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Background 

•  “Power Wall” 
–  “… power is the scarce resource in the design of 

a modern processor.” – Exascale Computing 
Study, Kogge et. al.  

•  Power-aware HPC research 
–  Develop power characterizations via direct 

measurement or via explanatory models 
–  Minimize the amount of energy required to solve 

various scientific problems 
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Our Work 

•  Tackle the “power wall” problem from software 
side 

•  Identify and understand software tunables that 
have high impact on power draw 

•  Tweak the tunables to optimize for energy 
usage while maintaining satisfactory levels of 
performance 
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Motivating Questions 

•  Can simple loop transformations (blocking, 
unrolling, etc.) help reduce power draw? 
–  How similar is this to performance tuning? 

•  Can we use search heuristics to find a code-
variant that performs better in terms of 
energy consumption?  
–  Leverage performance tuning work?  
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Compiler-Based Methodology 

•  Generate and evaluate variants of application 
hot-spots  
–  Exclusive focus on stencils in this paper 

•  Tunables in this work – cache tiling, loop 
unrolling, clock frequency 

•  Treat CPU clock frequency as one of the 
tunables 
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Sample Optimization Surface 
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Auto-tuning can help us identify 
these regions quickly 
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Integrated Hardware/Software Approach 
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•  Hardware motivated by software 
–  Customized hardware 
–  Co-designed hardware 

•  Software tuned to hardware 

•  Our approach uses both 

Clock Frequency Scaling Software Tuning Parameters 
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Enabling Components 

•  Active Harmony 
(Maryland, open-source) 
–  Search-based auto-tuner 

that suggests tunable 
parameter confs based on 
observed power-draw 

•  CHiLL  
(Utah, open-source) 
–  Polyhedra-based loop 

transformation framework 
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Active Harmony 
guides the search 

CHiLL provides 
the code variant 
at each point 
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Active Harmony Parallel Rank Ordering Algorithm 

•  Direct Search 

•  All but the best 
point of 
simplex moves 
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Auto-tuning Feedback Metric 

•  Feedback Metric: 
–  E (Power x Delay) 
–  ED (Energy x Delay) 
–  ED^2 (Energy x Delay x Delay) 
–  D (Delay) 

•  Appropriateness of metric depends on the 
overall goal of the tuning exercise 
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Experiment Details 

•  Intel Xeon E5530 workstation 

•  2 quad-core processors 
–  32KB L1 cache and 256KB L2 cache per core 
–  8MB shared L3 cache per processor 

•  8 available clock frequency settings 
–  1.60, 1.73, 1.86, 2.00, 2.13, 2.26, 2.39, 2.40GHz 

•  Processor clock frequency changed using 
cpufreq-utils package 
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Poisson’s Equation Solver 

•  Problem size: 640^3 grid 

•  Relaxation Function 
–  Uses redblack successive over-relaxation method 
–  7-point stencil 
–  Triply nested loop 
–  Tile the two outermost loops 

•  Error Function 
–  Sweeps though the local grid to calculate the L2-

norm 
–  Triply nested loop 
–  Tile all loops and unroll the innermost 
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Parameter Search Results - Relaxation 
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Parameter Search Results - Error 
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Highlights 

•  Energy consumption minimizing 
configurations, on average, can save: 
–  5.8% energy with a performance loss of 4.1% for 

relaxation function 
–  5% energy with a performance loss of 3.9% for 

error function 

•  Non-trivial interactions between compiler 
performance optimization strategies and 
energy usage 
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Going Forward 

•  Utilize fine-grained DC power measures 

•  Characterize energy usage for individual 
system components (such as CPUs, DIMMs) 
–  Build power/energy models 
–  Auto-tune based on models? 

•  Target specific optimization techniques to 
reduce energy usage of various components 

•  Other kernel and optimization types 
–  Loop fusion/split, data copy 

•  Online auto-tuning 
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Summary 

•  Software based approach to energy auto-
tuning for HPC applications is promising 
–  Non-trivial interaction between software-level 

performance-related tunables and energy usage 

•  This work used a fairly inexpensive power 
meter and leveraged open source projects to 
explore energy and performance optimization 
space for stencils 
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Questions   

Please direct questions to tiwari@sdsc.edu 
and michaell@sdsc.edu  
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