

Michael Wagner (michael.wagner@zih.tu-dresden.de)

Strategies for Real-Time Event Reduction

PROPER @ Euro-Par 2012, Rhodes Island

Michael Wagner and Wolfgang E. Nagel

Center for Information Services and High Performance Computing (ZIH)

Outline

!   Introduction

!   Strategies for event reduction

!   Realization concepts

!   Future Work

!   Conclusion

Michael Wagner

Michael Wagner

Introduction

!   Event tracing logs runtime events with precise time stamp

!   Detailed information but huge generated data volumes

 à More detail, longer application runs, higher scale

!   Frequent non-synchronous buffer flushes to file system

 à Biases recorded program behavior

 (communication patterns, load balancing)

!   Storage of data on parallel file system

 à High scale = a lot of files

Challenge: How to deal with millions

of files generated by tracing applications on future systems
vampir.eu

Michael Wagner

Motivation: The Typical Workflow

Application

Tracing Tool

Trace Files

Post
Processing Analysis Tool

Trace Files

Insight

Michael Wagner

Alternative: In-Memory Event Tracing Workflow

Application

Tracing Tool

Trace Files

Post
Processing Analysis Tool

Trace Files

Insight

So what‘s the catch?

How to Fit All the Data into a Single Memory Buffer?

 Memory Buffer

Complete Trace Data

Relevant Trace Data

Compact Trace Data

High-Level Selection

Compression/Encoding

Event Reduction

 Unnecessary Events ???

0000 0000 1111 1111

Data Overflow

Michael Wagner

Reduced Trace Data

Restrictions

High level information about events

!   Call tree

!   Other processes

!   Context of an event

Low level information about events

!   Time

!   Event class

Michael Wagner

Event Tracing

Measurement Tool

Event Tracing

Storage Library

Event Reduction Strategies

!   Reduction by Order of Occurrence

–  i.e. stop recording once the memory buffer is
exhausted

!   Reduction by Event Class

–  Order events by event class

–  Discard all events of a specific event class

!   Reduction by Call Stack Level

–  Order events by call stack level

–  Discard all events of the highest call stack level

0 10 20 30 40 50 60 70

main foo foo bar bar

main foo foo bar bar

main foo foo bar bar

main foo foo bar bar

0 10 20 30 40 50 60 70

main foo foo bar bar

main foo foo bar bar

main foo foo bar bar

main foo foo bar bar

0 10 20 30 40 50 60 70

main foo foo bar bar

main foo foo bar bar
4k
2k
0

Michael Wagner

Comparison Criteria

Requirements

!   Minimal overhead introduced

!   Ability to work with limited low level information

Criteria:

!   Quality of remaining information

–  Is it still possible to understand the application behavior?

–  Is it still possible to detect occurring performance problems?

!   Size of single reduction steps

Michael Wagner

Comparison of Reduction Strategies

Michael Wagner

Occurrence Event Class Call Stack Level

Quality of
remaining
information

100% for events before
buffer exhaustion
0% for events after
buffer exhaustion

100% for remaining
event classes
0% for discarded event
classes

Reduced but not
completely lost

Cause and Impact

Michael Wagner

 0 10 20 30 40 50 60 70 80 90

 P0

 P1

 P2

 P3

 P4

 P5

 P6

 P7

main foo bar

main foo bar

main foo bar

main foo bar

main foo bar

main foo bar

main foo bar

main foo bar

Even if the cause of an performance problem (function bar on P2) is lost, the
impact of the performance problem is still identifiable.

