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Outline

• Introduction
• Parallel collation of input data
• Client-server architecture
• Optimized data structures and algorithms
• Conclusion
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Motivation

• Advanced numerical simulations harness higher
degrees of parallelism
• Custom-built large-scale systems
• More CPU cores instead of higher clock speeds

• Scalability is a major concern

This does not only apply to simulations,
but also to tools!
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What is CUBE?

• Data model to represent runtime data from
parallel programs

• XML-based file format
• C++ library to create/read/write experiments
• Generic graphical user interface

• Primarily designed to display analysis results in the
SCALASCA performance tool set

• Also used in combination with
TAU and MARMOT
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CUBE data model

• Three-dimensional representation
• Metrics
• Call paths
• System locations (threads)

• Each dimension arranged in a hierarchy

• Discrete severity function:
(metric m, call path c, thread t) → severity value v

• CUBE experiments consist of
• Definition part defining the hierarchies
• Severity function values
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CUBE user interface

What kind of
performance

problem?

Where is it in the
source code?

In what context?

How is it distributed
across the system?

AggregationAggregation
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Scalability issues in CUBE

• Collation (generation) of data sets
• Copying data between file systems
• Memory usage of the display
• Interactive response times
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Collation of data sets

• Data flow of previous SCALASCA trace analyzer
prototype:

• Limited scalability
• Redundant definition data in local result files
• Linear scaling of sequential collation
• Unnecessary file I/O

Global CUBE
FileParallel Analyzer Sequential

Collation
Local Results

Local
Trace Files
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Parallel collation approach

• Online gather of local results on single master process,
writing only global CUBE file

• Problem: May exceed memory capacity of master

• Algorithm:
For each metric m

For each call path c
Gather single severity from each process
Incrementally write gathered data to CUBE file
Global barrier

End
End

• Incremental writing implemented in C-based writer library
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Comparison of collation time

SMG2000 trace
analysis on BG/L 
in Jülich
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Comparison of total analysis time

SMG2000 trace
analysis on BG/L 
in Jülich
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Client-server architecture

• Avoids transferring large analysis data sets from
supercomputer to remote desktop

• Client
• Running on user‘s desktop machine
• Lightweight display component
• Querying required data from server on demand
• Caches static definition data

• Server
• Running on supercomputer‘s frontend/login node
• Takes care of data processing and aggregation
• Can potentially be parallelized (OpenMP)
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Optimized data structures

• Severity function stored as 3D matrix
• Sparsely populated
• Implemented using nested STL map containers

Metric → ( Call path → ( Thread → Severity ) )

• Observation: Thread dimension is usually very dense
• STL maps often implemented as self-balancing

binary search trees
• Replacing innermost map by an STL vector

(i.e., contiguous array) saves memory overhead
of tree data structure

• Better memory locality also improves performance
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Comparison of CUBE memory usage

SMG2000 trace
analysis results
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Improved aggregation algorithms

• Enumeration of metrics, call paths, and threads
• Child nodes get higher IDs than their parents
• Allows replacing recursions with iterations

• Example: Inclusive/exclusive severity values
• Iterate from 0 to N-1 and calculate exclusive values
• Iterate from N-1 to 0 and calculate inclusive values,

reusing already calculated sums at deeper levels

• Implemented as proof-of-concept for the most
important algorithms
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Comparison of calculation time
SMG2000 trace
analysis results
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Conclusion

• Various scalability improvements
• Parallel collation of experiment results
• Client-server architecture
• Improved data structures & algorithms

• Allows analysis of experiments at substantially
larger scales
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Thank you!

For more information and
downloads, please visit
our project home page:

http://www.scalasca.org

SWEEP3D virtual topology, Wait at NxN, 16K CPUs

Try out our new release
SCALASCA 0.9!
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