Performance Productivity
Challenges and Researches

Victor Lee
Parallel Computing Lab, Intel

Acknowledgement: The contributions from Youfeng Wu from PSL, Intel and other
members of PCL Intel

Agenda

 Performance Productivity Gap
e What Created the Gap
e Past and Current Research

e Summary

Agenda

* Performance Productivity Gap
e What Created the Gap
e Past and Current Research

e Summary

Compute Performance Roadmap

Supercomputers

Linpack Perf. (Gflop)

1.E+09
1.E+08
1.E+07
1.E+06
1.E+05
1.E+04
1.E+03
1.E+02
1.E+01
1.E+00
1.E-01
1.E-02

/

Exa w/
Peta
/
/ /
Tera ?/ ///
PZ5 ¢ *
| Giga #‘ /
L 2 y A
. 7 7 -
1970 1980 1990 2000 2010

2020

sl
~e
%)

Copyright victor.w.lee@intel.com

Desktop

Handheld

Endless Opportunities

b

i ” .'.
"1. LH:: ‘- !mﬂ .11“ l||+ jﬁ‘ .
u*ﬁ bt

Copyright victor.w.lee@intel.com 5

Application Performance Implications

1000 -

. 4

AN
\ Power wall causing

the industry to make
a “Right-hand Turn”
(RHT) in design.

Applications used

to ride the technology
curve for better
performance

3

Relative Performance
(based on 1980 performance)
[y
o

1 [| | I [| | |
1980 1985 1990 1995 2000 2005 2010 2015 2020

Time

Copyright victor.w.lee@intel.com 6

Architecture Specific Optimization

Relative Performance
(based on 1980 performance)
(IR
S

10000

1000

(Y
-

—$-—Baseline =~ "Tuned version"

| back to the upward trend

Architecture Specific Optimization
brings the application performance

1980 1990

2000
Time

2010

2020

Copyright victor.w.lee@intel.com

Performance Productivity Gap

e Definition: performance difference between
existing software and the optimized software

Relative Performance
(based on 1980 performance)

10000

2
o

100

—&—Baseline =~ "Tuned version"

Copyright victor.w.lee@intel.com

“Performance-
Productivity

ga p”

Mini-Summary 1

e Moore’s law is alive and well. Future
processors to have many cores and great
performance potential

e Current SW experience “Performance
Productivity Gap” and can lead to competitive
disadvantages

Agenda

 Performance Productivity Gap
e What Created the Gap
e Past and Current Research

e Summary

Sources of Performance Productivity Gap

 The obvious:
— Many cores
— The memory

* The not so obvious:
— Energy efficiency challenge
— Heterogeneity
— Core variations
— Failures

Problem w/ Parallel Computing

e Parallel systems
— In the past, are for the HPC programmers

— Result of the industry “RHT”, parallel systems are
for everyone now

 Why parallel computing is hard
— People tends to think sequentially
— Very few are taught to write parallel programs

— Simply extending serial programs will not get good
performance and will be hard to debug

Parallel Opportunity / Challenges

Exploring multi-core and SIMD can result in significant speedup

30 Thread Level Parallelism
§25 | (TLP) Challenges:
- .
£8 50 e Think concurrency
Qo
8¢ s e Data/task
5e . mTLP decomposition
v 0O
53 5 I I I I "bl> | e Synchronization
S Am A E I | I n
SFEFL I TE LSS Data Level Parallelism
& O & & & & P
& T & (DLP) Challenges:
* .
e Data alignment

* Data drawn from Satish et. al. “Can Traditional Programming Bridge the Ninja Performance
Gap for Parallel Computing Applications?”, In proc. of ISCA 2012 o COﬂtI‘O| ﬂ ow

divergence

Copyright victor.w.lee@intel.com 13

Problem in Feeding

 Feeding one core is hard enough

— Memory performance lags processor performance

e Survey shows: Processor improves 50% a year, memory
BW improves ~20%, and memory latency improves ~5%
a year

—

 Feeding many cores is much harder
— Not enough BW to go around
— Conflicts and contention

intel)

Copyright victor.w.lee@intel.com 14

Data Access Opportunity / Challenges

Optimizing data access patterns and making use of cache / local
memory can mitigate data access problem

=7 Challenges:
=
® 6]

S5 No standardize

38, memory hierarchy

g g] .

