COMPILER HELP FOR

INARY

MANIPULATION TOOLS

Tugrul Ince, Jefirey K. Hollingsworth
University of Maryland, College Park

28 August 2012, Rhodes, Greece

Parsing Binaries

Parsing Binary Files

» Binary analysis is common for
» Performance modeling
» Computer security
» Maintenance
» Binary modification

» Parsing: first step in most binary analyses
» Not straight-forward

» Time consuming

} 2 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Parsing Binaries

Difficulties in Parsing

» Distinguishing code and data

» Disassembly is tricky

» Finding instruction boundaries

Variable-length instruction set architectures

» ldentifying functions

» Building Control Flow Graphs
» ldentify Basic Block boundaries

Basic Block: Sequence of instructions with a single entry and single exit

» ldentify edges between basic blocks

} 3 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Parsing Binaries

Objective

» Improve parsing speed

» Store more data in binary files
» Basic block locations

» Edge information (source, target, type)

» Binary analysis tools read this extra information

» Create abstractions for:
Basic blocks
Edges
Finally Control Flow Graphs (CFGs)

} 4 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Compiler Assistance

Compiler Assistance for Parsing

» Developed new compilation mechanism
» Wrappers for gnu compiler suite (gcc/g++)

» Transparent to the end user

» Augments binary files with tables
» Basic Block Table
» Edge Table

» Analyze intermediate assembly files
» Generate information about basic blocks and edges

» Store in a section that is not loaded at runtime

} 5 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Compiler Assistance

Basic Block and Edge Tables

First Instruction Last Instruction
0 |

Basic
Block
Table

b
C
d

e
.I:

Nl x| 2| <

Source Target Edge Type
0 Y| Fal-through

Conditional

Unconditional
Fall-through Edge
Fall-through Table
Conditional

x| n|<|x|=x]|=

Unconditional
[N/ A Return

o~N O A W N P

} 6 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Compiler Assistance

Assembly Modification

a) Original Assembly Code b) Augmented Assembly Code
type foo, @function &pe foo, @function
foo: foo:

|.foo_ﬂ:ﬁle_hame:>:

.size foo, foo end - foo

.size foo, . - foo

lon_edae info

» Function Model
» Block of code

BLK foo BLK <file name=

size BLK foo BLK <file name=,\
.- .BLK foo BLK _<file_ name=

» “type ... @function”

» “size ...”

» Modifications
» Add Basic Block and Edge Tables
» Add shadow symbol

} 7 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Compiler Assistance

Merge Duplicate Functions

» Weak functions are merged by linker
» Functions included multiple times
» Binary code might slightly differ

» Only one weak function survives

» Tables cannot be merged
» Need to uniquely match functions and tables
» Use shadow symbol in function to extract file name

» Use file name and function name to identify tables

} 8 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Compiler Assistance

Decoupled Compilation and Analysis

Instrumented
Source Cmdeﬁf Executable fﬁ Binary
. Binary
Compiler Analysis

» Binary analysis tools operate on executables directly

» No interaction with the compiler

} 9 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Compiler Assistance

Basic Block and CFG Reconstruction

» Parsing a function involves:

» Finding the shadow symbol stored in the function

File name is extracted

» Locating Basic Block and Edge Tables with the function name
and file name pair

» Reading in the tables
» Adding function start address to offsets

» Creating basic block and edge abstractions

» No need to parse individual instructions

} 10 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Dyninst

Dyninst: Dynamic and Static Analysis

» Dyninst is used for:
» Profiling and debugging
» Performance measurement
» Malware analysis

» Dyninst provides binary analysis and modification
» Runtime instrumentation
» Binary rewriting

» Platform-independent

} | Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Dyninst

Dyninst: Dynamic and Static Analysis

» Static analysis capabilities
» Control flow graph (CFG) generation
» lterate over instructions

» Modify symbols, add sections, etc.

» Dynamic instrumentation capabilities well-known
» Add/remove function calls
» Link with new shared libraries

» Add new code to almost anywhere in original code

} |2 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Evaluation

Evaluation

» Benchmarks
» SPEC CINT2006

» PETSc snes package
» Firefox (v.9.0.1)

» Methodology
» Executed running time experiments 5 times

» Reporting mean

} 13 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Evaluation

Parsing Speedup

SPEC CINT2006

5
45
4
35
3
25
2
1,5
!
0,5
0
‘ob‘(&"é\ 0‘\&
& & o<°° &
RS N

} | 4 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Evaluation

Parsing Speedup

PETSc snes Package

28.08.2012, Rhodes

Compiler Help for Binary Manipulation Tools

15

Evaluation

Parsing Speedup

0,5

- g w
o —_— (9] N (9] w (9]
% _

} |6 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Build Time Metrics

File Size Compilation Time
Without Debug With Debug

PETSc |.50x |.09x |.32x
OVERALL |.63x [.23x |.23x

» File size increases on disk

» Not reflected to memory footprint

» Small increase in compilation time
» One time cost

» Not reflected to running time performance

} |7 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Runtime Metrics

Memory Footprint

Running Time

PETSc |.00x 0.95x
OVERALL |.00x 0.95x

» Virtually no change in runtime metrics
» Memory requirement is almost constant
» Change in running time is within noise

} |8 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Conclusion

Limitations / Future Work

» Hand-written assembly

» When branches use offsets in assembly

» 2n more symbols (n: number of functions)

» Compilation takes 23% more time

» Integrate compilation mechanism into gcc

» File size increases

» Compress tables — about 78% compression ratio

} 19 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

Conclusion

Conclusion

» Developed a new compilation mechanism
» Creates Basic Block and Edge Tables

» Transparent to end user

» Dramatically improved binary parsing speed
» On average 73% decrease in parsing time

» No memory or runtime overhead

} 20 Compiler Help for Binary Manipulation Tools 28.08.2012, Rhodes

