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Compute Performance Roadmap
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Endless Opportunities

b

i ” .'.
"1. LH:: ‘- !mﬂ .11“ l||+ jﬁ‘ .
u*ﬁ bt

Copyright victor.w.lee@intel.com 5



Application Performance Implications
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Architecture Specific Optimization
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Performance Productivity Gap

e Definition: performance difference between
existing software and the optimized software
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Mini-Summary 1

e Moore’s law is alive and well. Future
processors to have many cores and great
performance potential

e Current SW experience “Performance
Productivity Gap” and can lead to competitive
disadvantages
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Sources of Performance Productivity Gap

 The obvious:
— Many cores
— The memory

* The not so obvious:
— Energy efficiency challenge
— Heterogeneity
— Core variations
— Failures



Problem w/ Parallel Computing

e Parallel systems
— In the past, are for the HPC programmers

— Result of the industry “RHT”, parallel systems are
for everyone now

 Why parallel computing is hard
— People tends to think sequentially
— Very few are taught to write parallel programs

— Simply extending serial programs will not get good
performance and will be hard to debug



Parallel Opportunity / Challenges

Exploring multi-core and SIMD can result in significant speedup

30 Thread Level Parallelism
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* Data drawn from Satish et. al. “Can Traditional Programming Bridge the Ninja Performance
Gap for Parallel Computing Applications?”, In proc. of ISCA 2012 o COﬂtI‘O| ﬂ ow
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Problem in Feeding

 Feeding one core is hard enough

— Memory performance lags processor performance

e Survey shows: Processor improves 50% a year, memory
BW improves ~20%, and memory latency improves ~5%
a year

—

 Feeding many cores is much harder
— Not enough BW to go around
— Conflicts and contention

intel)
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Data Access Opportunity / Challenges

Optimizing data access patterns and making use of cache / local
memory can mitigate data access problem
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* Data drawn from Satish et. al. “Can Traditional Programming Bridge the Ninja Performance
Gap for Parallel Computing Applications?”, In proc. of ISCA 2012
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THE NOT SO OBVIOUS CAUSES



Energy Efficiency Challenge

e Today 50PF computer at 30MW power

Today 1 rack of compute servers

Others:
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Heterogeneity is Here

Switch to many cores
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Manufacturing Variations

—— Some cores will

/ inherently runs
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Again application must adapt to core variation
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Tolerating Faults

e Smaller feature sizes
reduce soft error rate

rate to increase
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Premkishore Shivakumar, et al. Modeling the Impact of Device and Pipeline Scaling on the Soft Error Rate of Processor
Elements. Computer Science Department, University of Texas at Austin, 2002.
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Mini-Summary 2

* An array of technology challenges cause the
performance productivity gap

e Significant performance opportunity but lots
of challenges
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Program Development Workflow

New project

starts here Algorithm
Data Structure
Design
Source
Performance
Analysis Code
Y Implementation
For existing
code, starts
here
Machine

Code / Binary

intel)
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Opportunities to Bridge the
Performance Productivity Gap

Algorithm Better
Programming

Better Tools: Data Structure

Analyzer Design Model/Language

Source
Performance Code
o Analysis Better Tools: Implementation
For existing Autotuner
code, starts
here

Better Better Tools:

Hardware / Machine Compiler /
Runtime Code / Binary Translator
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Programming Model Language
& Perf-Productivity Gap

For existing
code, starts
here

Performance
Analysis

Algorithm
Data Structure
Design

Better

Programming

Model/Language

Source
Code

Implementation

Machine
Code / Binary
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Desired Properties

e Allow programmers to:
— Express concurrency (at different levels)
— Manage data locality
— Provide determinism to aid debug

 Other goodies:
— Portability across architecture
— Easy code reuse
— Distributed development



