
Pasquale Cantiello and Beniamino Di Martino
Second University of Naples
Beniamino.dimartino@unina.it

4th Workshop on Productivity and Performance (PROPER 2011)
Tools for HPC Application Development

at EuroPar 2011 Conference, Bordeaux/France 
August 30th 2011



 Motivations
 Algorithm recognition
 Source code transformation
 Case studies
 Future research directions



 Processors’ evolution over years has 
been mainly driven by the growing of the 
number of transistors per chip and by the 
increasing of the clock speeds.

 In the last five years, physical limits on 
junction dimensions and the power that 
must be dissipated on a single chip have 
posed a serious barrier to the increasing 
of CPU frequencies.

 Chip producers now put more than one 
processing unit on a single chip. Units 
with 8 or 16 cores are commonly sold. 

 Special purpose devices as GPUs 
(Graphic Processing Units), with 
hundreths of cores can be used to do 
massive computation.



 Computer systems, especially those designed for 
scientific applications have complex architectures with 
several interconnected computation nodes each with 
one or more CPUs and/or GPUs. Each device has it’s 
own memory hierarchy. Devices are interconnected 
through networks that differ in topology, bandwidth 
and latency times.

 Different programming models, languages and 
parallelization approaches.

 Software needs to be ported (in some case rewritten) 
with high costs due to time required, very skilled 
developers needed and testing to new faults to 
software.

 Automatic transformation is needed. 



 In order to develop a metodology to automate the porting of 
software to new architectures, our starting point is the 
analysis of source code, not only on its structure, but also on 
its semantic, trying to automatically understand what a 
program does.



 Source code analysis performed until structural level 
(Program Dependence graph, Class diagrams, ect)

 Semantic analysis (concept assignment)
 Problem impossible to solve automatically at the 

Application domain level
 Automatable if focused towards programming 

oriented concepts
 Algorithmic Recognition, through hierarchical 

abstraction



Technique (and prototype tool) for detection of
algorithmic patterns (concepts) in source code

 Hierarchical Abstraction of algorithmic concepts: 
Hierarchical Concept Parsing (Concept Grammar)

 Only partial recognition needed: demand driven approach
 Top-down recursive descent parsing
 Focus on structural properties (control-data dependence) for

concept characterization
 Inherently delocalized structural program repres.
 Global scope of visibility for concepts



 Formalism based on Attributed grammars
 Concept Grammar CG = (G,A,R,C)
 G = (T,N,P,Z) associated context-free grammar
 Terminal symbols (T) Base Concepts
 Nonterminal symbols (N)  Concepts
 Start Symbols (Z)  Algorithmic Patterns to be recognized
 Production rules (P)  Recognition rules
 Ѵ z Є Z language L(z,CG) generated by CG  set of 

implementations of z
 Sentence of CG  set of statements associated to a concept
 Derivation graph Hierarchy of composition



rule concept

composition
SubConcepts

condition
local attribute : type
Conditions

attribution
local attribute : type
AttributionRules







Main advantages over a grammar specification:
 OWL has a clear syntax, and can be represented in graphical form. 

The graphical representation helps with readability, enhancing
patterns definition validation.

 The OWL ability to be represented by directed graphs is usefull
also in design phase, where users may specify their rules in a 
graphical way, without dealing with complex attribute grammars
definitions.

 OWL is amenable to descriptive logics reasoning, and several
reasoners exist (e.g. Pellet). 

 Several clear and formal languages exist for querying information 
from reasoners (like as OWL-QL or SPARQL).

 Semantic annotation methods can be used to annotate source 
codes and related documentations (software assets).

 A good reasoning procedure may also lead to identification of
patterns similar to the ones defined in the OWL knowledge-base, 
thus performing a non􀀀exact matching.





 The Algoritmic Concept recognizer produces representations of 
instances of retrieved algorithms (or algorithmic patterns) 
which are stored, including hierarchy of concepts composing 
the algorithm and their references to the source code.



 By parsing the stored algorithmic instances, each node of
the AST involved is “colored” with the instance of the 
algorithm it belongs to.

 Each node can belong to one or more concepts and more 
algoritms, so the coloring is indeed the adding of several
attributes to nodes that reference an algorithm concepts
instance list.



 A transformation repository has been 
created. This contains, for each known 
algorithm and for each possible target 
architecture, a related set of transformations 
(or transformation sequences) optimized for 
that architecture. 

 Several alternative or composable
transformations can be driven by algorithmic 
recognition, ranging from unimodular loop 
transformations to pure native code 
generation or calls to optimized libraries. 

 Solutions can also be selected depending on 
the problem size or runtime tuning 
parameters.



 The source code of the program under investigation, is 
represented as a graph structure (Program dependence 
Graph); fragments of code mapping an algorithmic pattern 
are identified as a set of sub-graphs. The transformation 
rules applied on the graph model of the original source 
code: some sub-graphs are pruned, other modified, new 
one are inserted. 

 The transformations are validated with dependence 
analysis.

 The result is a new graph that represents a new source code 
with the same semantics of the original one, but with 
different syntax suited for the target architecture. A final 
«unparse» operation produces, starting from the graph, 
new source code ready to be compiled on the target 
architecture.



 A prototype tool has been built with a parser to analyse source code written 
in C language, models the code and extracts the basic facts from it. 

 A transformer with AST coloring functions and dependence analysis has 
been developed with Rose Compiler.

 Basic transformation rules have been defined to transform linear algebra 
code from sequential form to Nvidia CUDA library calls to take gain of 
GPUs.



 Factorization is allowed
 In the loop nest there are only statements belonging to the 

matrix matrix multiplication concept.
 The entire block can be replaced by CUBLAS call.





 Inside loop nest, there is a statement that doesn’t belong to 
the concept.

 There is no data dependence.
 Factorization is allowed.





 Loop transformation not allowed
 Data dependence between a statement inside the loop not 

belonging to the concept and another that belongs to.



 Searching for nodes belonging to the pattern.



 Nested traversal



 Statements inside the loop nests



 … with data dependence checking



 SgGlobal block query
 Header insertion



 Involved matrix and scalars declaration













 Extend the set of recognized concepts by adding
more rules (beyond linear algebra).

 Add runtime analysis probes in order to adopt
alternative codes depending on the size of the 
problem.

 Investigate on code that make use of dynamic
memory allocation and pointer.

 Add support for OpenCL for heterogeneous
architectures.

 Develop a GUI to support user driven
transformations



 Beniamino Di Martino –
beniamino.dimartino@unina.it

 Pasquale Cantiello –
pasquale.cantiello@unina2.it

mailto:beniamino.dimartino@unina.it
mailto:pasquale.cantiello@unina2.it