%E . M Access Pattern ¢ IntU|tlve data

@ o 2 .]

5% = Blocking structure is not
21 .
S, necessary optimal
e D

e@\ 6@@0“ e S Q\@ﬁ 6&0\@" for modern
& S o memory
Nl
subsystem

* Data drawn from Satish et. al. “Can Traditional Programming Bridge the Ninja Performance
Gap for Parallel Computing Applications?”, In proc. of ISCA 2012

Copyright victor.w.lee@intel.com 15

THE NOT SO OBVIOUS CAUSES

Energy Efficiency Challenge

e Today 50PF computer at 30MW power

Today 1 rack of compute servers

Others:

addr translate
decode, power
supply losses

Disk
Comm

Memory

Compute

P —

2.5KW

To meet the 20MW
Exascale challenge

o~ 5w
3KW = Needs to

~SW come down

pAY) ~
to™ 20W

Compute energy

On die IC energy

Energy per Op

More efficient application can help energy issue

Copyright victor.w.lee@intel.com 17

Heterogeneity is Here

Switch to many cores

L[
Ll

>

Bigger & bigger single core till 2005

1370 1380 1990 2000 2010 2020

(l s Copyright victor.w.lee@intel.com 18

Manufacturing Variations

—— Some cores will

/ inherently runs

> slower

Solnl: Turn them off Soln2: Turn them @ diff freq
el =] K
AR (-]

Again application must adapt to core variation

(l s Copyright victor.w.lee@intel.com 19

Tolerating Faults

e Smaller feature sizes
reduce soft error rate

rate to increase

— 1e+04
S 1] K el
o ' e 1300 1e+02
ﬂlﬁ DE‘.' —+— 1600 =
Lalk] 1 —%~ 250mm £
Sos A\
© o
g U_-’-'I-: a2 i g 1e02
i i B
uUJIJ 0.2 T o %:rg;:g,*iﬁ?ﬁi g 1e-04
= D T w
05 1 1.5 2 1e-06
Voltage (V)
1e-08

* Increases in # of components
per chip cause overall error

. W= —m A
" _.--G//Ii--_‘:-':—:-:é i

SRAM —a—
latch, 6 FO4s —=—
latch, 8 FO4s —m—

latch, 12 FO4s —a— |
latch, 16 FO4s —&—
logic, 6 FO4s —e—
Ioglc 8F04s —a—
logic, 12 FO4s —=—
Iogu: 16 FOds —o—

600nm 350nm 250nm180nm 130nm
1992 1994 1997 1999 2002

100nm 70nm 50nm

2005 2008 2011

Technology Generation

Premkishore Shivakumar, et al. Modeling the Impact of Device and Pipeline Scaling on the Soft Error Rate of Processor
Elements. Computer Science Department, University of Texas at Austin, 2002.

(inteIJ

Copyright victor.w.lee@intel.com

20

Mini-Summary 2

* An array of technology challenges cause the
performance productivity gap

e Significant performance opportunity but lots
of challenges

Agenda

 Performance Productivity Gap
e What Created the Gap
e Past and Current Researches

e Summary

Program Development Workflow

New project

starts here Algorithm
Data Structure
Design
Source
Performance
Analysis Code
Y Implementation
For existing
code, starts
here
Machine

Code / Binary

intel)

Copyright victor.w.lee@intel.com

Opportunities to Bridge the
Performance Productivity Gap

Algorithm Better
Programming

Better Tools: Data Structure

Analyzer Design Model/Language

Source
Performance Code
o Analysis Better Tools: Implementation
For existing Autotuner
code, starts
here

Better Better Tools:

Hardware / Machine Compiler /
Runtime Code / Binary Translator

‘ lntel Copyright victor.w.lee@intel.com 24

Programming Model Language
& Perf-Productivity Gap

For existing
code, starts
here

Performance
Analysis

Algorithm
Data Structure
Design

Better

Programming

Model/Language

Source
Code

Implementation

Machine
Code / Binary

Copyright victor.w.lee@intel.com

25

Desired Properties

e Allow programmers to:
— Express concurrency (at different levels)
— Manage data locality
— Provide determinism to aid debug

