Scalable Collation and Presentation
of Call-Path Profile Data with CUBE

Markus Geimer?, Bjérn Kuhimann?!3, Farzona Pulatova'?,

Felix Wolft3, Brian Wyliet

! Forschungszentrum Jilich GmbH
2 University of Tennessee, Knoxville
3 RWTH Aachen University

Forschungszentrum Jilich '

in der Helmholtz-Gemeinschaft .

Outline

* Introduction

« Parallel collation of input data

* Client-server architecture

* Optimized data structures and algorithms
« Conclusion

2 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Motivation

« Advanced numerical simulations harness higher
degrees of parallelism

« Custom-built large-scale systems

Scalabllity is a major concern

This does not only apply to simulations,
but also to tools!

3 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

What is CUBE?

« Data model to represent runtime data from
parallel programs

« XML-based file format
« C++ library to create/read/write experiments
» Generic graphical user interface

* Primarily designed to display analysis results in the

SCALASCA performance tool set =tats I 25C£8

» Also used in combination with
TAU and MARMOT

4 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

CUBE data model

» Three-dimensional representation Call
* Metrics of path
 Call paths g i
« System locations (threads) = .

Location

« Each dimension arranged in a hierarchy

« Discrete severity function:
(metric m, call path c, thread t) — severity value v

* CUBE experiments consist of
« Definition part defining the hierarchies
« Severity function values

5 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

CUBE user Iinterface

CUBE: epik_smg2000_jaguar_1l6384trace_solvecu

File Miew Help

Metrics Call Tree | Flat Profile | System Tree Topology Wiew
Root percent Selection percent £ |Peer percent i
=—{] 0.0 Time E'_u‘.u HYPRE_StuctSMGSalve [(31,31, 153 [&
L] 34.5 Execution 0.0 hypre_SMGESolve (31,31, 14}
=—{] 0.0 MPI Aggregation (31, 31,13

] 0.0 Collective
——] 0.0 Early Reduce
——] 0.0 Early Scan
——] 0.0 Late Broadcast
——] 2.0 Wait at Mx N
—|:| 0.0 M % M Completi

] 13.8 Point-to-paint
49.7 Late Sender

Late Receiver

hranization
A
it

ations

ns

What k|nd of -

1.41de4

performance |7

F—— | 0.0 hypre_Struct¥ectorDes

] 0.0 hypre_StructhatrixRef
] 0.0 hypre_StructvectarRef

0.0 hypre_StructinnerProd
] 0.0 hypre_ShMGRelaxsetRe

] 0.0 hypre_ShGRelaxS ethd:
] 0.0 hypre_SMGRelaxsetZe
—=—{] 0.0 hypre_3SMGRelax

0.0 hypre_ShGRelaxse
16.4 hypre_SMGResidu:
43.9 hypre_SMGSolve
0.0 hypy \ SMGSetStruc
5.9 hypre/ WGResidual

Where is itin th
source code?

How is it distributed

31, 31,123
31, 31,113
31, 31, 103
31, 3,8
31,3, 8
(31,3, 73
31, 31,63
31, 31,53
31,31, 43
31,3, 3
31,3, 23
31, 31,13
(3, 3,0 |

=)

across the system?

problem? (_In what context?

6 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Scalabllity issues in CUBE

» Collation (generation) of data sets
« Copying data between file systems
* Memory usage of the display

* Interactive response times

7 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Collation of data sets

« Data flow of previous SCALASCA trace analyzer
prototype:

Local
Trace Files

A\ 4

II] , Sequential Global CUBE
Local Results :
[Parallel Analyzer Tt i

* Limited scalability
* Redundant definition data in local result files
» Linear scaling of sequential collation
* Unnecessary file I/O

_

8 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Parallel collation approach

» Online gather of local results on single master process,
writing only global CUBE file

* Problem: May exceed memory capacity of master

» Algorithm:
For each metric m
For each call path c
Gather single severity from each process
Incrementally write gathered data to CUBE file
Global barrier
End
End

Incremental writing implemented in C-based writer library

9 Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Comparison of collation time

10
10* SMG2000 trace
analysis on BG/L
in Julich
— 10°
w
E
=
= 10’
10'
#—& Sequential collation .
A—A Parallel collation
0
10 16 32 64 128 256 512 1024 2048

Number of Processes

10 | Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Comparison of total analysis time

10
10* SMG2000 trace
analysis on BG/L
in Julich
- 10°
w
£
=
= 10?
10'
#—& Sequential collation -
A—A Parallel collation
0

