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Introduction

« The fundamental difference between MPI and OpenMP:

P2 « Shared-Memory (OpenMP):

« Data resides in shared address spaces
L of all threads

I — Danger of data races

M

=3

|
|
|
’

‘W R . Digtributed-Memory (MPI):

« Data is (manually) distributed between

all processes

— Data has to be sent explicitly

. - 4

« Virtually every multithreaded program we examined had at least one
data race ...
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Data Race detection

« A data race occurs when all following conditions happen concurrently:
« Two or more threads access the same memory location,

Between two synchronization points in an OpenMP program,

« At least one thread modifies that location,
« The accesses to the location are not protected, e.g. by locks.

» Principle design of a data race detection tool:

Instrument application

Trace memory references
Trace thread management operations ; at runtime
Trace synchronization operations
Compare event pairs (two threads), check for possible data race

\
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History

Assure for Threads was first commercial product
* OpenMP
« Available on many plattforms

2000: Intel acquired KAI
« Renamed the product to Intel Thread Checker
» Available on Linux and Windows
« On Intel-compatible architectures

2007: Sun Thread Analyzer
 Available since Sun Studio 12
« Available on Linux and Solaris
* On Intel-compatible architectures and UltraSPARC architectures
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Example program

« (C version of Jacobian solver from OpenMP website:
#pragma omp parallel private (i)
{

[...]

/* compute stencil, residual and update */

Parallel region

#pragma omp for

Worksharing

for (j=1; j<m-1; J++)
for (i=1; i<n-1; i++) {
resid =(ax * (UOLD(j,i-1) + UOLD(j,i+1))
+ ay * (UOLD(j-1,i) + UOLD(j+1,1))

We deliberately
introduced two

+ b * UOLD(j,i) - F(j,1i) ) / b; parallelization
U(j,i) = UOLD(j,i) - omega * resid; mistakes related
. . to the variables
error = error + resid*resid; .
resid and
} error.
} /* end of parallel region */ (:\
V)
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Expectations

Correction:
* Declare variable resid private
 Declare variable error as reduction

Why declaring error private would not be correct:
 There would not be a data race! But ...

e error = error + resid*resid;
» Contributions from all threads (resid) are accumulated
 Itis used in the sequential part later on — reduction

Expectations (for the Jacobian solver):
« Minimal: report data races in variables resid and error
* Provide guides how to resolve the race conditions
« Optimal: Propose to declare error as reduction C
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Intel Thread Checker

2 ¥Tune{TM) Performance Environment - [Thread Checker - File: ' vfsc4' ct 7477644 data" 2007 ParCo2007_Scalability AndUsability OFHpcProgrammingTools', FullPaper',src-In] =]
JJ File Edit Yiew Activity Configure Window Help = Iﬁ’lil
Jﬁl| Blee|lza|sze|r| || 1w XN W || % |||
Dirag & column header here to group by that i Severity distribution
E-C WTProject28 S ———
Lol fsodhotTATTES datat w
{ a
=]
&l ite of resid at “jacobi_omp_emror_1.c"78 =
. emory wiite of res _omp_error_1.c" i
1 2 Eeta'f' > Wiite o canflicts with a prior memory read of resid at 2478060 False %
alatace "lacobi_omp_emor_1.c": 88 [ant dependence] m
=
: b erniary wirite of ermar at “jacobi_omp_emor_1.c'88 &
1 3 Eieta?l > Wiite o canflicts with a prior memorny read of eror at 4970 Falze
SETACe "jacobi_omp_emror_1.c":88 [anti dependence] [ e
= 012 3 456
\Wiite > Paad Mem_ury re_ad of eror at |ac:0b|__0mp_err0[_1 et
1 4 A5ts rang o c:.nnfllc_ts with & prior mernory writke of errar at 4970 Falze Mumber of occurences
"iacobi_omp_errar_1.c" 88 [flow dependence]
; : Memory write of ermor at “jacobi_omp_ermor_1.c™88 B Unclazzified
1 Ja} \é\lrt't? > Wiite o confhicts with a prior mermang wite of ermar at 4570 Falze Fremark
R “jacobi_omp_emor_1.c": 88 [output dependence] B Information
. Thread termination at "driver. ¢’ 115 - includes stack Cautian
2 B Thread termination o allocation of 10 ME and use of 6,731 KB 1 False W arning
o Error
[ Filered
< | ||| Diagrostics Stack Traces | Source View

For Help, press F1 l_

e
9 ParCo’07 C.Terboven IRWTH C

Computing and Communication




Intel Thread Checker

Analysis results with binary instrumentation:

 Allows checking of existing binary code (debug info helpful)
« Program has to be executed with at least two threads
 Intotal 10 errors for 3 different program locations

» Unsynchronized write/write and read/write access to resid

« Unsynchronized read from resid in write to U[]

« Unsynchronized write/write and read/write access to error

« Unsynchronized read from resid in write t0 error

Together with the call stacks a correction proposal is given:

» Protect access to variable resid/error by using either locks or
critical regions

 Make variable resid/error private by using either thread-local
storage or private clauses

— This is not correct in the case of error! C
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Intel Thread Checker

« Analysis results with source instrumentation:
« Compilation with Intel Compilers required

» Additional analysis capabilities for OpenMP programs — if
program flow does not depend on the thread id

 Intotal only 5 errors for 2 different program locations
* The variable names error and resid are given

« The following correction proposal is given:

* Protect access to variable resid by using either locks or critical
regions

« Make variable error private by using either thread-local storage
or private clause

« Consider declaring variable error as reduction
— Declaring error as reduction is the optimal resolution!