 Other goodies:
— Portability across architecture
— Easy code reuse
— Distributed development

Approaches

e Library extensions of existing sequential
languages
— E.g., SHMEM, MPI, PVM

 Directives based
— OpenMP, OpenACC

 New parallel languages

— Charm++, CILK, Co-Array Fortran, Titanium, UPC, X10,
Fortress, Chapel, CUDA, OpenCL, Parallel JavaScript

(intel‘

Chapel, Fortress and X10

Chapel
Parallel model Concurrent Tasks Parallel Tasks Concurrent Activities
Array Data Types / Pointers Yes Yes Yes
Data management PGAS w/ Locale PGAS on arrays PGAS w/ Place

1| config var n = 5, /¢ size of n x n grid 1| component fortress.exscutable 1| public class Jacobi extends x1@Test {
2 epsilon = 8.666861; // conwergence tolerance 2 2
3 3| export Executable 3 const int N = 5; /¢ size of grid
4l def matn(y { 4 4 const double epsilon = B.8081; /7 convergence tolerance
5 const ProblemSpace = [1..n, 1..n], /¢ domain for grid points 5| run{args:String...):()=do 5 const double epsilon2 = ©.080800881;
6 Bighomain = [@..n+1, B..n+¢l]; 4/ domain including boundary points 6 6
7 » 7 needlelength = 28 /¢ declaration of 7 const region(:rank==2) RInner = [1:N, 1:N]; // region for grid points
8 war %, xNew: [BigDomain] real = 8.8; // declare arrays: 8 nunRows = 18 /¢ immutable variobles B8 const region{:rank==2) R = [@:N+1, B:N+1]; // region including boundary
] /¢ ¥ stores gpproxinate solution 9 tableHeight = needleLength numRows 9 /¢ points
10 /¢ ¥Mew stores the next solution 10 10
1 . 1 var hits : RRe4 = 8.8 44 declaration of mutat /¢ distribution of grid
12| X[mwl, 1..n]) = 1.8; // et south boundary values to 1.8 2 var n : RRE4 = 8.9 /¢ variables of type RE 5 const dist(:rank==2) D = {dist(:rank==2)) dist.factory.block(R);
L iterati a iterati . 3) .) . 13 const dist(irank==2) DInner = D | RInner; /¢ distribution for inner region of grid
14| vor iteration = @, #/ iteration counter 14 for i < 13000 do 4/ 3008 iterations 14 const dist(:rank==2) DBoundary = D - Rlnner; // boundary region of grid
15 delta: real; /¢ meosure of convergence 15 delto_X = random(2.8) - 1 15
L 1 deltay = random(2.8) - 1 16 const int EXPECTED_ITERS = 97;
- (= - - = (8,-1): _ =97
:; const horth = (-1.8), south = {1,8), eost = (8,1}, vest = (8,-1); j; rsq = delta_xAZ + delta_ ¥ 2 17 const double EXPECTED_ERR = @.0@18673382039482497;
18
19| do { 19 if B <rsq <1 then ; . .
20 /7 compute next approximation using Jacobi method and store in XNew = 41 = tableHeight randon(1.8) ;z f‘ml're:z::'gs[‘;anm?” :D:::i::?b;ego%hl(gg.:'gt'pl‘ElEJi]1).§ oy
21 forall ij in ProblenSpace do)) 21 w2 = y1 + needlelength (delta ¥ / sqrt(rsq)) = 1 i Py A=) —hI-L
2 wNew(i3) = (X(ij+north) + X(ij+south) + X(ijeeast) + K(ij+west)) /7 4.8; 5 (y_L, y_H) = (vl MIN y2, y1 MAZ y2) = ’
23 3 i
24 /¢ compute difference between next ond current approximations 24 /¢ incregse ‘hits' if needle hits line 2 publ!c boolean r"m() {
25 delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace]); 2 if ceiling(y_L/needleLength) = f loor(y_H/needleLength) then 24 int iters = 83
26 . . o 25 double err;
. X . 26 atomic do hits += 1.6 end)
27 /¢ update ¥ with rext approximation 27 end 26 while (truej {) .) (poi i)
28 %[ProblemSpace] = “New[ProblemSpace] ; _ 27 final double[:distribution==this.DInner] X = new double[DInner] (point [i,3]){
- ' ;: End“t”’"w don += 1.8 end 28 Teturn (XNew[i+1,]]+XNew[i-1,]J+XNew[i,j+1]+XNew]i,i-1])/4.8;
30 /¢ advance iteration counter 20 end 2 b
31 iteration += 1; - 30 if {(err = E();New | this.DIrner)-x).obs({).sum{}) < epsilon) break;
2 - . i #New .update(X);
. : . 32 probability = hits/n ; N
:3; } while (delta = epsilon); - pi_est = 2.B/probability ii iters+s;
3} i: endem 34 System.out.printIin("Error = "+err);
35 System.out.println("Iterations = "+iters);
36 return I‘Inth.ubs(arr—EXPECTED_ERR) < epsilon2 &8 iters == EXPECTED_ITERS;
. . “« . ” 37
Codes extracted from Michele Weiland, “Chapel, Fortress and X10: Novel languages for HPC”, i I
; ; ; 39 public static void main(String[] args) {
The University of Edinburgh, Tech. Rep., October (2007). . new Jacobt (3 .execute():
41 ¥
2| ¥