Approaches

e Library extensions of existing sequential
languages
— E.g., SHMEM, MPI, PVM

 Directives based
— OpenMP, OpenACC

 New parallel languages

— Charm++, CILK, Co-Array Fortran, Titanium, UPC, X10,
Fortress, Chapel, CUDA, OpenCL, Parallel JavaScript

(intel‘



Chapel, Fortress and X10

Chapel
Parallel model Concurrent Tasks Parallel Tasks Concurrent Activities
Array Data Types / Pointers  Yes Yes Yes
Data management PGAS w/ Locale PGAS on arrays PGAS w/ Place

1| config var n = 5, /¢ size of n x n grid 1| component fortress.exscutable 1| public class Jacobi extends x1@Test {
2 epsilon = 8.666861; // conwergence tolerance 2 2
3 3| export Executable 3 const int N = 5; /¢ size of grid
4l def matn(y { 4 4 const double epsilon = B.8081; /7 convergence tolerance
5 const ProblemSpace = [1..n, 1..n], /¢ domain for grid points 5| run{args:String...):()=do 5 const double epsilon2 = ©.080800881;
6 Bighomain = [@..n+1, B..n+¢l]; 4/ domain including boundary points 6 6
7 » 7 needlelength = 28 /¢ declaration of 7 const region(:rank==2) RInner = [1:N, 1:N]; // region for grid points
8 war %, xNew: [BigDomain] real = 8.8; // declare arrays: 8 nunRows = 18 /¢ immutable variobles B8 const region{:rank==2) R = [@:N+1, B:N+1]; // region including boundary
] /¢ ¥ stores gpproxinate solution 9 tableHeight = needleLength numRows 9 /¢ points
10 /¢ ¥Mew stores the next solution 10 10
1 . 1 var hits : RRe4 = 8.8 44 declaration of mutat /¢ distribution of grid
12| X[mwl, 1..n]) = 1.8; // et south boundary values to 1.8 2 var n : RRE4 = 8.9 /¢ variables of type RE 5 const dist(:rank==2) D = {dist(:rank==2)) dist.factory.block(R);
L iterati a iterati . 3 ) . ) . 13 const dist(irank==2) DInner = D | RInner; /¢ distribution for inner region of grid
14| vor iteration = @, #/ iteration counter 14 for i < 13000 do 4/ 3008 iterations 14 const dist(:rank==2) DBoundary = D - Rlnner; // boundary region of grid
15 delta: real; /¢ meosure of convergence 15 delto_X = random(2.8) - 1 15
L 1 deltay = random(2.8) - 1 16 const int EXPECTED_ITERS = 97;
- (= - - = (8,-1): _ =97
:; const horth = (-1.8), south = {1,8), eost = (8,1}, vest = (8,-1); j; rsq = delta_xAZ + delta_ ¥ 2 17 const double EXPECTED_ERR = @.0@18673382039482497;
18
19| do { 19 if B <rsq <1 then ; . .
20 /7 compute next approximation using Jacobi method and store in XNew = 41 = tableHeight randon(1.8) ;z f‘ml're:z::'gs[‘;anm?” :D:::i::?b;ego%hl(gg.:'gt'pl‘ElEJi]1).§ oy
21 forall ij in ProblenSpace do ) ) 21 w2 = y1 + needlelength (delta ¥ / sqrt(rsq)) = 1 i Py A= ) —hI-L
2 wNew(i3) = (X(ij+north) + X(ij+south) + X(ijeeast) + K(ij+west)) /7 4.8; 5 (y_L, y_H) = (vl MIN y2, y1 MAZ y2) = ’
23 3 i
24 /¢ compute difference between next ond current approximations 24 /¢ incregse ‘hits' if needle hits line 2 publ!c boolean r"m() {
25 delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace]); 2 if ceiling(y_L/needleLength) = f loor(y_H/needleLength) then 24 int iters = 83
26 . . o 25 double err;
. X . 26 atomic do hits += 1.6 end )
27 /¢ update ¥ with rext approximation 27 end 26 while (truej { ) . ) (poi i)
28 %[ProblemSpace] = “New[ProblemSpace] ; _ 27 final double[:distribution==this.DInner] X = new double[DInner] (point [i,3]){
- ' ;: End“t”’"w don += 1.8 end 28 Teturn (XNew[i+1,]]+XNew[i-1,]J+XNew[i,j+1]+XNew]i,i-1])/4.8;
30 /¢ advance iteration counter 20 end 2 b
31 iteration += 1; - 30 if {(err = E();New | this.DIrner)-x).obs({).sum{}) < epsilon) break;
2 - . i #New .update(X);
. : . 32 probability = hits/n ; N
:3; } while (delta = epsilon); - pi_est = 2.B/probability ii iters+s;
3} i: endem 34 System.out.printIin("Error = "+err);
35 System.out.println("Iterations = "+iters);
36 return I‘Inth.ubs(arr—EXPECTED_ERR) < epsilon2 &8 iters == EXPECTED_ITERS;
. . “« . ” 37
Codes extracted from Michele Weiland, “Chapel, Fortress and X10: Novel languages for HPC”, i I
; ; ; 39 public static void main(String[] args) {
The University of Edinburgh, Tech. Rep., October (2007). . new Jacobt (3 .execute():
41 ¥
2| ¥
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Domain Specific Languages

