Comparing Intel Thread Checker
and Sun Thread Analyzer

Christian Terboven
terboven@rz.rwth-aachen.de

Center for Computing and Communication
RWTH Aachen University, Germany

1 ParCo’07 C. Terboven RWTH CC

Computing and Communication

Agenda

e |ntroduction

« Simple example walkthrough
 Intel Thread Checker
« Sun Thread Analyzer

* Further comparison
o C++
* Runtime & Memory consumption
» Other features

« Conclusion

2 ParCo’07 C. Terboven

eeeeeeeee
Computing and Communication

Introduction

« The fundamental difference between MPI and OpenMP:

P2 « Shared-Memory (OpenMP):

« Data resides in shared address spaces
L of all threads

I — Danger of data races

M

=3

|
|
|
’

‘W R . Digtributed-Memory (MPI):

« Data is (manually) distributed between

all processes

— Data has to be sent explicitly

. - 4

« Virtually every multithreaded program we examined had at least one
data race ...

3 ParCo’07 C. Terboven RWTH CC

Computing and Communication

Data Race detection

« A data race occurs when all following conditions happen concurrently:
« Two or more threads access the same memory location,

Between two synchronization points in an OpenMP program,

« At least one thread modifies that location,
« The accesses to the location are not protected, e.g. by locks.

» Principle design of a data race detection tool:

Instrument application

Trace memory references
Trace thread management operations ; at runtime
Trace synchronization operations
Compare event pairs (two threads), check for possible data race

\

4 ParCo’07 C. Terboven RWTH 'C

Computing and Communication

History

Assure for Threads was first commercial product
* OpenMP
« Available on many plattforms

2000: Intel acquired KAI
« Renamed the product to Intel Thread Checker
» Available on Linux and Windows
« On Intel-compatible architectures

2007: Sun Thread Analyzer
 Available since Sun Studio 12
« Available on Linux and Solaris
* On Intel-compatible architectures and UltraSPARC architectures

5 ParCo’07

C.Terboven RWTH (¢

eeeeeeeee
Computing and Communication

Agenda

* |ntroduction

« Simple example walkthrough
« Intel Thread Checker
e Sun Thread Analyzer

« Further comparison
o C++
* Runtime & Memory consumption
« Other features

« Conclusion

6 ParCo’07 C. Terboven

eeeeeeeee
Computing and Communication

Example program

« (C version of Jacobian solver from OpenMP website:
#pragma omp parallel private (i)
{

[...]

/* compute stencil, residual and update */

Parallel region

#pragma omp for

Worksharing

for (j=1; j<m-1; J++)
for (i=1; i<n-1; i++) {
resid =(ax * (UOLD(j,i-1) + UOLD(j,i+1))
+ ay * (UOLD(j-1,i) + UOLD(j+1,1))

We deliberately
introduced two

+ b * UOLD(j,i) - F(j,1i)) / b; parallelization
U(j,i) = UOLD(j,i) - omega * resid; mistakes related
. . to the variables
error = error + resid*resid; .
resid and
} error.
} /* end of parallel region */ (:\
V)

7 ParCo’07 C. Terboven RwTH C

Expectations

Correction:
* Declare variable resid private
 Declare variable error as reduction

Why declaring error private would not be correct:
 There would not be a data race! But ...

e error = error + resid*resid;
» Contributions from all threads (resid) are accumulated
 Itis used in the sequential part later on — reduction

Expectations (for the Jacobian solver):
« Minimal: report data races in variables resid and error
* Provide guides how to resolve the race conditions
« Optimal: Propose to declare error as reduction C