lntel Copyright victor.w.lee@intel.com 28

Domain Specific Languages

DSLs trade off generality to better enable back-
end tools performance and portability

e Stencil DSL [Holewinski’12] e Liszt [DeVito’11] : for mesh

Write stencil as point function and grid -based PDE solver
rather than loop-nest

Stencil DSL Compiler -
Backend Liszt code
Sequential C Generated
¥ Back-End ﬁ
Appﬂ:lﬂunm liszt cross-compiler
L
(i arscEna m \ —Scala frontend r =
ACk-| \ -
Stencil OSL {4 || stenci DSL Stencil AST Generic | | cs,z:‘:;, Lompsad - . platform-
Code Parsar Optimizar | cUDA Generated [H /| (9°%- k¢ liszt p|ug|n ' Independent
\-/ ‘ | BackEnd —'[\cm analysis
— |
G od scala compiler X i
TS B e runtime-specific
ack-
code gen
MPI pthread_s - ?}U_DA_]

Stencil Compiler Workflow . 3
<pp

[Holewinski’12] Justin Holewinski, et al. "High-performance code generation for stencil

pEER

. . " . . . ti :
computations on GPU architectures."Proceedings of the 26th ACM international conference on cQ;‘;gﬁ; | mpicxx | |C++ | nvee
Supercomputing. ACM, 2012.
runtime [MPI pthreads CUDA
a
[DeVito’11] Zachary DeVito, et al. "Liszt: a domain specific language for building portable mesh-based strategy | pazﬁonmg a,EE.mmg fif;fg,mg

PDE solvers." Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011.

E‘(—

BB

i n tel mesh cluster p GPU
L/ Copyright victor.w.lee@intel.com platform

(9]
=

Tools & Perf-Productivity Gap

Algorithm
Better Tools: Data Structure
Analyzer Design

Source
Performance Code
o Analysis Better Tools: Implementation
For existing Autotuner
code, starts
here

Better Tools:
Machine Compiler /

Copyright victor.w.lee@intel.com 30

Tools

Tools help manage the low level implementation
details for parallelism & data management

e Compiler
 Analyzer

e Auto-tuner

Compiler Optimizations

e Parallelization (and vectorization)

— Focus on picking out independent tasks to form threads
of execution through data/control dependency analysis

e E.g., Independent loop iterations can be parallelized as
different threads

— More recent work:
e Speculative parallelization — requires special HW support

e Semi-automatic parallelization — requires programmers to
help annotate the section that can be parallelized

— Some reference: SUIF, Polaris, Helix, DSWP, Cray
compiler, Intel C++ Compiler

intel)

Compiler Optimizations

e Array padding and tiling
— Padding to minimize access conflicts

— Use static analysis to identify the optimal blocking factor to
maximize reuse

— Complications include: multiple level tiling, alignment, data
placement, load balance