C
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Sun Thread Analyzer

8

=5 Sun Studic Analyzer [error_L.er]

File Wiew Timeline Help

é:f:éﬂ'f'ﬁ'-’—_:-'lﬂ&%lfa'c oy = Find Text:

[~]

e s

fﬂaces rneadlucks |/ Dual Source rExperiments

f sSummary |/ Race Details |/ Deadlock Details

Total Races: 2

[Pace #1, Vaddr :0x&0456c4

Access 1: Write, jacobi -- MP doall from line 74 [_5d1E74.jacobi] + 0x00000753,
line &z in "jacobi_omp error_l.c”

Acocess 2@ Write, jacobi -- MP doall from line 74 [_5§d1E74.jacobi] + 0x00000753,
line 32 in "jacobi_omp error l.c”

o] Total Tracea: 1

Face #2, Vaddr :0x20456bc

dccess 1: Write, jacobi -- MP doall from line 74 [_§d1E74.jacobi] + Ox0000091E,
line 33 in "jacobi_omp error_l.c”

Acoess 2@ Write, jacobi -- HMP doall from line ¥4 [_§d1E74.jacobi] + O0x0000021E,
line 3§ in "jacobi_omp error_l.c”

o= [] Total Tracea: 1

W

Data for Selected Race
10 & %

Id: Face #1
Vaddr: 0x30456cd

Access 1

Type: Write

jacohi -- MP doall from line 74 [ $d1E74

4] I | | »
Access 2

Type: Mrite

jacobi -- MP doall from line 74 [_5d1E74

C
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Sun Thread Analyzer

Analysis results:

 In total 6 errors for 2 different program locations
A data race with read and write to variable resid is reported
« A data race with read and write to variable error is reported

Together with the call stacks a resolution proposal is given:

* Protect access to variable resid/error by either using locks or
critical regions

— This is not correct in the case of error!
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Guidance in the parallelization process

In OpenMP the default is shared

Finding all variables that have to be made private is
* A lot of work
« Error-prone

Use your data race detection tool

« |dentify performance-critical hotspots

* Insert e.g. OpenMP pragmas

» Run the analysis with suited datasets
» Use code coverage tool

« Extract the list of variables with races
« Most probably have to be made private / firstprivate / lastprivate
« Thread Checker even proposes reduction variables
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Handling of C++ programs

« We tested a CG solver with external parallelization

fpragma omp parallel firstprivate(iter, [...])

{
while (iter < max_iter && sqgrt(sigma) > tol)
{ [...]; g = s + beta * g; [...] }

} // end omp parallel

 The operator* member function contains orphaned OpenMP
worksharing constructs

« Good news: The data races are reported where they occur!
* Not so good news: Additional races e.g. in the STL are reported
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Runtime and Memory Consumption

« Advice is to use the smallest and still meaningful dataset

Program Jacobi SMXV AIC

Mem MFLOF/s Mem MFLOP/s | Mem Time
Original, Intel 5 MB 621 40 MB 029 4MB | 5.0szec
with 2 threads |‘
Intel Thread Checker | 115 MB 0.9 1832 MB 3.5 IOME | 9.3 sec
binary instr., 2thr. W
Intel Thread Checker | 115 MB 31 — — — —
source 1nstr. ﬁ
Original, Sun 5 MB GO0 530 MB 530 2MB | 8.4 sec
with 2 threads |‘
Sun Thread Analyzer | 125 MB 1.1 2020 MB 0.8 17ME | 8.5 sec
with 2 threads

« Decrease grid resultion, limit the number of iterations, simulate just a
few time steps, ...

» Neverthless: Typical production datasets are impossible to analyze!
« The Sun tool still provides some scalability
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Other features

« Re-using components (libraries) is good software engineering
practice — but are these thread safe?

« Bad performance advices from the past.

« Both tools provide deadlock detection capabilities:
 |nappropriate use of mutex locks in Posix-Threads programs
* Not an issue for OpenMP programs only using constructs

« Can be enabled without data race detection capabilities, thus
only little overhead is introduced

« If explicit memory flushes are used for implementing locks, no tool
recognizes that

« False positives are reported
e Our advice: Do not use flushes for synchronization! C
7
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Conclusion

«  We recommend: Never put a multithreaded program into production
before using one of these tools!

» Both tools are capable of detecting data races in complex
applications.

« Source instrumentation of Intel Thread Checker is advantageous for
OpenMP programs — if applicable.

« Sun Thread Analyzer still offers scalability in analysis mode.

* Increased memory consumption may render both tools unusable.

C
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End

Thank you for your attention.

Questions?
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