
Performance patterns and hardware metrics

on modern multicore processors:

Best practices for performance engineering

Jan Treibig, Georg Hager, Gerhard Wellein

Erlangen Regional Computing Center (RRZE)

University of Erlangen-Nuremberg

Erlangen, Germany

PROPER Workshop at Euro-Par 2012

August 28, 2012

Rhodes Island, Greece

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

Hardware performance metrics

 … are ubiquitous as a starting point for performance analysis

 (including automatic analysis)

 … are supported by many tools

 … are often reduced to cache misses

 (what could be worse than cache misses?)

Reality:

 Modern parallel computing is plagued by bottlenecks

 There are typical performance patterns that cover a large part of

possible performance behaviors

 HPM signatures

 Scaling behavior

 Other sources of information

“Performance pattern”

8/28/2012 PROPER 2012 2

8/28/2012

But still we need a HPM tool!

 LIKWID: Lightweight command line tools for Linux

 Help to face the challenges without getting in the way

 Focus on x86 architecture

 Philosophy:

Simple

Efficient

Portable

Extensible

Open source project (GPL v2):

http://code.google.com/p/likwid/

PROPER 2012 3

Overview of LIKWID tools

 Topology and Affinity:

 likwid-topology

 likwid-pin

 likwid-mpirun

 Performance Profiling/Benchmarking:

 likwid-perfctr

 likwid-bench

 likwid-powermeter

8/28/2012 PROPER 2012 4

8/28/2012

Probing performance behavior with likwid-perfctr

 How do we find out about the performance properties and

requirements of a parallel code?

 Profiling via advanced tools is often overkill

 A coarse overview is often sufficient

 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” on

Linux/Altix)

 Simple end-to-end measurement of hardware performance metrics

 Operating modes:

 Wrapper

 Stethoscope

 Timeline

 Marker API

 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio

CACHE: Data cache miss rate/ratio

CLOCK: Clock of cores

DATA: Load to store ratio

FLOPS_DP: Double Precision MFlops/s

FLOPS_SP: Single Precision MFlops/s

FLOPS_X87: X87 MFlops/s

L2: L2 cache bandwidth in MBytes/s

L2CACHE: L2 cache miss rate/ratio

L3: L3 cache bandwidth in MBytes/s

L3CACHE: L3 cache miss rate/ratio

MEM: Main memory bandwidth in MBytes/s

TLB: TLB miss rate/ratio

PROPER 2012 5

8/28/2012

likwid-perfctr

Example usage with preconfigured metric group

$ env OMP_NUM_THREADS=4 likwid-perfctr -C N:0-3 –t intel -g FLOPS_DP ./stream.exe

CPU type: Intel Core Lynnfield processor

CPU clock: 2.93 GHz

Measuring group FLOPS_DP

YOUR PROGRAM OUTPUT

+--------------------------------------+-------------+-------------+-------------+-------------+

| Event | core 0 | core 1 | core 2 | core 3 |

+--------------------------------------+-------------+-------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.97463e+08 | 2.31001e+08 | 2.30963e+08 | 2.31885e+08 |

| CPU_CLK_UNHALTED_CORE | 9.56999e+08 | 9.58401e+08 | 9.58637e+08 | 9.57338e+08 |

| FP_COMP_OPS_EXE_SSE_FP_PACKED | 4.00294e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

| FP_COMP_OPS_EXE_SSE_FP_SCALAR | 882 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION | 0 | 0 | 0 | 0 |

| FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION | 4.00303e+07 | 3.08927e+07 | 3.08866e+07 | 3.08904e+07 |

+--------------------------------------+-------------+-------------+-------------+-------------+