* Loop transformation:

— Reshape the execution within a loop to improve program
execution as well as data locality

— State-of-the-art uses polyhedral models to handle a wider class
of programs

* Alill] <- Ali-110], Alilli-1]
l and A[i+1][j-1]

i

(intel) j first, followed by i

Performance Analyzer(s)

Performance Analyzer:
— Papi
— Perf
— Likwid
— Gprof
— Valgrind/kCacheGrind
— IBM Tivoli

Other IDEs:
— Eclipse
— Microsoft® Visual Studio

— Xcode from Apple”®

* Intel® VTune™ Performance Analyzer

-
" ey, e

File View Help
(@ ez b S o

Welcome New Amplifier XE Result A4

o Start Paused

B2 Project Properties

¥ Choose Analysis Type

b b —

By Algorithm Analysis = | penify your most time-consuming source code.

A Unlike Hotspots, Lightweight Hotspots has lower
A Hotspots L overhead because it does not collect stack

A Concurrency || information. It can also be used to sample all

A Locks and Waits processes on a system. This analysis type us...

CPU FunctionfCPU Stack - CPU Time E
Viewing 4 1of1 I selected stack(s)
100.0% (0.016s of 0.0165)

analyze_locks.exelvideosnext fr..,

£+ Intel Core 2 Processor Ar [Collect stacks
fi General Exploration
A Memory Access
A Bandwidth

£ Bandwidth Breakdow Details
A Cycles and uOps
[Nehalem Analysis
£ General Exploration ~ NOTE: For analysis purposes, Intel -

Pl —T v VTune Amplifier XE 2013 may adjust o

[7] Estimate call counts

Lo »

[7] Analyze user tasks

Events configured for CPU: Intel(R) Core(T|

analyze locks.exe![TBB parallel fo..,
L a8 I thb.dll'tbb:internal::allocate._r.
I thb.dllitbb:internal:allocate

thread_video (UxLclc) [Running
'E Thread (0xlc34) Wk CPU Time
£ Thread (0:x1964)
file View Help IEW _ | CPU Usage
B s e b Ltk CPU Time
Welcome | r0021h CPU Usage

M Lightweight Hotspq

Call Stack

& [libiemp5.sc] | 2474.064s I 2474 064 T
[mkl_blas_dgemm_pst | 1425697 [N 1425.697s [
E1f_maxPricePath VMLSol 1193.239: [Tl 1193.239: [T
Ftasklet_hi_action | 380349s(380174 ()
Elmkl_blas_dtrmm_inn | 322771:(8 32771
 mkl_vml_kernel_dErflny] 3105325 [31053201

EILS1 2328265() 0.248s)

Fwsnprintf || 127.037s 127.037s

Lileakl 1 bk L2 4 111 Q17 111 Q17

Copyright victor.w.lee@intel.com 34

Auto-tuner

 Use machine time in place of human time for
tuning

e Basic technique is to search over possible
implementation

e Recent work start to explore statistical
machine learning method to prune search

space

Auto-tuner Examples

Search of a design space (e.g Statistical Machine Learning Model
Kamil’10) [Ganapathi’09]

e Start w/ Fortran Spec e Use Kernel Canonical Correlation

e Translate to IR Analysis

e Performance within 1% of
experts programmers

 Explore design space

Optimization Parameter Tuning Range by Architecture —
‘ Category | Parameter Name || Barcelona/Nehalem Victoria Falls GTX280 [Cavoicaton
Data Allocation] NUMA Aware v v N/A % L
X NX [B.NX] | {16T.NX]
Core Block Size CY {8..NY} [8.NY} | {16T.NY}
C7 [128..NZ} [128.NZ} | {16T.NZ} ol ko iomcre Hnck o
Domain X cx CX (L5 g Y
Decomposition | Thread Block Size TT CY cy {%_.C&"}E i 1
TZ (wi czZ (&2 .czyt
. NXxNYxNZ K \‘ / Ky
Chunk Size {1 exwov=CZ% NThreads | N/A N N
Array Indexing v v v KCCA
Low RX T-3] 1-5] 1 0 kA KK, 0 |fa
Level Register Block Size RY {1.2} {1..2} 1* =
RZ 1.2} 1.2} 1* Lot , Ry
K,"A / \ K,'B
Other auto-tuners: Examples: ATLAS [Whaley’01], OSKI [Vuduc’05], w [og -;I' ‘2 ' -;II
*la 2 i

FLAME [Gunnels ‘01], FFTW [Frigo’99], SPIRAL [Puschel’05], Stencil
Autotuner [Kamil’10] [Datta’08] [Ganapathi’09]

Figure 1: The KCCA methodology discovers relationships
between configurations and performance.

