An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Wyatt Spear, <u>Allen D. Malony</u> Chee Wai Lee, Scott Biersdorff and Sameen Shende

Department of Computer and Information Science University of Oregon

Motivation

□ Large-scale parallel application performance analysis • Requires scalable performance measurement • Ability to understand multi-dimensional performance data O Automated analysis and diagnosis is still a challenge • Performance interpretation continues to involve the user □ How to build better tool capabilities to support this goal? • Need to be able to handle data dimensionality • Presentation of performance information is important □ Performance visualization is an opportunity O Convey visual characteristics and traits in the data • Aids in data exploration and pattern analysis O 3D visualization helps in identifying relations and scale

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

□ Good visualization is a design process

- Integrates properties of the performance data (as understood by the user) with the graphical aspects for good visual form Performance data lacks a natural semantic visual basis
- Utilize a variety of graphical forms and visualization types (e.g., statistical, informational, physical, abstract)
- Must deal with scale dimensions: # cores, events, metrics
 3D graphics helps, but design challenge remains
- Practical concerns (with creating new visualizations)
 A few "canned" views limit visualization types
 - Visualization environments would need adaptation
 - Can not expect users to program with visualization libraries

PROPER 2011

A Parallel Profile Analysis Tool

- TAU represents a scalable profile measurement tool
 Visualize profile of execution for 100,000+ threads
 100+ events and multiple performance metrics per thread
- □ TAU ParaProf tool processes parallel profiles
- ParaProf provides "canned" views
 O 2D: bargraph, histogram
 - O 3D: full profile, correlation
- Example: S3D flow solver for simulation of turbulent combustion
 - 012K cores execution
 - O IBM BG/P (Intrepid) and Cray XT4 (Jaguar)

S3D Full Profile View (Jaguar, 12K cores)

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

S3D 3D Correlation Cube (Intrepid, 12K cores)

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Extending Visualization Support in Profile Tool

□ User defines visualization

- Based on performance data model
- Specifies layout based on events, metrics, and metadata
 UI provides control of data binding and visualization

PROPER 2011

Using Process Topology Metadata

- □ Inspired by the Scalasca CUBE topology display
- Each point represents a thread of execution (MPI process)
 O Positioned according to the Cartesian (x,y,z,t) coordinates
- Color is determined by selected event/metric value
- Topology information can be recorded in TAU metadata
- ParaProf reads metadata to determine topology and create layout
- Example: Sweep3D 3D neutron transport application
 0 16K run on BG/P

• Color is exclusive time in the "sweep" function

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Viewing Internal Structure

Dense topologies
 can hide internal
 structure in the
 visualization

Restrict visibility
 by color value to
 expose performance
 patterns

ParaProf visualization UI now allows for range filtering
 Mid-level values can be excluded
 Include high outliers (hotspots)
 Include low outliers (under-utilized ranks)

PROPER 2011

Slicing to Reduce Dimensionality

- Restrict visibility to sub-dimensions
 O Slices along spatial axes
- ParaProf visualization UI
 provides dimensionality
 reduction control

- Multiple axis controls allow selection of planes, lines, or an individual point
- □ Several alternatives for value reduction
 - Show only value of points
 - Averaging the color value for all points in the selected area

Custom Topologies

- Certain views may hide deeper inter-process behavior
- Spatially dependent performance issues may be revealed by manipulating topology
- Sweep3D profile with alternative
 Cartesian mapping exposes distribution of computational effort
- □ Topology has direct effect on communication
- Visualization mapped to hardware topologies can suggest better node/rank mapping
- *MPI_AllReduce()* values for
 Sweep3D highlights waiting distribution
 from rank 0 (lower left) to the most distant rank (upper right)

PROPER 2011

August 30, 2011

Topology Control UI

- Layout tab allows customization of the position and visibility of data points
- Performance
 event/metric data
 used to define color
 and position is selected
 in the *Event* tab
- Additional rendering options, such as color scale and point size are available
- 4k-core S3D run on IBM BG/P

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

S3D Topology View with Z Axis Collapsed

File Options Windows Help

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

S3D on Intrepid with Different Allocations

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Cray XE6 Topology

- □ Just added ability to capture Cray XE6 topology metadata
- Cray RCA library on Cray maps MPI ranks to topology
 NERSC uses this API to get the x/y/z node coordinates
 However it does not provide the coordinates of cores
- A unique node id is provided by /proc/cray_xt/cname
 O Contains node information (rack, chassis, ...)
 - Position of chips on a node is provided if environment variable *MPICH_CPUMASK_DISPLAY* is set
- □ TAU collects all node and core location data this way
- □ Output is parsed by ParaProf
- □ Also can use technique from Brian Wylie from Juelich

