
Continuous Runtime Profiling of OpenMP
Applications

Karl Fuerlinger, Shirley Moore

{karl,shirley}@cs.utk.edu

Continuous Runtime Profiling| 2Parco 2007, Juelich, Aachen

Outline

Motivation
–

OpenMP and tools support

ompP: a profiling tool for OpenMP
–

Flat profiles, callgraph

profiles, data model
–

Performance properties
–

Overhead classification

Continuous runtime profiling
–

Adding temporal dimension to profiling-type performance data
–

New performance data views:
•

Overheads, properties over time
•

Performance counter heat-maps
–

Examples from the SPEC OpenMP benchmark suite

Conclusion and Future work
–

Integration and extension

Continuous Runtime Profiling| 3Parco 2007, Juelich, Aachen

Motivation (1)

OpenMP
–

Threads-based and fork/join-oriented programming model
–

Worksharing

constructs

Parallel Regions

Master
Thread

Characteristics
–

Directive based (compiler pragmas, comments)
–

Incremental parallelization approach
–

Well suited for loop-based parallel programming
–

Less well suited for irregular parallelism (task/taskpool concepts to be included in
upcoming version 3.0 of the OpenMP specification).

–

One of the contending programming paradigms for the “mutlicore

era”
–

Traditional roots in the scientific computing community, but:
–

Microsoft Visual C and gcc now support OpenMP

Continuous Runtime Profiling| 4Parco 2007, Juelich, Aachen

Motivation (2)

Tool support for OpenMP is limited
–

No standardized tools interface yet, cf. PMPI interface for MPI
–

Proposal for interface from SUN for version 3.0 of the OpenMP standard

Vendor specific tools
–

SUN Studio, Intel Thread Profiler, Intel Thread Checker
–

Limited to the particular platform
–

Sampling-based approach
–

Work on system-

not user level

Research tools
–

Most tools use the POMP proposal for a performance interface for OpenMP
developed by Bernd Mohr et al. (FZ Juelich)

–

Accompanying Source-to-source instrumenter

called Opari
–

Successful tools for automatic and manual performance analysis have been
developed based on this approach

–

TAU (Univ. of Oregon)
–

KOJAK (Univ. of Tennessee and FZ Juelich)
–

ompP: Pure profiling tool with text-based output

Continuous Runtime Profiling| 5Parco 2007, Juelich, Aachen

Outline

Motivation
–

OpenMP and tools support

ompP: a profiling tool for OpenMP
–

Flat profiles, callgraph

profiles, data model
–

Performance properties
–

Overhead classification

Continuous runtime profiling
–

Adding temporal dimension to profiling-type performance data
–

New performance data views:
•

Overheads, properties over time
•

Performance counter heat-maps
–

Examples from the SPEC OpenMP benchmark suite

Conclusion and Future work
–

Integration and extension

Continuous Runtime Profiling| 6Parco 2007, Juelich, Aachen

ompP (1)

ompP is a profiling tool for OpenMP
–

Available with user guide and manual under GPL license
from http://www.ompp-tool.com

–

Works with all Unix-like OS and OpenMP compiler combinations
–

Tested and supported: Linux, Solaris, AIX and Intel, Pathscale, PGI, IBM, gcc

 compilers

Source Code Instrumentation: OpenMP constructs,
manual region instrumentation

Executable

Execution on
parallel machine

Profiling Report

Settings (env. Vars)
HW Counters,

output format,…

http://www.ompp-tool.com/

Continuous Runtime Profiling| 7Parco 2007, Juelich, Aachen

ompP (2)

Characteristics:
–

Target application can be written in FORTRAN or C/C++
–

ompP

is implemented as a static library linked to the target application
–

Source-code instrumentation with Opari
–

Simple usage with wrapper script, e.g., kinst-ompp icc –o test test.c
–

Setting options as environment variables, e.g., export OMPP_OUTFORMAT=csv
–

Reports execution times and counts for various OpenMP constructs
–

Data is presented in terms of the user model of execution, not the system model
–

Supports HW counters using PAPI
–

ASCII based profiling report is delivered at program end

Continuous Runtime Profiling| 8Parco 2007, Juelich, Aachen

ompP (3)