10 32 64 128 256 512 1024 2048 4096 8192 16384
Number of Processes

11 | Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Client-server architecture

* Avoids transferring large analysis data sets from
supercomputer to remote desktop

« Client
* Running on user‘s desktop machine
 Lightweight display component
* Querying required data from server on demand
« Caches static definition data
* Server
* Running on supercomputer‘s frontend/login node
» Takes care of data processing and aggregation
« Can potentially be parallelized (OpenMP)

12 | Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Optimized data structures

» Severity function stored as 3D matrix
» Sparsely populated

* Implemented using nested STL map containers
Metric — (Call path —» (Thread — Severity))

* Observation: Thread dimension is usually very dense

« STL maps often implemented as self-balancing
binary search trees

* Replacing innermost map by an STL vector
(l.e., contiguous array) saves memory overhead
of tree data structure

« Better memory locality also improves performance

13 | Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

14

Comparison of CUBE memory usage

SMG2000 trace

Memory usage (kB)
=

analysis results

10
#—& Original
, A—A Improved
10 64 128 256 512 1024 2048 4096 8192 16384
Number of Processes
Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

Improved aggregation algorithms

* Enumeration of metrics, call paths, and threads
« Child nodes get higher IDs than their parents
* Allows replacing recursions with iterations

« Example: Inclusive/exclusive severity values
» |terate from O to N-1 and calculate exclusive values

* [terate from N-1 to O and calculate inclusive values,
reusing already calculated sums at deeper levels

* Implemented as proof-of-concept for the most
Important algorithms

15 | Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

16

Comparison of calculation time

120

100

Oh oo
f= =

B
=

Relative calculation time (%)

20

SMG2000 trace

64

Markus Geimer

128

256

512 1024 2048
Number of Processes

2007-09-05

analysis results

B Metric tree
B Calltree
B System tree

4096

8192 16384

ParCo 2007, Aachen/Jilich

Conclusion

» Various scalability improvements
- Parallel collation of experiment results
« Client-server architecture
* Improved data structures & algorithms

* Allows analysis of experiments at substantially
larger scales

17 | Markus Geimer 2007-09-05 ParCo 2007, Aachen/Jilich

18

Thank you!

For more information and
downloads, please visit
our project home page:

http://www.scalasca.org

Try out our new release
SCALASCA 0.9!

Markus Geimer

File Miew Help

Metrics | Call Tree | Flat Profile | System Tree Topaology Yiew
Root percent /|l |Selection percent £l |Feer percent /
=] 0.0 Time —=—{] 0.0 driver

71.3 Execution
ﬂﬂ 02 WP
=] 0.0 Communication
-] 0.0 Callective
[] 0.0 Early Reduce
[0.0 Late Broadcast
2.3 Wait at W N
- 3.1 PP
[0.1 Late Receiver
[13.1 Late Sender
] ooio
[100 InitExit

0.0 Synchronization
-—{7] 0.0 Overhead

L[] 0.0 MPI_init
] 0.0MPI_Bcast
——] 0.0 MPI_Barriet
——1{] 0.0 MFI_Car_create
=] 0.0 inner

] 0.0 MPI_Barrier

0.0 sweep
0.0 rcv_real
0.0 MFI_Recy
0.0 snd_real
0.0 MPI_Send
0.0 glohal int_sum
ﬁ‘i 99.9 M ce

[0.1 MPI_ mlreduce

[l 100.0 Visits —[7] 0.0 MPI_Finalize

(0,0) /
- I = KM = | —
|47?,34?.315 (2.3%)| 2.104e+07 ‘4?6,808.182 (SSE‘ 4.7 73e+05 | «29102 + 42 5%=» 5.900e+01
FIIII [[[[] | ‘ IIIIIIIIII]IIIIIIIIIIIIIIIIIIIIIIIW
18384 1 |

SWEEPSD virtual topology, Wait at NxN, 16K CPUs

2007-09-05

ParCo 2007, Aachen/Jilich

	Scalable Collation and Presentation of Call-Path Profile Data with CUBE
	Outline
	Motivation
	What is CUBE?
	CUBE data model
	CUBE user interface
	Scalability issues in CUBE
	Collation of data sets
	Parallel collation approach
	Comparison of collation time
	Comparison of total analysis time
	Client-server architecture
	Optimized data structures
	Comparison of CUBE memory usage
	Improved aggregation algorithms
	Comparison of calculation time
	Conclusion
	Thank you!