8 ParCo’07 C. Terboven RWTH

Computing and Communication

Intel Thread Checker

2 ¥Tune{TM) Performance Environment - [Thread Checker - File: ' vfsc4' ct 7477644 data" 2007 ParCo2007_Scalability AndUsability OFHpcProgrammingTools', FullPaper',src-In] =]
JJ File Edit Yiew Activity Configure Window Help = Iﬁ’lil
Jﬁl| Blee|lza|sze|r| || 1w XN W || % |||
Dirag & column header here to group by that i Severity distribution
E-C WTProject28 S ———
Lol fsodhotTATTES datat w
{ a
=]
&l ite of resid at “jacobi_omp_emror_1.c"78 =
. emory wiite of res _omp_error_1.c" i
1 2 Eeta'f' > Wiite o canflicts with a prior memory read of resid at 2478060 False %
alatace "lacobi_omp_emor_1.c": 88 [ant dependence] m
=
: b erniary wirite of ermar at “jacobi_omp_emor_1.c'88 &
1 3 Eieta?l > Wiite o canflicts with a prior memorny read of eror at 4970 Falze
SETACe "jacobi_omp_emror_1.c":88 [anti dependence] [e
= 012 3 456
\Wiite > Paad Mem_ury re_ad of eror at |ac:0b|__0mp_err0[_1 et
1 4 A5ts rang o c:.nnfllc_ts with & prior mernory writke of errar at 4970 Falze Mumber of occurences
"iacobi_omp_errar_1.c" 88 [flow dependence]
; : Memory write of ermor at “jacobi_omp_ermor_1.c™88 B Unclazzified
1 Ja} \é\lrt't? > Wiite o confhicts with a prior mermang wite of ermar at 4570 Falze Fremark
R “jacobi_omp_emor_1.c": 88 [output dependence] B Information
. Thread termination at "driver. ¢’ 115 - includes stack Cautian
2 B Thread termination o allocation of 10 ME and use of 6,731 KB 1 False W arning
o Error
[Filered
< | ||| Diagrostics Stack Traces | Source View

For Help, press F1 l_

e
9 ParCo’07 C.Terboven IRWTH C

Computing and Communication

Intel Thread Checker

Analysis results with binary instrumentation:

 Allows checking of existing binary code (debug info helpful)
« Program has to be executed with at least two threads
 Intotal 10 errors for 3 different program locations

» Unsynchronized write/write and read/write access to resid

« Unsynchronized read from resid in write to U[]

« Unsynchronized write/write and read/write access to error

« Unsynchronized read from resid in write t0 error

Together with the call stacks a correction proposal is given:

» Protect access to variable resid/error by using either locks or
critical regions

 Make variable resid/error private by using either thread-local
storage or private clauses

— This is not correct in the case of error! C

10 ParCo’07 C. Terboven RWTH

Computing and Communication

Intel Thread Checker

« Analysis results with source instrumentation:
« Compilation with Intel Compilers required

» Additional analysis capabilities for OpenMP programs — if
program flow does not depend on the thread id

 Intotal only 5 errors for 2 different program locations
* The variable names error and resid are given

« The following correction proposal is given:

* Protect access to variable resid by using either locks or critical
regions

« Make variable error private by using either thread-local storage
or private clause

« Consider declaring variable error as reduction
— Declaring error as reduction is the optimal resolution!

C

11 ParCo’07 C. Terboven RWTH ’C

Computing and Communication

Sun Thread Analyzer

8

=5 Sun Studic Analyzer [error_L.er]

File Wiew Timeline Help

é:f:éﬂ'f'ﬁ'-’—_:-'lﬂ&%lfa'c oy = Find Text:

[~]

e s

fﬂaces rneadlucks |/ Dual Source rExperiments

f sSummary |/ Race Details |/ Deadlock Details

Total Races: 2

[Pace #1, Vaddr :0x&0456c4

Access 1: Write, jacobi -- MP doall from line 74 [_5d1E74.jacobi] + 0x00000753,
line &z in "jacobi_omp error_l.c”

Acocess 2@ Write, jacobi -- MP doall from line 74 [_5§d1E74.jacobi] + 0x00000753,
line 32 in "jacobi_omp error l.c”

o] Total Tracea: 1

Face #2, Vaddr :0x20456bc

dccess 1: Write, jacobi -- MP doall from line 74 [_§d1E74.jacobi] + Ox0000091E,
line 33 in "jacobi_omp error_l.c”

Acoess 2@ Write, jacobi -- HMP doall from line ¥4 [_§d1E74.jacobi] + O0x0000021E,
line 3§ in "jacobi_omp error_l.c”

o= [] Total Tracea: 1

W

Data for Selected Race
10 & %

Id: Face #1
Vaddr: 0x30456cd

Access 1

Type: Write

jacohi -- MP doall from line 74 [$d1E74

4] I | | »
Access 2

Type: Mrite

jacobi -- MP doall from line 74 [_5d1E74

C

12 ParCo’07 C. Terboven RWTH C

Computing and Communication

Sun Thread Analyzer

Analysis results:

 In total 6 errors for 2 different program locations
A data race with read and write to variable resid is reported
« A data race with read and write to variable error is reported

Together with the call stacks a resolution proposal is given:

* Protect access to variable resid/error by either using locks or
critical regions

— This is not correct in the case of error!