DSLs trade off generality to better enable back-
end tools performance and portability

e Stencil DSL [Holewinski’12] e Liszt [DeVito’11] : for mesh

Write stencil as point function and grid -based PDE solver
rather than loop-nest

Stencil DSL Compiler -
Backend Liszt code
Sequential C Generated
¥ Back-End ﬁ
Appﬂ:lﬂunm liszt cross-compiler
L
( i arscEna m \ —Scala frontend r =
ACk-| \ -
Stencil OSL {4 || stenci DSL Stencil AST Generic | | cs,z:‘:;, Lompsad - . platform-
Code Parsar Optimizar | cUDA Generated [H /| (9°%- k¢ liszt p|ug|n ' Independent
\-/ ‘ | BackEnd —'[\cm analysis
— |
G od scala compiler X i
TS B e runtime-specific
ack-
code gen
MPI pthread_s - ?}U_DA_ ]

Stencil Compiler Workflow . 3
<pp

[Holewinski’12] Justin Holewinski, et al. "High-performance code generation for stencil

pEER

. . " . . . ti :
computations on GPU architectures."Proceedings of the 26th ACM international conference on cQ;‘;gﬁ; | mpicxx | |C++ | nvee
Supercomputing. ACM, 2012.
runtime [ MPI pthreads CUDA
a
[DeVito’11] Zachary DeVito, et al. "Liszt: a domain specific language for building portable mesh-based strategy | pazﬁonmg a,EE.mmg fif;fg,mg

PDE solvers." Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011.

E‘(—
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i n tel mesh cluster p GPU
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Tools & Perf-Productivity Gap

Algorithm
Better Tools: Data Structure
Analyzer Design

Source
Performance Code
o Analysis Better Tools: Implementation
For existing Autotuner
code, starts
here

Better Tools:
Machine Compiler /
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Tools

Tools help manage the low level implementation
details for parallelism & data management

e Compiler
 Analyzer

e Auto-tuner



Compiler Optimizations

e Parallelization (and vectorization)

— Focus on picking out independent tasks to form threads
of execution through data/control dependency analysis

e E.g., Independent loop iterations can be parallelized as
different threads

— More recent work:
e Speculative parallelization — requires special HW support

e Semi-automatic parallelization — requires programmers to
help annotate the section that can be parallelized

— Some reference: SUIF, Polaris, Helix, DSWP, Cray
compiler, Intel C++ Compiler

intel)



Compiler Optimizations

e Array padding and tiling
— Padding to minimize access conflicts

— Use static analysis to identify the optimal blocking factor to
maximize reuse

— Complications include: multiple level tiling, alignment, data
placement, load balance