Advanced productivity features
–

Evaluators
•

Compute expressions involving HW counters directly
•

Ex: OMPP_EVAL1=1-L2_MISSES/L2_REFERENCES
–

Mid-run dumping of the profiling report is supported
•

Useful for long-running applications
–

Overhead Analysis
•

Four well defined overhead categories of parallel execution
•

Analysis for individual parallel region and whole program
–

Scalability Analysis
•

Analyze overheads for increasing thread counts
–

Performance Properties
•

Detect common inefficiency situations
–

Continuous runtime profiling
•

Profiling-over-time adds temporal dimension

Continuous Runtime Profiling| 9Parco 2007, Juelich, Aachen

ompP’s Profiling Report

General Information
–

Date, time, duration of the run, number of threads, used hardware counters,…

Region Overview
–

Number of regions and their source-code locations

Flat Region Profile
–

Inclusive times, counts, hardware counter data

Callgraph (-tree)

Callgraph Profiles
–

Inclusive and exclusive data

Overhead Analysis Report
–

Four overhead categories, per-parallel region breakdown, absolute times and
percentages

Performance Property Detection Report
–

Points out common inefficiency situations

Continuous Runtime Profiling| 10Parco 2007, Juelich, Aachen

R00002 main.c (34-37) (default) CRITICAL
TID execT execC bodyT enterT exitT PAPI_TOT_INS

0 3.00 1 1.00 2.00 0.00 1595
1 1.00 1 1.00 0.00 0.00 6347
2 2.00 1 1.00 1.00 0.00 1595
3 4.00 1 1.00 3.00 0.00 1595

SUM 10.01 4 4.00 6.00 0.00 11132

Flat Region Profile (1)

Example:

Components:
–

Region Number
–

Source code location and region type
–

Timing data and execution counts, depending on the particular construct
–

One line per thread, last line sums over all threads
–

Hardware counter data (if PAPI is available and HW counters are selected)

Continuous Runtime Profiling| 11Parco 2007, Juelich, Aachen

Flat Region Profile (2)

Times and counts reported by ompP for various OpenMP constructs

____T: time

____C: count

Main =
enter +
body +
barr +
exit

Continuous Runtime Profiling| 12Parco 2007, Juelich, Aachen

Overhead Analysis (1)

Certain timing categories reported by ompP can be classified as
overheads:

–

Example: exitBarT: Time wasted by threads idling at the exit barrier of work-

 sharing constructs. Reason is most likely an imbalanced amount of work

Four overhead categories are defined in ompP:

–

Imbalance: waiting time incurred due to an imbalanced amount of work in a

 worksharing

or parallel region

–

Synchronization: overhead that arises due to threads having to synchronize their
activity, e.g. barrier call

–

Limited Parallelism: idle threads due not enough parallelism being exposed by the
program

–

Thread management: overhead for the creation and destruction of threads, and for
signaling critical sections, locks as available

Continuous Runtime Profiling| 13Parco 2007, Juelich, Aachen

Overhead Analysis (2)

S:

Synchronization overhead

I: Imbalance overhead

M:

Thread management overhead

L: Limited Parallelism overhead

Continuous Runtime Profiling| 14Parco 2007, Juelich, Aachen

OpenMP Scalability Analysis

Methodology
–

Classify execution time into “Work”

and four overhead categories: “Thread
Management”, “Limited Parallelism”, “Imbalance”, “Synchronization”

–

Analyze how overheads behave for increasing thread counts
–

Graphs show accumulated runtime over all threads for fixed workload (strong
scaling)

–

Application example: 314.mgrid_m from the SPEC OpenMP benchmark suite

Scaling from 2 to 32 processors
on an SGI Altix machine

Markedly smaller load imbalance
for thread counts of 32 and 16.
Only three parallel loops show this
behavior

In all three cases, the iteration
count is always a power of two (2
to 256), hence thread counts which
are not a power of two exhibit larer
load imbalance

Continuous Runtime Profiling| 15Parco 2007, Juelich, Aachen

Property ImabalanceInParallelRegion
{
let

}

Performance Properties (1)

