+512, j+768) line 1421

Detecting SIMDization Opportunities August 27, 2013 16 / 19

4 - Code Transformations Hints : Example

ICC 13.0.1 Output:
tsc.c(1420): (col. 4) remark: loop was not vectorized:

existence of vector dependence.

GCC 4.6.3 Output:
tsc.c:1419: note: not vectorized: complicated access pattern.
tsc.c:1420: note: not vectorized, possible dependence between

data-refs bb[D.18342_9][i_45] and bb[j_46][i_45]

s126:

int k = 1;
for(int i = 0; i < LEN2; i++){

for(int j = 1; j < LEN2; j++){
bb[j][i] = bb[j-1][i] +

array[k-1] * cc[j][i];
++k;

}
++k;

}

Maqao Output:
Loop at line 1420 of tsc.c, function s126:
vectorizable with reduction (add)
uncontiguous data (stride: 1024):

need of interchange or transpose
code template:
- load (i, i+1, i+2, i+3) line 1421
- load (j, j+256, j+512, j+768)

and mul line 1421
- add line 1421
- store (j, j+256, j+512, j+768) line 1421

Detecting SIMDization Opportunities August 27, 2013 16 / 19

5 - Evaluation on TSVC Benchmark

MAQAO vs GCC 4.6.3 and Intel ICC 13.0.1 compilers, on Intel
Core i5-2540M:

Tool Maqao GCC ICC

Detected vectorizable cases 123 46 104

Corresponding MAQAO hint

- Reduction 30 15 24

- Idiom 8 3 7

- Data alignment issue 11 4 4

- Code restructuration 53 6 39
- Loop interchange or data transpose 9 4 7
- Rescheduling 9 1 1
- Control 23 0 17

Detecting SIMDization Opportunities August 27, 2013 17 / 19

Related Works

Auto-vectorizing compilers for C code (GCC, ICC, IBM, ...) or
higher level (Scout)

Hybrid compile-time/run-time approach (profile guided
optimization)

E. Park, L.N.P., Cavazos, J., Cohen, A., Sadayappan, P.: Predictive
modeling in a polyhedral optimization space. Conf. on Code Generation
and Optimization (2011)
Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste, D.,
Cohen, A., Zaks, A.: Vapor SIMD: Auto-vectorize once, run everywhere.
Conf. on Code Generation and Optimization (2011)
Tournavitis, G., Wang, Z., Franke, B., OBoyle, M.F.: Towards a holistic ap-
proach to auto-parallelization: integrating profile-driven parallelism
detection and machine-learning based mapping. Conf. on Programming
Language Design and Implementation (2009)

Approach similar to us, but less information in input (no
compressed trace, no dependence graph)
Holewinski, J., Ramamurthi, R., Ravishankar, M., Fauzia, N., Pouchet, L.N.,
Rountev, A., Sadayappan, P.: Dynamic trace-based analysis of vectorization
potential of applications. Conf. on Programming Language Design and
Implementation (2012)

Detecting SIMDization Opportunities August 27, 2013 18 / 19

Conclusion

Providing hints about transformations necessary for
SIMDization
combining static (for registers) and dynamic (for memory)

dependence analysis

Promising results on TSVC benchmark

Plan to expand our work:

going further on the analysis (loop distribution, reroll)
implementing for various architectures (currently: ARM)
predicting performance gain

Detecting SIMDization Opportunities August 27, 2013 19 / 19

