
A High-Level

IR

Transformation

System

Herbert Jordan,

Peter Thoman, and

Thomas Fahringer

University of Innsbruck

Insieme

Establish an integrated

Compiler & Runtime Research Platform

for

analyzing / manipulating / (auto-)tuning

parallel C/C++ applications

The Insieme Infrastructure

developed @ University of Innsbruck

Code Transformations

 Traditional Compiler (GCC, LLVM):

 Low-level IRs

entry:

 %cmp1 = icmp eq i32 %len, 0

 br i1 %cmp1, label %while.end, label %while.body

T F

while.body:

 %indvar = phi i32 [%indvar.next, %while.body], [0, %entry]

 …

 br i1 %exitcond, label %while.end, label %while.body0

T F

while.end:

 ret void Not much structure to work with

Code Transformations (2)

 Source-to-Source Compiler

 High-level IR – Rose, Clang, CIL, INSPIRE

fun: copy

parameters body

char* src char* dst long len

compound

decl return :=

…

for

Much more (high-level) structure

How to transform ASTs?
 Typically: hand-coded manipulations

1. find target
2. collect input pieces

3. distinguish cases

4. synthesize replacement

5. integrate replacement

 Result:
 labor intensive

 error prone
 reduced maintainability

Structured Approaches
 ASTs are ‘somewhat’ similar to Terms

=> use term rewriting – e.g. Stratego or TXL

 Transformations:

 set of “pattern => replacement” rules

 input is transformed by applying rules

 Problem:

 external system, not directly adaptable

 ASTs are just ‘somewhat’ similar to Terms

ASTs vs. Terms

 Terms are isomorph to Algebraic Structures

 every symbol has fixed arity

{

 s1;

 s2;

 s3;

}

Source

s1 s2 s3

Compound

Desired AST

s1

s2

s3 𝜀

Compound

Algebraic Structure

Our Objective

 Design a Transformation System that is

 declarative

 operating on arbitrary trees

 in particular High-Level Compiler IRs

 supporting deep inspection

 beyond flat pattern matching

Basic Setup

 Tree Structure:

𝑇 ∷= 𝑎 | 𝑘(𝑇∗)

 Rule structure:

𝜙 → τ

 𝜙 … is a tree pattern

 𝜏 … is a tree generator

Patterns - Concept

𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑(𝑠1, 𝑠2, … , 𝑠𝑛)

𝑓𝑜𝑟 𝑖𝑛𝑡 𝑖 = 1 … 10 ∶ 1 𝑠𝑏

𝜙

Tree Patterns

𝜓

List Patterns

Pattern

 Tree Patterns – matching trees

 List Patterns – matching forests

∷=

∷=

Generators

 Tree Generators

 List Generators

 Value Generators

∷=

∷=

∷=

Semantic – Tree Patterns

Pattern Examples

 Task:

is variable 𝑣 referenced within

some code fragment?

 Pattern:

𝑎𝑇(𝑣)

List Pattern

 Task:

is expression 𝑒𝑥𝑝 a full expression

within a given compound statement?

 Pattern:

{_∗, 𝑒𝑥𝑝, _∗}

Variables

 Task:

Get IR variable declared by

a IR variable declaration

 Pattern:

𝑑𝑒𝑐𝑙($𝑥)

matched against "int 𝑣12" it yields {𝑥 = 𝑣12}

Variables

 Task:

Get all variables declared in

a compound statement

 Pattern:

{(¬𝑑𝑒𝑐𝑙(_))∗, (𝑑𝑒𝑐𝑙 $𝑥 , (¬𝑑𝑒𝑐𝑙(_))∗)∗}

matched against

{𝑖𝑛𝑡 𝑎 = 5; 𝑓 𝑎 ; 𝑏𝑜𝑜𝑙 𝑏 = 𝑡𝑟𝑢𝑒; 𝑖𝑛𝑡 𝑐 = 7; }

it yields {𝑥 = [𝑎, 𝑏, 𝑐]}

Variable Binding

 Task:

Check whether a declared

variable is never used.

 Pattern:

{𝑑𝑒𝑐𝑙 $𝑥 , (¬𝑎𝑇 $𝑥)∗}

Once $𝑥 is bound in outer scope, inner is fixed!

Recursive Patterns

 Task:

Collect all loops within

a for-loop nest

 Pattern:

𝑟𝑇.𝑥($𝑙 ∶ 𝑓𝑜𝑟(𝑟𝑒𝑐. 𝑥 ∧ ¬𝑓𝑜𝑟 _)

Variable $𝑙 is collecting a list of for-loops.

Implementation

 Implemented within the Insieme Compiler

 templated utility library (C++11)

 matching algorithm:

 recursive back-tracking + pruning heuristics

 Overloaded operators for

composing patterns and

generators (extendable)

Real-World Transformation

 Eliminate redundant sync calls (Cilk)

{

 {

 spawn f(a);

 spawn f(b);

 …;

 sync;

 }

 …;

 sync;

} redundant

Identify Redundant Syncs

In C++11 notation:

auto unsynced = rT(spawn | node(*any << aT(rec) << *!sync));

auto synced = ! unsynced;

auto p = compound(

 *synced << var(“x”, sync) << *any

);

… and the rest:

Create a tree generator expression:

Create a rule:

Apply the rule:

auto r = substitute(root, var(“x”), noop);

Rule syncElimination = Rule(p, r);

auto out = syncElimination(in);

Complete Example

auto synced = ! rT(spawn | node(*any << aT(rec) << *!sync));

auto p = compound(

 *synced << var(“x”, sync) << *any

);

auto r = substitute(root, var(“x”), noop);

Rule syncElimination = Rule(p, r);

auto out = syncElimination(in);

Conclusion
 Our solution provides a descriptive

infrastructure for tree transformations

 patterns = unification + regex

 any-where-in-tree primitive (aT)

 recursive tree primitive (rT)

 Generic C++ implementation

 portable to other domains (trees)

 support for domain-specific primitives

Thank You!
Visit: http://insieme-compiler.org

Contact: herbert@dps.uibk.ac.at

http://insieme-compiler.org/
http://insieme-compiler.org/
http://insieme-compiler.org/
mailto:herbert@dps.uibk.ac.at