Copyright victor.w.lee@intel.com 36

Hardware / Runtime &
Perf-Productivity Gap

For existing
code, starts
here

Performance
Analysis

Better

Hardware /
Runtime

Algorithm
Data Structure
Design

Source
Code
Implementation

Machine
Code / Binary

Copyright victor.w.lee@intel.com

37

Architecture Supports for Parallelism

e Speculative parallelism

— Allow multiple iterations or
basic blocks on multiple
hardware cores/units

— Examples:
e Multiscalar [Sohi’95] (parallelize loop iterations)

e Decouple SW pipeline [Ottoni’05] (parallelize blocks
within an iteration)

e Cluster architecture [Marcuello’99] (group dependent
instructions in the same cluster)

Copyright victor.w.lee@intel.com 38

Architecture Supports for Parallelism

* Managing parallelism
— Coherent Cache
— Dynamic load balancing
— Fast synchronization via. full/empty bit
— Reduction hardware
— Transaction memory

Architecture Supports for Data Accesses

* Tolerate the latency
— Multi-threading

* Bring data in earlier (to hide memory latency)
— Data prefetching
e Hardware prefetcher, software prefetching
— Decoupled architecture
e Helper threads

— Speculation
e Value prediction (address prediction [Gonzalez’97])
e Large Instruction window

Architecture Supports for Data Accesses

e Conserve the available bandwidth

— Relax consistency model

e Allow more overlap between memory requests

— Write buffers

e Write buffers or Streaming stores to eliminate
unnecessary BW

e Other more extreme idea:
— Compute in Memory (e.g., IRAM)

Mini-Summary 3

* A lot of great researches to build on

Better Tools:

Analyzer

Performance
Analysis

Better
Hardware /
Runtime

5.
~r
(‘l

Algorithm
Data Structure
Design

Better Tools:

Autotuner

Machine
Code / Binary

Better
Programming

Model/Language

Source
Code
Implementation

Better Tools:
Compiler /
Translator

Copyright victor.w.lee@intel.com

42

Agenda

 Performance Productivity Gap
e What Created the Gap
e Past and Current Researches

e Summary

Summary

e “Performance Productivity Gap” arises due to
a series of technology advances and it leads to
competitive disadvantages

* Integrated researches on programming model,
anguage, tools and hardware are need to
oridge the “Performance Productivity Gap”

* Many great researches, but more is heeded

— Especially in areas like heterogeneity, energy
efficiency, fault tolerance, etc.

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or

death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS
COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR
WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm

Knights Corner, Sandy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet
publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or
marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel, VTune, Xeon, Phi, Cilk, Core, Look Inside and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright ©2013 Intel Corporation.

Copyright victor.w.lee@intel.com 45

Legal Disclaimer

Software Source Code Disclaimer: Any software source code reprinted in this document is furnished under a software license and may only be used
or copied in accordance with the terms of that license.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright victor.w.lee@intel.com 46

Backups

Copyright victor.w.lee@intel.com

47

Parallelization Strategies

Existing
Source
Code

Strategy 1: Automatic Parallelization

¥

Minor
Code
Modification

Automatic

Parallelizatior

Parallel
Application

Strategy 2: Parallel Libraries

Existing
Source
Code

A4

Identify and
Replace
Subroutines

r

Existing
Source
Code

Develop
Parallel
Library

Relink

Strategy 3: Major Recoding

Major
Recoding

r

Parallel
Application

Compiler
Assisted

Parallelization|

Parallel
Application

Extracted from “High Performance Cluster Computing: Programming and Applications.”,

by Rajkumar Buyya, Prentice hall PTR, NJ, USA, 1999

Copyright victor.w.lee@intel.com

48

Reference

General:
[Satish’12] Satish et. al. “Can Traditional Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?”, In proc. of ISCA 2012
[Borkar’13] Shekhar Borkar’s IPDPS 2013 Keynote “Exascale Computing — a fact or a fiction?”

