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Relevance for Mini Symposium Topic

• Usability

• Scalability

Cope with large amount of events (memory accesses !) 

• In the measurement tool• In the measurement tool
• In the visualization tool

In measurement

• Use statistical methods / simulation
• Online processing to reduce amount of data

– Filtering / Selection

– Aggregation (� Profile)
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Memory Access Bottlenecks

Main problem: “Memory wall”
Increasing performance gap main memory vs. processor

Solution: Caches
– Exploit locality of memory accesses (temporal / spatial)
– Lowers access latency by putting data copies into fast memory

True for Multicore, too

True for Multicore, too

– Lowers access latency by putting data copies into fast memory
• Keep recently used copies (accounts for temporal locality)
• Block oriented (accounts for spatial locality)

– „Bad memory access behavior“: Poor exploitation of caches

Optimization strategies
– Improve temporal locality by reordering accesses
– Improve spatial locality by changing data layout
– Prefetch data needed in the future
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Memory Access Bottlenecks

Multicore adds

• All the issues of parallel code
– Load balancing, synchronization overhead, difficult to program …

• Cores share available resources for
– Connection to main memory– Connection to main memory

– Caches

• Software has to cope with new configurations
– Caches shared vs. separate per core, increased memory hierarchy

Optimization strategies
– Best process placing for good exploitation of available caches?
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Analysis of Memory Access Behavior

Good Tools™ give following answers

• Yes, we have a problem because of memory accesses
• And it happens there

(code position + call path + data structure + thread/process)

• Yes, it makes sense to optimize (potential benefit)• Yes, it makes sense to optimize (potential benefit)

• Just try to do this and that to avoid cache pollution / bad layout / …
(good hints with expertise)

What are good metrics to see the problem and path to solution?
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Metrics for Bad Memory Access Behavior

• Cache miss counts
– Good: Pinpoints where time is lost (But: how much? Data structure?)

– Difficult to derive optimization (e.g. what/how to block?)

• Temporal / spatial cache line usage:• Temporal / spatial cache line usage:
How much / often used before eviction
– Easy to see bad memory layout (e.g. hash lookups)

• Model of idealized (unlimited) cache with LRU list of data accesses

• Simulation of bandwidth requirement
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LRU List of Data Accesses

• Relates to behavior of fully associate cache

• Example: Address sequence 1 2 3 4 2 3 2 2 5

LRU offset 0 1 2 3 4

Address 5 2 3 4 1
Distance 1 2 3
Accesses 1 1 2Address 5 2 3 4 1

Last access 0 1 3 5 8
(time steps)

• Provides size of working set (used in given time span)

• Stack reuse distance: histogram over move distances on access
(See papers of K. Beyls)
– Percentage of accesses covered by given cache size

– Which data structures have bad locality with high influence

Weidendorfer: Memory Access Bottlenecks
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Simulation of Bandwidth Requirement

• What is the required amount of data with ideal memory?
(Suppose only computation-boundness)
– Has to be simulated

– Simple CPU model (given latency for each opcode)

– Which structures are better served from cache?

– Gives hints for prefetching (can prefetching pollute cache?)

Weidendorfer: Memory Access Bottlenecks
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Adaption for Multicore

• Bandwidth requirement diagram (easy)
– Additional curves for shared vs. separate caches

• Multiple LRU lists
– for all cores

• reuse distances with shared cache
• provides information for workset overlapping

– for each core pair: shared with other“, „invalidated by other“
• Shows amount communication between cores (size + number)

• Should provide hints for
– placement of processes (exploit same workset via shared cache)
– prefetch helper thread for multiple cores
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Our Tool Suite: Callgrind / KCachegrind

Measurement
– Based on Valgrind (runtime instrumentation, known for “memcheck”)
– Instrument memory accesses feed cache simulator
– Profiling tool relating cache events to call-graph (path relation possible)

Pro and ContraPro and Contra
– Memory accesses only from user-level code, Slowdown (40-60x)
– Synchronous 2-level inclusive cache (optional hardware prefetcher)

� Does not need root access / can not crash machine
� Allows for sophisticated metrics (line usage, stack reuse distance) 
� Easy to understand / reconstruct for user
� Reproducible results independent on real machine load
� Derived optimizations applicable for many architectures
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Our Tool Suite: Callgrind / KCachegrind

• Visualization
– Call relationship of functions (callers, callees, call graph, tree map) 

– Source/Assembly annotation: event counts + control flow
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Experiences with existing Visualizations

Provide not only graphical results, but
• export to ASCII lists (HTML / XML), or better
• equivalent command line tool for scriptability: merging, querying, …

Graphical interface
• Very clean user interface, small number of views / areas• Very clean user interface, small number of views / areas
• Only a few different view types into data, familiar to users

� lists, call graphs, bar charts, heat maps, diagrams
– tree maps, fully crowded 3-D views

• Highly interactive views
– responsive
– zoomable (one visualization with multiple detail levels)
– intuitive narrowing / filtering of data
– non-disruptive browsing (incremental or animation)

• Careful, consistent use of color coding
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Improvements for existing Visualization: Call Graph

Issue: Tools seems to claim to always have full path profiling data

Example:   Foo selected A selected

A B A
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Improvements for existing Visualization: Call Graph

Issue: Tools seems to claim to always have full path profiling data

Example:   Foo selected A selected (improved)

A B A
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• Tells reality
• With real path profiles: Allows for interactive filtering of data
• Also for filtering in other dimensions (partitioning against threads) 
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Visualization for Multicore

• Separate stack reuse distance

Number of
Accesses

Number of
Accesses

Core 1 Core 2

Array  A  B  C Array  C  B  A

Size of Shared Cache

• Combined stack reuse distance (C-SRD) 
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Visualization for Multicore (2)

• Similar to get communication behavior among cores
– Only count invalidations (with separate caches)

• Heat map (color: number of invalidations)

Reading Core

• Histograms similar to last slide…
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Conclusion

• Memory Access analysis on Single/Multicore benefits from better 
metrics than cache misses

• Simulation with runtime instrumentation proved useful for this
• We propose metrics and visualization for workset 

overlapping/communication on Multicoreoverlapping/communication on Multicore
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Future work

Work in progress

• Measurement
– Should stay usable (resource consumption of simulation)

– Enhancement for multicore simulation in industry cooperation

– Keep amount of data small– Keep amount of data small
• E.g. online aggregation also for bandwidth requirement

• Statistical reconstruction of approximative time scale visualization ?

• Visualization
– Prototype some visualizations for multicore memory access

– Conduct usability studies
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