+--------------------------+------------+---------+----------+----------+

| Metric | core 0 | core 1 | core 2 | core 3 |

+--------------------------+------------+---------+----------+----------+

| Runtime [s] | 0.326242 | 0.32672 | 0.326801 | 0.326358 |

| CPI | 4.84647 | 4.14891 | 4.15061 | 4.12849 |

| DP MFlops/s (DP assumed) | 245.399 | 189.108 | 189.024 | 189.304 |

| Packed MUOPS/s | 122.698 | 94.554 | 94.5121 | 94.6519 |

| Scalar MUOPS/s | 0.00270351 | 0 | 0 | 0 |

| SP MUOPS/s | 0 | 0 | 0 | 0 |

| DP MUOPS/s | 122.701 | 94.554 | 94.5121 | 94.6519 |

+--------------------------+------------+---------+----------+----------+

Always
measured

Derived
metrics

Configured
metrics (this

group)

PROPER 2012 6

likwid-perfctr

Marker API

 To measure only parts of an application a marker API is available.

 The API only turns counters on/off. The configuration of the

counters is still done by likwid-perfctr application.

 Multiple named regions can be measured

 Results on multiple calls are accumulated

 Inclusive and overlapping Regions are allowed

8/28/2012

likwid_markerInit(); // must be called from serial region

likwid_markerStartRegion(“Compute”);

. . .

likwid_markerStopRegion(“Compute”);

likwid_markerStartRegion(“postprocess”);

. . .

likwid_markerStopRegion(“postprocess”);

likwid_markerClose(); // must be called from serial region

PROPER 2012 7

likwid-perfctr

Group files

SHORT PSTI

EVENTSET

FIXC0 INSTR_RETIRED_ANY

FIXC1 CPU_CLK_UNHALTED_CORE

FIXC2 CPU_CLK_UNHALTED_REF

PMC0 FP_COMP_OPS_EXE_SSE_FP_PACKED

PMC1 FP_COMP_OPS_EXE_SSE_FP_SCALAR

PMC2 FP_COMP_OPS_EXE_SSE_SINGLE_PRECISION

PMC3 FP_COMP_OPS_EXE_SSE_DOUBLE_PRECISION

UPMC0 UNC_QMC_NORMAL_READS_ANY

UPMC1 UNC_QMC_WRITES_FULL_ANY

UPMC2 UNC_QHL_REQUESTS_REMOTE_READS

UPMC3 UNC_QHL_REQUESTS_LOCAL_READS

METRICS

Runtime [s] FIXC1*inverseClock

CPI FIXC1/FIXC0

Clock [MHz] 1.E-06*(FIXC1/FIXC2)/inverseClock

DP MFlops/s (DP assumed) 1.0E-06*(PMC0*2.0+PMC1)/time

Packed MUOPS/s 1.0E-06*PMC0/time

Scalar MUOPS/s 1.0E-06*PMC1/time

SP MUOPS/s 1.0E-06*PMC2/time

DP MUOPS/s 1.0E-06*PMC3/time

Memory bandwidth [MBytes/s] 1.0E-06*(UPMC0+UPMC1)*64/time;

Remote Read BW [MBytes/s] 1.0E-06*(UPMC2)*64/time;

LONG

Formula:

DP MFlops/s = (FP_COMP_OPS_EXE_SSE_FP_PACKED*2 + FP_COMP_OPS_EXE_SSE_FP_SCALAR)/ runtime.

8/28/2012

 Groups are architecture-specific

 They are defined in simple text files

 Code is generated on recompile

PROPER 2012 8

Performance patterns (1)

Pattern Peformance behavior Metric signature

Load imbalance
Saturating/sub-linear
speedup

Different amount of “work” on the
cores (FLOPS_DP, FLOPS_SP,
FLOPS_AVX); note that instruction
count is not reliable!

