
PMaC	

Performance Modeling and Characterization

Auto-tuning for Energy Usage in
Scientific Applications

Ananta Tiwari, Michael A. Laurenzano,

Laura Carrington and Allan Snavely

San Diego Supercomputer Center

PMaC	

Performance Modeling and Characterization

Background

•  “Power Wall”
–  “… power is the scarce resource in the design of

a modern processor.” – Exascale Computing
Study, Kogge et. al.

•  Power-aware HPC research
–  Develop power characterizations via direct

measurement or via explanatory models
–  Minimize the amount of energy required to solve

various scientific problems

2

PMaC	

Performance Modeling and Characterization

Our Work

•  Tackle the “power wall” problem from software
side

•  Identify and understand software tunables that
have high impact on power draw

•  Tweak the tunables to optimize for energy
usage while maintaining satisfactory levels of
performance

3

PMaC	

Performance Modeling and Characterization

Motivating Questions

•  Can simple loop transformations (blocking,
unrolling, etc.) help reduce power draw?
–  How similar is this to performance tuning?

•  Can we use search heuristics to find a code-
variant that performs better in terms of
energy consumption?
–  Leverage performance tuning work?

4

PMaC	

Performance Modeling and Characterization

Compiler-Based Methodology

•  Generate and evaluate variants of application
hot-spots
–  Exclusive focus on stencils in this paper

•  Tunables in this work – cache tiling, loop
unrolling, clock frequency

•  Treat CPU clock frequency as one of the
tunables

5

PMaC	

Performance Modeling and Characterization

Sample Optimization Surface

6

Auto-tuning can help us identify
these regions quickly

PMaC	

Performance Modeling and Characterization

Integrated Hardware/Software Approach

7

•  Hardware motivated by software
–  Customized hardware
–  Co-designed hardware

•  Software tuned to hardware

•  Our approach uses both

Clock Frequency Scaling Software Tuning Parameters

PMaC	

Performance Modeling and Characterization

Enabling Components

•  Active Harmony
(Maryland, open-source)
–  Search-based auto-tuner

that suggests tunable
parameter confs based on
observed power-draw

•  CHiLL
(Utah, open-source)
–  Polyhedra-based loop

transformation framework

8

Active Harmony
guides the search

CHiLL provides
the code variant
at each point

PMaC	

Performance Modeling and Characterization

Active Harmony Parallel Rank Ordering Algorithm

•  Direct Search

•  All but the best
point of
simplex moves

V1

V2

V3

Original
Simplex

V2

V3

Reflected
Simplex

V2

V3

Shrunk Simplex

V2

V3

Expanded
Simplex

V1

V1

V1

PMaC	

Performance Modeling and Characterization

Auto-tuning Feedback Metric

•  Feedback Metric:
–  E (Power x Delay)
–  ED (Energy x Delay)
–  ED^2 (Energy x Delay x Delay)
–  D (Delay)

•  Appropriateness of metric depends on the
overall goal of the tuning exercise

10

PMaC	

Performance Modeling and Characterization

Experiment Details

•  Intel Xeon E5530 workstation

•  2 quad-core processors
–  32KB L1 cache and 256KB L2 cache per core
–  8MB shared L3 cache per processor

•  8 available clock frequency settings
–  1.60, 1.73, 1.86, 2.00, 2.13, 2.26, 2.39, 2.40GHz

•  Processor clock frequency changed using
cpufreq-utils package

11

PMaC	

Performance Modeling and Characterization

Poisson’s Equation Solver

•  Problem size: 640^3 grid

•  Relaxation Function
–  Uses redblack successive over-relaxation method
–  7-point stencil
–  Triply nested loop
–  Tile the two outermost loops

•  Error Function
–  Sweeps though the local grid to calculate the L2-

norm
–  Triply nested loop
–  Tile all loops and unroll the innermost

12

PMaC	

Performance Modeling and Characterization

Parameter Search Results - Relaxation

13

PMaC	

Performance Modeling and Characterization

Parameter Search Results - Error

14

PMaC	

Performance Modeling and Characterization

Highlights

•  Energy consumption minimizing
configurations, on average, can save:
–  5.8% energy with a performance loss of 4.1% for

relaxation function
–  5% energy with a performance loss of 3.9% for

error function

•  Non-trivial interactions between compiler
performance optimization strategies and
energy usage

15

PMaC	

Performance Modeling and Characterization

Going Forward

•  Utilize fine-grained DC power measures

•  Characterize energy usage for individual
system components (such as CPUs, DIMMs)
–  Build power/energy models
–  Auto-tune based on models?

•  Target specific optimization techniques to
reduce energy usage of various components

•  Other kernel and optimization types
–  Loop fusion/split, data copy

•  Online auto-tuning
16

PMaC	

Performance Modeling and Characterization

Summary

•  Software based approach to energy auto-
tuning for HPC applications is promising
–  Non-trivial interaction between software-level

performance-related tunables and energy usage

•  This work used a fairly inexpensive power
meter and leveraged open source projects to
explore energy and performance optimization
space for stencils

17

PMaC	

Performance Modeling and Characterization

Questions

Please direct questions to tiwari@sdsc.edu
and michaell@sdsc.edu

18