PROPER 2011

Cray XE6 Topology Visualization

- □ Example: GCRM global cloud resolving mode
- Visualization of 10K execution on Cray XE6
 O Topological view shows core distribution (24 cores per node)
 O Custom layout makes decision on node/core blocking

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

GCRM on Cray XE6 (10K Cores)

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

GCRM on Cray XE6 (10K Cores, Filtered)

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Visual Layout Specification

- □ Want to allow creation of explicit layouts by the user
- IDEA: Define a specification "language" that allows mathematical expressions to describe features of performance display
 - Equations define X, Y, Z coordinates and color per process
 - Event and metrics are seen as variables
 - > eventX.val : value for Xth specified event and metric
 - > eventX.{min,max,mean} : global aggregate values

atomicY: *Y*th atomic event value

- Intermediate variables can be used in the calculation
- O Defined global variables (e.g., max rank) are provided
- Specifications are loaded and processed by ParaProf
 O Use the MESP expression parser

PROPER 2011

Sphere Layout Specification

- Spatially mediated performance behavior may not be represented directly in topology metadata
 - Applications allocate resources with respect to a data-driven model
- Position of each point can be defined by custom equations in terms of event/metric, aggregate, atomic event and metadata
- □ Sweep3D profile mapped to a sphere

```
BEGIN_VIZ=Sphere
rootRanks=sqrt(maxRank)
theta=2*pi()/rootRanks*mod(rank,rootRanks)
phi=pi()/rootRanks*(ceil(rank/rootRanks))
x=cos(theta)*sin(phi)*100
y=sin(theta)*sin(phi)*100
z=cos(phi)*100
END_VIZ
```


An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

ParaProf Events Panel

- □ Events / metrics get bound in ParaProf UI
- □ Example:
- O event0 is the FLOP count for function foo
- O event1 is the time value for function foo
- To set the X coordinate for each process point to the FLOPS for event *foo*: x = event0.val / event1.val
- To set the Y coordinate for each process point to the global average FLOPS for event *foo*:

y = *event0.mean* / *event1.mean*

Layout	Events
Width	RATX_I [{getrates_i.pp.f] Exclusive BGP Tim
Height	RATT_I [{getrates_i.pp.f] Exclusive BGP Tim
Depth	GETRATES_I [{getrates_i Exclusive ▼ BGP Tim ▼
Color	RATX_I [{getrates_i.pp.f] Exclusive ▼ BGP Tim ▼
Atomic-0	sage size for broadcast Max Value
Atomic-1	Message size for gather Max Value
Atomic-2	received from all nodes Max Value
Atomic-3	ge size sent to all nodes Max Value

PROPER 2011

August 30, 2011

Adding Dimensionality

- Topologies can involve more than three dimensions (e.g., intranode)
- Mirror actual machine layout to capture communication structure and cores
- Custom layouts allow specification of multiple points from a single process/rank
- □ 4K-core S3D run on BG/P
- Default topology only covers X, Y, Z coordinates
- A custom topology divides each *n*th core into its own block

BEGIN_VIZ=4K_8x8x16Block xdim=8 ydim=8 zdim=16

x=mod(rank,xdim)+16*floor(rank/1 024) y=mod(floor(rank/xdim),ydim) z=mod(floor(rank/xdim/ydim),zdim) END_VIZ

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Non-Spatial Relationships

- Positioning of points needs not be with respect to physical or data topology
- Correlation of metrics within the same events or events between processes can indicate relevant performance effects
- Partitioning or clustering of different processes based on selected performance crit
- □ 3D scatterplot for 10240 core run of GCRM/ZGrd application
- Correlates four selected events, one for each spatial axis plus color

END VIZ

Conclusion and Next Steps

- □ Have extended TAU's ParaProf tool for visualization
 - \boldsymbol{O} Working with topology information
 - Provide custom topology views through UI
 - O User-defined layouts
- □ Demonstrate on relatively large applications
- □ Future work
 - Expand UI for more general access to performance model
 - Allow independent manipulation of unconnected segments
 - Improve presentation of data values, ranks, and metrics
 - Better functionality for automatic higher-dimensional layouts • Build library of user-defined layouts for reuse

PROPER 2011

An Approach to Creating Performance Visualizations in a Parallel Profile Analysis Tool

Support Acknowledgements

- Department of Energy (DOE)
 Office of Science
 - Office of Science
 - O ASC/NNSA
- □ Department of Defense (DoD)
 - HPC Modernization Office (HPCMO)
- □ NSF Software Development for Cyberinfrastructure (SDCI)
- Research Centre Juelich
- Argonne National Laboratory
- Technical University Dresden
- □ ParaTools, Inc.
- □ NVIDIA