* Loop transformation:

— Reshape the execution within a loop to improve program
execution as well as data locality

— State-of-the-art uses polyhedral models to handle a wider class
of programs

* Alill] <- Ali-110], Alilli-1]
l and A[i+1][j-1]

i

( intel) j first, followed by i



Performance Analyzer(s)

Performance Analyzer:
— Papi
— Perf
— Likwid
— Gprof
— Valgrind/kCacheGrind
— IBM Tivoli

Other IDEs:
— Eclipse
— Microsoft® Visual Studio

— Xcode from Apple”®

* Intel® VTune™ Performance Analyzer

-
" ey, e

File View Help
(@ ez b S o

Welcome New Amplifier XE Result A4

o Start Paused

B2 Project Properties

¥ Choose Analysis Type

b b —

By Algorithm Analysis = | penify your most time-consuming source code.

A Unlike Hotspots, Lightweight Hotspots has lower
A Hotspots L overhead because it does not collect stack

A Concurrency || information. It can also be used to sample all

A Locks and Waits processes on a system. This analysis type us...

CPU FunctionfCPU Stack - CPU Time E
Viewing 4 1of1 I selected stack(s)
100.0% (0.016s of 0.0165)

analyze_locks.exelvideosnext fr..,

£+ Intel Core 2 Processor Ar [ Collect stacks
fi General Exploration
A Memory Access
A Bandwidth

£ Bandwidth Breakdow Details
A Cycles and uOps
[ Nehalem Analysis
£ General Exploration  ~ NOTE: For analysis purposes, Intel -

Pl —T v VTune Amplifier XE 2013 may adjust o

[7] Estimate call counts

Lo »

[7] Analyze user tasks

Events configured for CPU: Intel(R) Core(T|

analyze locks.exe![TBB parallel fo..,
L a8 I thb.dll'tbb:internal::allocate._r.
I thb.dllitbb:internal:allocate

thread_video (UxLclc) [ Running
'E Thread (0xlc34) Wk CPU Time
£ Thread (0:x1964)
file  View Help IEW _ | CPU Usage
B s e b Ltk CPU Time
Welcome | r0021h CPU Usage

M Lightweight Hotspq

Call Stack

& [libiemp5.sc] | 2474.064s I 2474 064 T
[ mkl_blas_dgemm_pst | 1425697 [N 1425.697s [
E1f_maxPricePath VMLSol  1193.239: [Tl 1193.239: [T
Ftasklet_hi_action | 380349s( 380174 ()
Elmkl_blas_dtrmm_inn | 322771:(8 32771
 mkl_vml_kernel_dErflny] 3105325 [ 31053201

EILS1 2328265() 0.248s)

Fwsnprintf || 127.037s 127.037s

Lileakl 1 bk L2 4 111 Q17 111 Q17
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Auto-tuner

 Use machine time in place of human time for
tuning

e Basic technique is to search over possible
implementation

e Recent work start to explore statistical
machine learning method to prune search

space



Auto-tuner Examples

Search of a design space (e.g Statistical Machine Learning Model
Kamil’10) [Ganapathi’09]