Comparison of Reduction Strategies

Michael Wagner

Occurrence Event Class Call Stack Level

Quality of
remaining
information

100% for events before
buffer exhaustion
0% for events after
buffer exhaustion

100% for remaining
event classes
0% for discarded event
classes

Reduced but not
completely lost

Size of single
reduction steps Very small (events) Large (complete event

classes)

Depends on number of
events per call stack
level

Event Distribution by Event Class (w/o Time Stamps)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu

M
em

or
y

Al
lo

ca
tio

n
by

 E
ve

nt
 C

at
eg

or
y

(n
or

m
al

ize
d)

Enter/Leave
Counter

MPI P2P
MPI Collective

Others

Michael Wagner

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 5 10 15 20 25 30

N
um

be
r o

f E
ve

nt
s

pe
r C

al
ls

ta
ck

 L
ev

el
 (a

cc
um

ul
at

ed
)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 2 4 6 8 10 12

N
um

be
r o

f E
ve

nt
s

pe
r C

al
ls

ta
ck

 L
ev

el
 (a

cc
um

ul
at

ed
)

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 5 10 15 20

N
um

be
r o

f E
ve

nt
s

pe
r C

al
ls

ta
ck

 L
ev

el
 (a

cc
um

ul
at

ed
)

Event Distribution by Call Stack Level (Accumulated)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 5 10 15 20 25

N
um

be
r o

f E
ve

nt
s

pe
r C

al
ls

ta
ck

 L
ev

el
 (a

cc
um

ul
at

ed
) Best Case Fine

Fine Poor

13
0.

so
co

rr
o

11
5.

fd
s4

12
2.

ta
ch

yo
n

Michael Wagner

Comparison of Reduction Strategies

Michael Wagner

Occurrence Event Class Call Stack Level

Quality of
remaining
information

100% for events before
buffer exhaustion
0% for events after
buffer exhaustion

100% for remaining
event classes
0% for discarded event
classes

Reduced but not
completely lost

Size of single
reduction steps Very small (events) Large (complete event

classes)

Depends on number of
events per call stack
level

Quality of
remaining
information
depends on …

Right time phase to
record

Appropriate order of
event classes by
importance

Application structure
with regard to call stack
level distribution

Real-Time Reduction

!   Costly to find all given events

!   Removal of events leaves a highly fragmented memory buffer

 Memory Buffer

Trace Data

Memory buffer filled

Find memory associated
with eliminated events

Michael Wagner

 Dynamic Memory Buffer

Real-Time Call Stack Reduction

 MemBins

L0

L1

L2

L3

Michael Wagner

 Dynamic Memory Buffer

Extended Real-Time Reduction

 MemBins

L0

L1

L2

L3

Counter

MPI

Choose best
Strategy:

Reduce Event
Class

Reduce Call
Stack Level

Empty

User Defined
Profile

Michael Wagner

Reduction Optimization Cycle

 Memory Buffer

Complete Trace Data

Compact Trace Data

Compressed Trace Data

Reduced Trace Data

High-Level Selection

Compression/Encoding

Event Reduction

Reduced Trace Data

Compact Trace Data

Relevant Trace Data

Coarse
Application

Behavior

Big Gap
=

Coarse
Overview

Michael Wagner

Reduction Optimization Cycle

 Memory Buffer

Complete Trace Data

Compact Trace Data

Compressed Trace Data

Reduced Trace Data

High-Level Selection

Compression/Encoding

Event Reduction

Reduced Trace Data

Compact Trace Data

Relevant Trace Data

Coarse
Application

Behavior

Better Knowledge = Better Selection

Michael Wagner

Future Work: Interactive Online Analysis

Application

Break Points
Global Synchronization or User Defined

Interaction
Resume

Stop

Throw Away

Add Metric

Remove Iter.

Modify Detail

Michael Wagner

Conclusion

!   Strategies for real-time event reduction

 à Guarantee that data of an event tracing measurement fits into a single
 memory buffer

 à Basic step towards a complete in-memory tracing workflow

 à Enables event trace recording on high scales without limitation of today’s
 parallel file systems

!   Defined criteria to compare different strategies and evaluated their benefits

!   Enhancements on traditional memory buffering to realize these startegies

Michael Wagner

Thank You for Your Attention

Questions?

Michael Wagner

