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Parsing Binary Files
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� Binary analysis is common for

� Performance modeling

� Computer security

� Maintenance

� Binary modification

� Parsing: first step in most binary analyses

� Not straight-forward

� Time consuming

Parsing Binaries Compiler Assistance                       Dyninst Evaluation                     Conclusion

28.08.2012, Rhodes



Compiler Help for Binary Manipulation Tools3 28.08.2012, Rhodes

Difficulties in Parsing

� Distinguishing code and data

� Disassembly is tricky

� Finding instruction boundaries

� Variable-length instruction set architectures

� Identifying functions

� Building Control Flow Graphs

� Identify Basic Block boundaries

� Basic Block: Sequence of instructions with a single entry and single exit

� Identify edges between basic blocks
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Objective
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� Improve parsing speed

� Store more data in binary files

� Basic block locations

� Edge information (source, target, type)

� Binary analysis tools read this extra information

� Create abstractions for:

� Basic blocks

� Edges

� Finally Control Flow Graphs (CFGs)
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Compiler Assistance for Parsing
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� Developed new compilation mechanism

� Wrappers for gnu compiler suite (gcc/g++)

� Transparent to the end user

� Augments binary files with tables

� Basic Block Table

� Edge Table

� Analyze intermediate assembly files

� Generate information about basic blocks and edges

� Store in a section that is not loaded at runtime
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Basic Block and Edge Tables
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Assembly Modification
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� Function Model

� Block of code

� “type … @function”

� “.size …”

� Modifications

� Add Basic Block and Edge Tables

� Add shadow symbol
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Merge Duplicate Functions
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� Weak functions are merged by linker

� Functions included multiple times

� Binary code might slightly differ

� Only one weak function survives

� Tables cannot be merged

� Need to uniquely match functions and tables

� Use shadow symbol in function to extract file name

� Use file name and function name to identify tables

28.08.2012, Rhodes

Parsing Binaries                       Compiler Assistance Dyninst Evaluation                     Conclusion



Compiler Help for Binary Manipulation Tools

Decoupled Compilation and Analysis
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� Binary analysis tools operate on executables directly

� No interaction with the compiler
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Basic Block and CFG Reconstruction
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� Parsing a function involves:

� Finding the shadow symbol stored in the function

� File name is extracted

� Locating Basic Block and Edge Tables with the function name 
and file name pair

� Reading in the tables

� Adding function start address to offsets

� Creating basic block and edge abstractions

� No need to parse individual instructions
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Dyninst: Dynamic and Static Analysis
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� Dyninst is used for:
� Profiling and debugging

� Performance measurement

� Malware analysis

� Dyninst provides binary analysis and modification
� Runtime instrumentation

� Binary rewriting

� Platform-independent
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Dyninst: Dynamic and Static Analysis
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� Static analysis capabilities

� Control flow graph (CFG) generation

� Iterate over instructions

� Modify symbols, add sections, etc.

� Dynamic instrumentation capabilities well-known
� Add/remove function calls

� Link with new shared libraries

� Add new code to almost anywhere in original code
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Evaluation
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� Benchmarks

� SPEC CINT2006

� PETSc snes package

� Firefox (v. 9.0.1)

� Methodology

� Executed running time experiments 5 times

� Reporting mean
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Parsing Speedup
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Parsing Speedup
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Parsing Speedup
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Build Time Metrics
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� File size increases on disk

� Not reflected to memory footprint

� Small increase in compilation time 

� One time cost

� Not reflected to running time performance
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File Size Compilation Time

Without Debug With Debug

SPEC CINT2006 2.21x 1.38x 1.25x

PETSc 1.50x 1.09x 1.32x

Firefox 1.17x 1.21x 1.13x

OVERALL 1.63x 1.23x 1.23x
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Runtime Metrics
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� Virtually no change in runtime metrics

� Memory requirement is almost constant

� Change in running time is within noise
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Memory Footprint Running Time

SPEC CINT2006 1.00x 0.97x

PETSc 1.00x 0.95x

Firefox 1.00x 0.94x

OVERALL 1.00x 0.95x
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Limitations / Future Work
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� Hand-written assembly

� When branches use offsets in assembly

� 2n more symbols (n: number of functions)

� Compilation takes 23% more time

� Integrate compilation mechanism into gcc

� File size increases

� Compress tables – about 78% compression ratio
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Conclusion
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� Developed a new compilation mechanism

� Creates Basic Block and Edge Tables

� Transparent to end user

� Dramatically improved binary parsing speed

� On average 73% decrease in parsing time

� No memory or runtime overhead
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