e Start w/ Fortran Spec e Use Kernel Canonical Correlation

e Translate to IR Analysis

e Performance within 1% of
experts programmers

 Explore design space

Optimization Parameter Tuning Range by Architecture —
‘ Category | Parameter Name || Barcelona/Nehalem Victoria Falls  GTX280 [Cavoicaton
Data Allocation] NUMA Aware v v N/A % L
X NX [B.NX] | {16T.NX]
Core Block Size  CY {8..NY} [8.NY} | {16T.NY}
C7 [128..NZ} [128.NZ} | {16T.NZ} ol ko iomcre Hnck o
Domain X cx CX (L5 g Y
Decomposition | Thread Block Size TT CY cy {%_.C&"}E i 1
TZ (wi czZ (&2 .czyt
. NXxNYxNZ K \‘ / Ky
Chunk Size {1 exwov=CZ% NThreads | N/A N N
Array Indexing v v v KCCA
Low RX T-3] 1-5] 1 0 kA KK, 0 |fa
Level Register Block Size RY {1.2} {1..2} 1* =
RZ 1.2} 1.2} 1* Lot , Ry
K,"A / \ K,'B
Other auto-tuners: Examples: ATLAS [Whaley’01], OSKI [Vuduc’05], w [og -;I' ‘2 ' -;II
*la 2 i

FLAME [Gunnels ‘01], FFTW [Frigo’99], SPIRAL [Puschel’05], Stencil
Autotuner [Kamil’10] [Datta’08] [Ganapathi’09]

Figure 1: The KCCA methodology discovers relationships
between configurations and performance.
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Hardware / Runtime &
Perf-Productivity Gap

For existing
code, starts
here

Performance
Analysis

Better

Hardware /
Runtime

Algorithm
Data Structure
Design

Source
Code
Implementation

Machine
Code / Binary
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Architecture Supports for Parallelism

e Speculative parallelism

— Allow multiple iterations or
basic blocks on multiple
hardware cores/units

— Examples:
e Multiscalar [Sohi’95] (parallelize loop iterations)

e Decouple SW pipeline [Ottoni’05] (parallelize blocks
within an iteration)

e Cluster architecture [Marcuello’99] (group dependent
instructions in the same cluster)
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Architecture Supports for Parallelism

* Managing parallelism
— Coherent Cache
— Dynamic load balancing
— Fast synchronization via. full/empty bit
— Reduction hardware
— Transaction memory



Architecture Supports for Data Accesses

* Tolerate the latency
— Multi-threading

* Bring data in earlier (to hide memory latency)
— Data prefetching
e Hardware prefetcher, software prefetching
— Decoupled architecture
e Helper threads

— Speculation
e Value prediction (address prediction [Gonzalez’97])
e Large Instruction window



Architecture Supports for Data Accesses

e Conserve the available bandwidth

— Relax consistency model

e Allow more overlap between memory requests

— Write buffers

e Write buffers or Streaming stores to eliminate
unnecessary BW

e Other more extreme idea:
— Compute in Memory (e.g., IRAM)



Mini-Summary 3

* A lot of great researches to build on

Better Tools:

Analyzer

Performance
Analysis

Better
Hardware /
Runtime

5.
~r
(‘l

Algorithm
Data Structure
Design

Better Tools:

Autotuner

Machine
Code / Binary

Better
Programming

Model/Language

Source
Code
Implementation

Better Tools:
Compiler /
Translator
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Summary

e “Performance Productivity Gap” arises due to
a series of technology advances and it leads to
competitive disadvantages

* Integrated researches on programming model,
anguage, tools and hardware are need to
oridge the “Performance Productivity Gap”

* Many great researches, but more is heeded

— Especially in areas like heterogeneity, energy
efficiency, fault tolerance, etc.
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Legal Disclaimer

Software Source Code Disclaimer: Any software source code reprinted in this document is furnished under a software license and may only be used
or copied in accordance with the terms of that license.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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Backups
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Parallelization Strategies

Existing
Source
Code

Strategy 1: Automatic Parallelization

¥

Minor
Code
Modification

Automatic

Parallelizatior

Parallel
Application

Strategy 2: Parallel Libraries

Existing
Source
Code

A4

Identify and
Replace
Subroutines

r

Existing
Source
Code

Develop
Parallel
Library

Relink

Strategy 3: Major Recoding

Major
Recoding

r

Parallel
Application

Compiler
Assisted

Parallelization|

Parallel
Application

Extracted from “High Performance Cluster Computing: Programming and Applications.”,

by Rajkumar Buyya, Prentice hall PTR, NJ, USA, 1999
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