
Compiler Help for Binary Compiler Help for Binary Compiler Help for Binary Compiler Help for Binary

Manipulation ToolsManipulation ToolsManipulation ToolsManipulation Tools

Tugrul Ince, Jeffrey K. Hollingsworth

University of Maryland, College Park

28 August 2012, Rhodes, Greece

Compiler Help for Binary Manipulation Tools

Parsing Binary Files

2

� Binary analysis is common for

� Performance modeling

� Computer security

� Maintenance

� Binary modification

� Parsing: first step in most binary analyses

� Not straight-forward

� Time consuming

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

28.08.2012, Rhodes

Compiler Help for Binary Manipulation Tools3 28.08.2012, Rhodes

Difficulties in Parsing

� Distinguishing code and data

� Disassembly is tricky

� Finding instruction boundaries

� Variable-length instruction set architectures

� Identifying functions

� Building Control Flow Graphs

� Identify Basic Block boundaries

� Basic Block: Sequence of instructions with a single entry and single exit

� Identify edges between basic blocks

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Objective

4

� Improve parsing speed

� Store more data in binary files

� Basic block locations

� Edge information (source, target, type)

� Binary analysis tools read this extra information

� Create abstractions for:

� Basic blocks

� Edges

� Finally Control Flow Graphs (CFGs)

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Compiler Assistance for Parsing

5

� Developed new compilation mechanism

� Wrappers for gnu compiler suite (gcc/g++)

� Transparent to the end user

� Augments binary files with tables

� Basic Block Table

� Edge Table

� Analyze intermediate assembly files

� Generate information about basic blocks and edges

� Store in a section that is not loaded at runtime

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Basic Block and Edge Tables

6 28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

1

1

2

2

3

3

4

4

5

5

6

6

78

7

8

Compiler Help for Binary Manipulation Tools

Assembly Modification

7

� Function Model

� Block of code

� “type … @function”

� “.size …”

� Modifications

� Add Basic Block and Edge Tables

� Add shadow symbol

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Merge Duplicate Functions

8

� Weak functions are merged by linker

� Functions included multiple times

� Binary code might slightly differ

� Only one weak function survives

� Tables cannot be merged

� Need to uniquely match functions and tables

� Use shadow symbol in function to extract file name

� Use file name and function name to identify tables

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Decoupled Compilation and Analysis

9

� Binary analysis tools operate on executables directly

� No interaction with the compiler

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Basic Block and CFG Reconstruction

10

� Parsing a function involves:

� Finding the shadow symbol stored in the function

� File name is extracted

� Locating Basic Block and Edge Tables with the function name
and file name pair

� Reading in the tables

� Adding function start address to offsets

� Creating basic block and edge abstractions

� No need to parse individual instructions

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Dyninst: Dynamic and Static Analysis

11

� Dyninst is used for:
� Profiling and debugging

� Performance measurement

� Malware analysis

� Dyninst provides binary analysis and modification
� Runtime instrumentation

� Binary rewriting

� Platform-independent

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Dyninst: Dynamic and Static Analysis

12

� Static analysis capabilities

� Control flow graph (CFG) generation

� Iterate over instructions

� Modify symbols, add sections, etc.

� Dynamic instrumentation capabilities well-known
� Add/remove function calls

� Link with new shared libraries

� Add new code to almost anywhere in original code

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Evaluation

13

� Benchmarks

� SPEC CINT2006

� PETSc snes package

� Firefox (v. 9.0.1)

� Methodology

� Executed running time experiments 5 times

� Reporting mean

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Parsing Speedup

14 28.08.2012, Rhodes

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

SPEC CINT2006

Compiler Help for Binary Manipulation Tools

Parsing Speedup

15 28.08.2012, Rhodes

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

PETSc snes Package

Compiler Help for Binary Manipulation Tools

Parsing Speedup

16 28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Firefox v. 9.0.1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Compiler Help for Binary Manipulation Tools

Build Time Metrics

17

� File size increases on disk

� Not reflected to memory footprint

� Small increase in compilation time

� One time cost

� Not reflected to running time performance

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

File Size Compilation Time

Without Debug With Debug

SPEC CINT2006 2.21x 1.38x 1.25x

PETSc 1.50x 1.09x 1.32x

Firefox 1.17x 1.21x 1.13x

OVERALL 1.63x 1.23x 1.23x

Compiler Help for Binary Manipulation Tools

Runtime Metrics

18

� Virtually no change in runtime metrics

� Memory requirement is almost constant

� Change in running time is within noise

28.08.2012, Rhodes

Memory Footprint Running Time

SPEC CINT2006 1.00x 0.97x

PETSc 1.00x 0.95x

Firefox 1.00x 0.94x

OVERALL 1.00x 0.95x

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Limitations / Future Work

19

� Hand-written assembly

� When branches use offsets in assembly

� 2n more symbols (n: number of functions)

� Compilation takes 23% more time

� Integrate compilation mechanism into gcc

� File size increases

� Compress tables – about 78% compression ratio

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

Compiler Help for Binary Manipulation Tools

Conclusion

20

� Developed a new compilation mechanism

� Creates Basic Block and Edge Tables

� Transparent to end user

� Dramatically improved binary parsing speed

� On average 73% decrease in parsing time

� No memory or runtime overhead

28.08.2012, Rhodes

Parsing Binaries Compiler Assistance Dyninst Evaluation Conclusion