BW saturation in
outer-level cache

Saturating speedup
across cores of OL
cache group

OLC bandwidth meets BW of suitable
streaming benchmark (L3)

Memory BW
saturation

Saturating speedup
across cores on a
memory interface

Memory BW meets BW of suitable
streaming benchmark (MEM)

Strided or erratic
data access

Simple BW
performance model
much too optimistic

Low BW utilization / Low cache hit
ratio, frequent CL evicts or
replacements (CACHE, DATA, MEM)

8/28/2012 PROPER 2012 9

Performance patterns (2)

Pattern Peformance behavior Metric signature

Bad
instruction
mix

Peformance insensitive
to problem size vs.
cache levels

Large ratio of instructions retired to FP
instructions if the useful work is FP / Many
cycles per instruction (CPI) if the problem is
large-latency arithmetic / Scalar instructions
dominating in data-parallel loops (FLOPS_DP,
FLOPS_SP, CPI)

Limited
instruction
throughput

Large discrepancy from
simple performance
model based on LD/ST
and arithmetic
throughput

Low CPI near theoretical limit if instruction
throughput is the problem / Static code
analysis predicting large pressure on single
execution port / High CPI due to bad
pipelining (FLOPS_DP, FLOPS_SP, DATA)

Micro-
architectural
anomalies

Large discrepancy from
performance model

Relevant events are very hardware-specific,
e.g., stalls due to 4k memory aliasing,
conflict misses, unaligned vs. aligned LD/ST,
requeue events. Code review required, with
architectural features in mind.

8/28/2012 PROPER 2012 10

Performance patterns (3)

Pattern Peformance behavior Metric signature

Synchronization
overhead

Speedup going down as
more cores are added /
No speedup with small
problem sizes / Cores busy
but low FP performance

Large non-FP instruction count
(growing with number of cores used) /
Low CPI (FLOPS_DP, FLOPS_DP, CPI)

False sharing of
cache lines

Small speedup or
slowdown when adding
cores

Frequent (remote) CL evicts (CACHE)

Bad ccNUMA
page placement

Bad or no scaling across
NUMA domains

Unbalanced bandwidth on memory
interfaces / High remote traffic (MEM)

8/28/2012 PROPER 2012 11

The problem of instructions retired (1)

 Instructions retired / CPI may not be a good indication of useful

workload – at least for numerical / FP intensive codes….

 Floating Point Operations Executed is often a better indicator

 Waiting / “Spinning” in barrier generates a high instruction count

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, I

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

8/28/2012 PROPER 2012 12

The problem of instructions retired (2)

!$OMP PARALLEL DO

DO I = 1, N

 DO J = 1, N

 x(I) = x(I) + A(J,I) * y(J)

 ENDDO

ENDDO

!$OMP END PARALLEL DO

Higher CPI but better
performance

8/28/2012 PROPER 2012 13

Example 1:

Abstraction penalties in C++ code

C++ codes which suffer from overhead (inlining problems, complex

abstractions) need a lot more overall instructions related to the arithmetic

instructions.

Example: Matrix-matrix multiply with expression template frameworks on a

2.93 GHz Westmere core

8/28/2012

Total retired

instructions [1011]
CPI

Memory

Bandwidth [MB/s]
MFlops/s

Classic 12.5 0.44 5300 1250

Boost uBLAS 10.1 4.6 630 156

Eigen3 2.1 0.41 371 8555

Blaze/DGEMM 2.0 0.32 531 11260

 Often (but not always) “good” (i.e., low) CPI “Bad instruction mix” pattern

 Lower bandwidth

 Instruction throughput limited

 High-level optimizations complex or impossible “Strided access” pattern

PROPER 2012 14

Example 2:

Image reconstruction by backprojection

 Simple roofline analysis
 Memory-bound algorithm “Memory BW saturation” pattern

 Closer look via likwid-perfctr MEM group and IACA tool
 “Limited instruction throughput” pattern

 Work reduction optimization
 “Load imbalance” pattern identified by likwid-perfctr
FLOPS_SP group corrected by round-robin schedule

8/28/2012 PROPER 2012 15

Conclusions

 Automatic analysis is useful for the beginner, but will never match

an experienced analyst

 Performance patterns are more than simple numbers

 Scaling behavior

 Bottleneck saturation

 HPM signatures

 The set presented here is just a suggestion; it will have to be

tested against more codes

 Power/energy patterns are still missing, but will have to be

included

8/28/2012 PROPER 2012 16

Thank you.

8/28/2012 PROPER 2012 17

