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Motivation

« Advanced numerical simulations harness higher
degrees of parallelism

« Custom-built large-scale systems

Scalabllity is a major concern

This does not only apply to simulations,
but also to tools!
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What is CUBE?

« Data model to represent runtime data from
parallel programs

« XML-based file format
« C++ library to create/read/write experiments
» Generic graphical user interface

* Primarily designed to display analysis results in the

SCALASCA performance tool set =tats I 25C£8

» Also used in combination with
TAU and MARMOT
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CUBE data model

» Three-dimensional representation Call
* Metrics of path
 Call paths g i
« System locations (threads) = .

Location

« Each dimension arranged in a hierarchy

« Discrete severity function:
(metric m, call path c, thread t) — severity value v

* CUBE experiments consist of
« Definition part defining the hierarchies
« Severity function values
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CUBE user Iinterface

CUBE: epik_smg2000_jaguar_1l6384trace_solvecu
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Scalabllity issues in CUBE

» Collation (generation) of data sets
« Copying data between file systems
* Memory usage of the display

* Interactive response times
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Collation of data sets

« Data flow of previous SCALASCA trace analyzer
prototype:

Local
Trace Files

A\ 4

II] , Sequential Global CUBE
Local Results :
[ Parallel Analyzer Tt i

* Limited scalability
* Redundant definition data in local result files
» Linear scaling of sequential collation
* Unnecessary file I/O

_
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Parallel collation approach

» Online gather of local results on single master process,
writing only global CUBE file

* Problem: May exceed memory capacity of master

» Algorithm:
For each metric m
For each call path c
Gather single severity from each process
Incrementally write gathered data to CUBE file
Global barrier
End
End

Incremental writing implemented in C-based writer library
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Comparison of collation time
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Comparison of total analysis time
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Client-server architecture

* Avoids transferring large analysis data sets from
supercomputer to remote desktop

« Client
* Running on user‘s desktop machine
 Lightweight display component
* Querying required data from server on demand
« Caches static definition data
* Server
* Running on supercomputer‘s frontend/login node
» Takes care of data processing and aggregation
« Can potentially be parallelized (OpenMP)
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Optimized data structures

» Severity function stored as 3D matrix
» Sparsely populated

* Implemented using nested STL map containers
Metric — ( Call path —» ( Thread — Severity ) )

* Observation: Thread dimension is usually very dense

« STL maps often implemented as self-balancing
binary search trees

* Replacing innermost map by an STL vector
(l.e., contiguous array) saves memory overhead
of tree data structure

« Better memory locality also improves performance
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Comparison of CUBE memory usage
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Improved aggregation algorithms

* Enumeration of metrics, call paths, and threads
« Child nodes get higher IDs than their parents
* Allows replacing recursions with iterations

« Example: Inclusive/exclusive severity values
» |terate from O to N-1 and calculate exclusive values

* [terate from N-1 to O and calculate inclusive values,
reusing already calculated sums at deeper levels

* Implemented as proof-of-concept for the most
Important algorithms
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Comparison of calculation time
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Conclusion

» Various scalability improvements
- Parallel collation of experiment results
« Client-server architecture
* Improved data structures & algorithms

* Allows analysis of experiments at substantially
larger scales
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Thank you!

For more information and
downloads, please visit
our project home page:

http://www.scalasca.org

Try out our new release
SCALASCA 0.9!

Markus Geimer
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