
1 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Comparing Intel Thread Checker
and Sun Thread Analyzer

Christian Terboven

terboven@rz.rwth-aachen.de

Center for Computing and Communication
RWTH Aachen University, Germany

2 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Agenda

• Introduction

• Simple example walkthrough

• Intel Thread Checker

• Sun Thread Analyzer

• Further comparison

• C++

• Runtime & Memory consumption

• Other features

• Conclusion

3 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Introduction

• The fundamental difference between MPI and OpenMP:

• Shared-Memory (OpenMP):

• Data resides in shared address spaces
of all threads

→ Danger of data races

• Distributed-Memory (MPI):

• Data is (manually) distributed between
all processes

→ Data has to be sent explicitly

• Virtually every multithreaded program we examined had at least one
data race …

4 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Data Race detection

• A data race occurs when all following conditions happen concurrently:

• Two or more threads access the same memory location,

• Between two synchronization points in an OpenMP program,

• At least one thread modifies that location,

• The accesses to the location are not protected, e.g. by locks.

• Principle design of a data race detection tool:

• Instrument application

• Trace memory references

• Trace thread management operations

• Trace synchronization operations

• Compare event pairs (two threads), check for possible data race

at runtime

5 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

History

• Assure for Threads was first commercial product

• OpenMP

• Available on many plattforms

• 2000: Intel acquired KAI

• Renamed the product to Intel Thread Checker

• Available on Linux and Windows

• On Intel-compatible architectures

• 2007: Sun Thread Analyzer

• Available since Sun Studio 12

• Available on Linux and Solaris

• On Intel-compatible architectures and UltraSPARC architectures

6 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Agenda

• Introduction

• Simple example walkthrough

• Intel Thread Checker

• Sun Thread Analyzer

• Further comparison

• C++

• Runtime & Memory consumption

• Other features

• Conclusion

7 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Example program

• C version of Jacobian solver from OpenMP website:

#pragma omp parallel private(i)

{

[...]

/* compute stencil, residual and update */

#pragma omp for

for (j=1; j<m-1; j++)

for (i=1; i<n-1; i++){

resid =(ax * (UOLD(j,i-1) + UOLD(j,i+1))

+ ay * (UOLD(j-1,i) + UOLD(j+1,i))

+ b * UOLD(j,i) - F(j,i)) / b;

U(j,i) = UOLD(j,i) - omega * resid;

error = error + resid*resid;

}

} /* end of parallel region */

We deliberately

introduced two

parallelization

mistakes related

to the variables
resid and

error.

Parallel region

Worksharing

8 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Expectations

• Correction:

• Declare variable resid private

• Declare variable error as reduction

• Why declaring error private would not be correct:

• There would not be a data race! But …

• error = error + resid*resid;

• Contributions from all threads (resid) are accumulated

• It is used in the sequential part later on → reduction

• Expectations (for the Jacobian solver):

• Minimal: report data races in variables resid and error

• Provide guides how to resolve the race conditions

• Optimal: Propose to declare error as reduction

9 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Intel Thread Checker

10 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Intel Thread Checker

• Analysis results with binary instrumentation:

• Allows checking of existing binary code (debug info helpful)

• Program has to be executed with at least two threads

• In total 10 errors for 3 different program locations

• Unsynchronized write/write and read/write access to resid

• Unsynchronized read from resid in write to U[]

• Unsynchronized write/write and read/write access to error

• Unsynchronized read from resid in write to error

• Together with the call stacks a correction proposal is given:

• Protect access to variable resid/error by using either locks or

critical regions

• Make variable resid/error private by using either thread-local

storage or private clauses

→ This is not correct in the case of error!

11 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Intel Thread Checker

• Analysis results with source instrumentation:

• Compilation with Intel Compilers required

• Additional analysis capabilities for OpenMP programs – if
program flow does not depend on the thread id

• In total only 5 errors for 2 different program locations

• The variable names error and resid are given

• The following correction proposal is given:

• Protect access to variable resid by using either locks or critical

regions

• Make variable error private by using either thread-local storage

or private clause

• Consider declaring variable error as reduction

→ Declaring error as reduction is the optimal resolution!

12 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Sun Thread Analyzer

13 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Sun Thread Analyzer

• Analysis results:

• In total 6 errors for 2 different program locations

• A data race with read and write to variable resid is reported

• A data race with read and write to variable error is reported

• Together with the call stacks a resolution proposal is given:

• Protect access to variable resid/error by either using locks or

critical regions

→ This is not correct in the case of error!

14 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Guidance in the parallelization process

• In OpenMP the default is shared

• Finding all variables that have to be made private is

• A lot of work

• Error-prone

• Use your data race detection tool

• Identify performance-critical hotspots

• Insert e.g. OpenMP pragmas

• Run the analysis with suited datasets

• Use code coverage tool

• Extract the list of variables with races

• Most probably have to be made private / firstprivate / lastprivate

• Thread Checker even proposes reduction variables

15 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Agenda

• Introduction

• Simple example walkthrough

• Intel Thread Checker

• Sun Thread Analyzer

• Further comparison

• C++

• Runtime & Memory consumption

• Other features

• Conclusion

16 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Handling of C++ programs

• We tested a CG solver with external parallelization

#pragma omp parallel firstprivate(iter, [...])

{

while (iter < max_iter && sqrt(sigma) > tol)

{ [...]; q = s + beta * q; [...] }

} // end omp parallel

• The operator* member function contains orphaned OpenMP

worksharing constructs

• Good news: The data races are reported where they occur!

• Not so good news: Additional races e.g. in the STL are reported

17 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Runtime and Memory Consumption

• Advice is to use the smallest and still meaningful dataset

• Decrease grid resultion, limit the number of iterations, simulate just a
few time steps, …

• Neverthless: Typical production datasets are impossible to analyze!

• The Sun tool still provides some scalability

18 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Other features

• Re-using components (libraries) is good software engineering
practice – but are these thread safe?

• Bad performance advices from the past.

• Both tools provide deadlock detection capabilities:

• Inappropriate use of mutex locks in Posix-Threads programs

• Not an issue for OpenMP programs only using constructs

• Can be enabled without data race detection capabilities, thus
only little overhead is introduced

• If explicit memory flushes are used for implementing locks, no tool
recognizes that

• False positives are reported

• Our advice: Do not use flushes for synchronization!

19 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Agenda

• Introduction

• Simple example walkthrough

• Intel Thread Checker

• Sun Thread Analyzer

• Further comparison

• C++

• Runtime & Memory consumption

• Other features

• Conclusion

20 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

Conclusion

• We recommend: Never put a multithreaded program into production
before using one of these tools!

• Both tools are capable of detecting data races in complex
applications.

• Source instrumentation of Intel Thread Checker is advantageous for
OpenMP programs – if applicable.

• Sun Thread Analyzer still offers scalability in analysis mode.

• Increased memory consumption may render both tools unusable.

21 ParCo’07 C. Terboven Center for
Computing and Comm unication

C

C
C

End

Thank you for your attention.

Questions?