13 ParCo’07 C. Terboven RWTH

Computing and Communication

Guidance in the parallelization process

In OpenMP the default is shared

Finding all variables that have to be made private is
* A lot of work
« Error-prone

Use your data race detection tool

« |dentify performance-critical hotspots

* Insert e.g. OpenMP pragmas

» Run the analysis with suited datasets
» Use code coverage tool

« Extract the list of variables with races
« Most probably have to be made private / firstprivate / lastprivate
« Thread Checker even proposes reduction variables

14 ParCo’07 C. Terboven RWTH

Computing and Communication

Agenda

* |ntroduction

« Simple example walkthrough
 Intel Thread Checker
« Sun Thread Analyzer

« Further comparison
o C++
* Runtime & Memory consumption
» Other features

« Conclusion

C

15 ParCo’07 C. Terboven RWTH CC

nnnnnnnnnnnnnnnnnnnnnnnnn

Handling of C++ programs

« We tested a CG solver with external parallelization

fpragma omp parallel firstprivate(iter, [...])

{
while (iter < max_iter && sqgrt(sigma) > tol)
{ [...]; g = s + beta * g; [...] }

} // end omp parallel

 The operator* member function contains orphaned OpenMP
worksharing constructs

« Good news: The data races are reported where they occur!
* Not so good news: Additional races e.g. in the STL are reported

16 ParCo’07 C. Terboven RWTH

Computing and Communication

Runtime and Memory Consumption

« Advice is to use the smallest and still meaningful dataset

Program Jacobi SMXV AIC

Mem MFLOF/s Mem MFLOP/s | Mem Time
Original, Intel 5 MB 621 40 MB 029 4MB | 5.0szec
with 2 threads |‘
Intel Thread Checker | 115 MB 0.9 1832 MB 3.5 IOME | 9.3 sec
binary instr., 2thr. W
Intel Thread Checker | 115 MB 31 — — — —
source 1nstr. ﬁ
Original, Sun 5 MB GO0 530 MB 530 2MB | 8.4 sec
with 2 threads |‘
Sun Thread Analyzer | 125 MB 1.1 2020 MB 0.8 17ME | 8.5 sec
with 2 threads

« Decrease grid resultion, limit the number of iterations, simulate just a
few time steps, ...

» Neverthless: Typical production datasets are impossible to analyze!
« The Sun tool still provides some scalability

17 ParCo’07 C. Terboven

Center for
Computing and Communication

Other features

« Re-using components (libraries) is good software engineering
practice — but are these thread safe?

« Bad performance advices from the past.

« Both tools provide deadlock detection capabilities:
 |nappropriate use of mutex locks in Posix-Threads programs
* Not an issue for OpenMP programs only using constructs

« Can be enabled without data race detection capabilities, thus
only little overhead is introduced

« If explicit memory flushes are used for implementing locks, no tool
recognizes that

« False positives are reported
e Our advice: Do not use flushes for synchronization! C
7

18 ParCo’07 C. Terboven RWTH ’C

Computing and Communication

Agenda

* |ntroduction

« Simple example walkthrough
 Intel Thread Checker
« Sun Thread Analyzer

* Further comparison
o C++
* Runtime & Memory consumption
» Other features

« Conclusion

C

19 ParCo’07 C. Terboven RWTHC&

nnnnnnnnnnnnnnnnnnnnnnnnn

Conclusion

« We recommend: Never put a multithreaded program into production
before using one of these tools!

» Both tools are capable of detecting data races in complex
applications.

« Source instrumentation of Intel Thread Checker is advantageous for
OpenMP programs — if applicable.

« Sun Thread Analyzer still offers scalability in analysis mode.

* Increased memory consumption may render both tools unusable.

C

20 ParCo'07 C. Terboven RWTH (-

nnnnnnnnnnnnnnnnnnnnnnnnn

End

Thank you for your attention.

Questions?

21 ParCo’07 C. Terboven

eeeeeeeee
Computing and Communication