[Shivakumar’02] Premkishore Shivakumar, et al. Modeling the Impact of Device and Pipeline Scaling on the Soft Error Rate of Processor Elements. Computer
Science Department, University of Texas at Austin, 2002.

Programming Models/Languages
[Barriuso’94] Ray Barriuso and Allan Knies. SHMEM user’s guide. Technical report, Cray Inc. Research, May 1994.

[Skjellum’99] Anthony Skjellum, Ewing Lusk, and William Gropp. Using MPI: Portable Parallel Programming with the Message Passing linterface. MIT Press,
1999.

[Geist’94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam. PVM — Parallel Virtual Machine: A Users’ Guide
and Tutorial for Networked Parallel Computing. MIT Press, 1994.

[Blumofe’95] Robert D. Blumofe, et al. Cilk: An efficient multithreaded runtime system. Vol. 30. No. 8. ACM, 1995.
[CILK’00] CILK-5.3 reference manual. Technical report Supercomputing Technologies Group, June 2000.

[HPF’96] High Performance Fortran Forum. High performance fortran language specification version 2.0. Technical report, Rice University Houston, TX,
October 1996.

[Numrich‘98] Robert W. Numrich and John Reid. Co-Array Fortran for parallel programming. ACM SIGPLAN Fortran Forum Archive, 17:1-31, August 1998.

[Hilfinger’'01] Paul Hilfinger, Dan Bonachea, David Gay, Susan Graham, Ben Liblit, Geoff Pike, and Katherine Yelick. Titanium Language Reference Manual.
Technical Report CSD-01-1163, University of California at Berkeley, Berkeley, Ca, USA, 2001.

[EI-Ghazawi ‘03] Tarek EI-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC Language Specification v1.1.1, October 2003.

[Carlson’99] W.W. Carlson, D.E. Culler, K.A. Yellick, E. Brooks and K. Warren, “Introduction to UPC and language specification”, Center for Computing
Sciences Technical Report, CCS-TR-99-157, May 1999.

[Charles’05] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented approach to non-
uniform cluster computing”, 20th annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages and Applications (OOPSLA ‘05),
2005.

[Allan’05] Eric Allan, David Chase, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress language
specification version 0.618. Technical report, Sun Microsystems, April 2005.

[Chamberlain’07] B. L. Chamberlain, D. Callahan, H. P. Zima. “Parallel programmability and the Chapel language”. International Journal of High Performance
Computing Applications, Vol. 21, No. 3, pp291-312, August 2007.

)QAEDS’] OpenMP specifications.
(lntel

Copyright victor.w.lee@intel.com 49

Reference

Domain Specific Languages

[Holewinski’12] Justin Holewinski, et al. "High-performance code generation for stencil computations on GPU architectures."Proceedings of the 26th ACM
international conference on Supercomputing. ACM, 2012.

[DeVito’11] Zachary DeVito, et al. "Liszt: a domain specific language for building portable mesh-based PDE solvers." Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2011.

Compilers (Parallelizing)
SUIF [Wilson’94], Polaris [Blume’94], Helix[Campanoni’12], DSWP[Ottoni’05], Cray compiler [Wichmann’09], ICC [Tian’07]

[Wilson’94] Robert P., Wilson et al. "SUIF: An infrastructure for research on parallelizing and optimizing compilers." ACM Sigplan Notices 29.12 (1994): 31-
37.

[Blume’94] William Blume, et al. "Polaris: The next generation in parallelizing compilers." Proceedings of the Seventh Workshop on Languages and
Compilers for Parallel Computing. 1994.

[Campanoni’12] Simone Campanoni, et al. "HELIX: Automatic parallelization of irregular programs for chip multiprocessing." Proceedings of the Tenth
International Symposium on Code Generation and Optimization. ACM, 2012.

[Ottoni’05] G. Ottoni et al. Automatic thread extraction with decoupled software pipelining. MICRO, 2005.

