
Scalable Collation and Presentation
of Call-Path Profile Data with CUBE
Markus Geimer1, Björn Kuhlmann1,3, Farzona Pulatova1,2,
Felix Wolf1,3, Brian Wylie1

1 Forschungszentrum Jülich GmbH
2 University of Tennessee, Knoxville
3 RWTH Aachen University

Markus Geimer2 2007-09-05 ParCo 2007, Aachen/Jülich

Outline

• Introduction
• Parallel collation of input data
• Client-server architecture
• Optimized data structures and algorithms
• Conclusion

Markus Geimer3 2007-09-05 ParCo 2007, Aachen/Jülich

Motivation

• Advanced numerical simulations harness higher
degrees of parallelism
• Custom-built large-scale systems
• More CPU cores instead of higher clock speeds

• Scalability is a major concern

This does not only apply to simulations,
but also to tools!

Markus Geimer4 2007-09-05 ParCo 2007, Aachen/Jülich

What is CUBE?

• Data model to represent runtime data from
parallel programs

• XML-based file format
• C++ library to create/read/write experiments
• Generic graphical user interface

• Primarily designed to display analysis results in the
SCALASCA performance tool set

• Also used in combination with
TAU and MARMOT

Markus Geimer5 2007-09-05 ParCo 2007, Aachen/Jülich

CUBE data model

• Three-dimensional representation
• Metrics
• Call paths
• System locations (threads)

• Each dimension arranged in a hierarchy

• Discrete severity function:
(metric m, call path c, thread t) → severity value v

• CUBE experiments consist of
• Definition part defining the hierarchies
• Severity function values

Call
path

M
et

ric

Location

Markus Geimer6 2007-09-05 ParCo 2007, Aachen/Jülich

CUBE user interface

What kind of
performance

problem?

Where is it in the
source code?

In what context?

How is it distributed
across the system?

AggregationAggregation

Markus Geimer7 2007-09-05 ParCo 2007, Aachen/Jülich

Scalability issues in CUBE

• Collation (generation) of data sets
• Copying data between file systems
• Memory usage of the display
• Interactive response times

Markus Geimer8 2007-09-05 ParCo 2007, Aachen/Jülich

Collation of data sets

• Data flow of previous SCALASCA trace analyzer
prototype:

• Limited scalability
• Redundant definition data in local result files
• Linear scaling of sequential collation
• Unnecessary file I/O

Global CUBE
FileParallel Analyzer Sequential

Collation
Local Results

Local
Trace Files

Markus Geimer9 2007-09-05 ParCo 2007, Aachen/Jülich

Parallel collation approach

• Online gather of local results on single master process,
writing only global CUBE file

• Problem: May exceed memory capacity of master

• Algorithm:
For each metric m

For each call path c
Gather single severity from each process
Incrementally write gathered data to CUBE file
Global barrier

End
End

• Incremental writing implemented in C-based writer library

Markus Geimer10 2007-09-05 ParCo 2007, Aachen/Jülich

Comparison of collation time

SMG2000 trace
analysis on BG/L
in Jülich

Markus Geimer11 2007-09-05 ParCo 2007, Aachen/Jülich

Comparison of total analysis time

SMG2000 trace
analysis on BG/L
in Jülich

Markus Geimer12 2007-09-05 ParCo 2007, Aachen/Jülich

Client-server architecture

• Avoids transferring large analysis data sets from
supercomputer to remote desktop

• Client
• Running on user‘s desktop machine
• Lightweight display component
• Querying required data from server on demand
• Caches static definition data

• Server
• Running on supercomputer‘s frontend/login node
• Takes care of data processing and aggregation
• Can potentially be parallelized (OpenMP)

Markus Geimer13 2007-09-05 ParCo 2007, Aachen/Jülich

Optimized data structures

• Severity function stored as 3D matrix
• Sparsely populated
• Implemented using nested STL map containers

Metric → (Call path → (Thread → Severity))

• Observation: Thread dimension is usually very dense
• STL maps often implemented as self-balancing

binary search trees
• Replacing innermost map by an STL vector

(i.e., contiguous array) saves memory overhead
of tree data structure

• Better memory locality also improves performance

Markus Geimer14 2007-09-05 ParCo 2007, Aachen/Jülich

Comparison of CUBE memory usage

SMG2000 trace
analysis results

Markus Geimer15 2007-09-05 ParCo 2007, Aachen/Jülich

Improved aggregation algorithms

• Enumeration of metrics, call paths, and threads
• Child nodes get higher IDs than their parents
• Allows replacing recursions with iterations

• Example: Inclusive/exclusive severity values
• Iterate from 0 to N-1 and calculate exclusive values
• Iterate from N-1 to 0 and calculate inclusive values,

reusing already calculated sums at deeper levels

• Implemented as proof-of-concept for the most
important algorithms

Markus Geimer16 2007-09-05 ParCo 2007, Aachen/Jülich

Comparison of calculation time
SMG2000 trace
analysis results

Markus Geimer17 2007-09-05 ParCo 2007, Aachen/Jülich

Conclusion

• Various scalability improvements
• Parallel collation of experiment results
• Client-server architecture
• Improved data structures & algorithms

• Allows analysis of experiments at substantially
larger scales

Markus Geimer18 2007-09-05 ParCo 2007, Aachen/Jülich

Thank you!

For more information and
downloads, please visit
our project home page:

http://www.scalasca.org

SWEEP3D virtual topology, Wait at NxN, 16K CPUs

Try out our new release
SCALASCA 0.9!

	Scalable Collation and Presentation of Call-Path Profile Data with CUBE
	Outline
	Motivation
	What is CUBE?
	CUBE data model
	CUBE user interface
	Scalability issues in CUBE
	Collation of data sets
	Parallel collation approach
	Comparison of collation time
	Comparison of total analysis time
	Client-server architecture
	Optimized data structures
	Comparison of CUBE memory usage
	Improved aggregation algorithms
	Comparison of calculation time
	Conclusion
	Thank you!