[Tian’07] Xinmin Tian, et al. "Inside the Intel 10.1 Compilers: New Threadizer and New Vectorizer for Intel Core2 Processors." Intel Technology Journal 11.4
(2007).

[Wichmann’09] Nathan Wichmann, et al. “Early Experience using the Cray Compiling Environment”, In Proc. of CUG 2009.
Compilers (Tiling)

[Lim’01] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbitrarily nested loops using affine partitioning. In ACM Symposium on
Principles and Practice of Parallel Programming, June 2001.

[Rivera’00] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computations. In Proceedings of SC’'00, Dallas, TX, November 2000.

[Sellappa’04] S. Sellappa and S. Chatterjee. Cache-efficient multigrid algorithms. International Journal of High Performance Computing Applications,
18(1):115-133, 2004.

Polyhedral transformations. [Bastoul’04]

[Bastoul’04] Cédric Bastoul, et al. "Putting polyhedral loop transformations to work."Languages and Compilers for Parallel Computing. Springer Berlin
Heidelberg, 2004. 209-225.

[Bastoul’04] Cedric Bastoul. Code generation in the polyhedral model is easier than you think. In PACT '04:Parallel Architectures and Compilation
Techniques, Washington, DC, 2004.

Copyright victor.w.lee@intel.com 50

Reference

Auto tuner
ATLAS [Whaley’01], OSKI [Vuduc’05], FLAME [Gunnels ‘01], FFTW [Frigo’99], SPIRAL [Puschel’05], Stencil Autotuner [Kamil’10] [Datta’08] [Ganapathi’09]

[Whaley’01] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical Optimization of Software and the ATLAS project,” Parallel Computing, vol.
27(1-2), pp. 3-35, 2001.

[Vuduc’05] R. Vuduc, J. Demmel, and K. Yelick, “OSKI: A library of automatically tuned sparse matrix kernels,” in Proc. of SciDAC 2005, J. of Physics:
Conference Series. Institute of Physics Publishing, June 2005.

[Gunnels ‘01] John A. Gunnels, et al. "FLAME: Formal linear algebra methods environment."ACM Transactions on Mathematical Software (TOMS) 27.4
(2001): 422-455.

[Frigo’99] Matteo Frigo. A fast fourier transform compiler. SIGPLAN Not., 34(5):169-180, 1999.

[Puschel’05] M. P"uschel, J. Moura, J. Johnson, et al. SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special issue on “Program
Generation, Optimization, and Adaptation”, 93(2):232- 275, 2005.

[Kamil’10] Shoaib Kamil, et al. "An auto-tuning framework for parallel multicore stencil computations." Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, 2010.

[Datta’08] Kaushik Datta, et al. "Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures." Proceedings of the 2008
ACMY/IEEE conference on Supercomputing. |EEE Press, 2008.

[Ganapathi’09] Archana Ganapathi, et al. "A case for machine learning to optimize multicore performance." First USENIX Workshop on Hot Topics in
Parallelism (HotPar’09). 2009.

Architecture

[Sohi’95] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. "Multiscalar processors." ACM SIGARCH Computer Architecture News. Vol. 23. No. 2. ACM,
1995.

[Ottoni’05] Guilherme Ottoni, et al. "Automatic thread extraction with decoupled software pipelining." Microarchitecture, 2005. MICRO-38. Proceedings.
38th Annual IEEE/ACM International Symposium on. |IEEE, 2005.

[Marcuello’99] Pedro Marcuello, and Antonio Gonzalez. "Clustered speculative multithreaded processors." Proceedings of the 13th international conference
on Supercomputing. ACM, 1999.

[Canal’99] Ramon Canal, J-M. Parcerisa, and Antonio Gonzalez. "A cost-effective clustered architecture." Parallel Architectures and Compilation Techniques,
1999. Proceedings. 1999 International Conference on. IEEE, 1999.

[Gonzalez’97] J. Gonzalez and A. Gonzalez, “Speculative execution via address prediction and data prefetching”, Proceedings of the 1997 International
Conference on Supercomputing (1CS-97), 1997

ntel)

Copyright victor.w.lee@intel.com 51