Other way to look at overheads
–

Example: parallel region with 4 threads, load is imbalanced

exitBarT[i] time that thread i
spends in the “exit barrier”,
quantifies load imbalance

0 1 2 3

imbal=exitBarT[0]+…+exitBarT[N-1];

Condition: (region.type)==PARALLEL && (imbal>0.0);

Severity: imbal/(total runtime * number of threads);

ASL formalism to specify properties

Continuous Runtime Profiling| 16Parco 2007, Juelich, Aachen

Performance Properties (2)

Detection of common inefficiency situations:
–

Severity is fraction of total runtime lost due to the inefficiency
–

Supported performance properties:
•

WaitAtBarrier
•

ImbalanceInParallelRegion
•

ImbalanceInParallelLoop, -Workshare

,-Sections
•

ImbalanceDueToNotEnoughSections
•

ImbalanceDueToUnevenSectionDistribution
•

CriticalSectionContention, LockContention
•

FrequentAtomic
•

InsufficienWorkInParallelLoop
•

UnparallelizedInMasterRegion, -SingleRegion

--
---- ompP Performance Properties Report -----------------------
--

PROPERTY 'ImbalanceInParallelRegion' holds for
'PARALLEL zaxpy.F (48-81)', with a severity of 0.041476

PROPERTY 'ImbalanceInParallelLoop' holds for
'LOOP zaxpy.F (55-59)', with a severity of 0.035408

...

Continuous Runtime Profiling| 17Parco 2007, Juelich, Aachen

Outline

Motivation
–

OpenMP and tools support

ompP: a profiling tool for OpenMP
–

Flat profiles, callgraph

profiles, data model
–

Performance properties
–

Overhead classification

Continuous runtime profiling
–

Adding temporal dimension to profiling-type performance data
–

New performance data views:
•

Overheads, properties over time
•

Performance counter heat-maps
–

Examples from the SPEC OpenMP benchmark suite

Conclusion and Future work
–

Integration and extension

Continuous Runtime Profiling| 18Parco 2007, Juelich, Aachen

Continuous Runtime Profiling

Profiling vs. Tracing
–

Profiling:
•

Low overhead, smaller amounts of data
•

Easier to comprehend, textual interpretation possible
–

Tracing:
•

Large quantities of data, hard to comprehend manually
•

Can explain temporal phenomena, causal relationships of events are preserved

Continuous runtime profiling: try to combine advantages of profiling and tracing
–

Add a temporal dimension to profiling-type performance data
–

See what happens during the execution without capturing full traces
–

Manual interpretation becomes harder since a new dimension is added to the performance data

“One-shot”

Profiling

Continuous Profiling

Implementation:
–

Capture and dump profiling reports not only at
the end of the execution but several times while
the application executes

–

Analyze how profiling reports change over time

time

Continuous Runtime Profiling| 19Parco 2007, Juelich, Aachen

Continuous Runtime Profiling

Triggers for capturing profiles:
–

Timer-based, fixed: capture profiles in regular, uniform intervals: predictable
storage requirements (depends only on duration of program run, size of dataset).

–

Timer-based, adaptive: Adapt the capture rate to the behavior of the application:
dump often if application behavior changes, decrease rate if application behavior
stays the same

–

Overflow-based: Dump a profile if a hardware counter overflows. Interesting for
floating point intensive application

–

User-added: Expose API for dumping profiles to the user aligned to outer loop
iterations or phase boundaries

Continuous Runtime Profiling| 20Parco 2007, Juelich, Aachen

Continuous Runtime Profiling

Trigger currently implemented in ompP:
–

Capture profiles in regular intervals (selectable, 1 sec used in

the experiments)
–

Timer signal is registered and delivered to profiler
–

Profiling data up to capture point stored to memory buffer
–

Dumped as individual profiling reports at the end of program execution
–

Perl scripts to analyze reports and generate graphs

Experiments
–

SPEC OpenMP benchmark suite
•

Medium variant, 11 applications

–

32 CPU SGI Altix

machine
•

Itanium-2 processors with 1.6 GHz and 6 MB L3 cache
•

Used in batch mode

Continuous Runtime Profiling| 21Parco 2007, Juelich, Aachen

Continous Profiling: Data Views (1)

1. Region invocations over Time
–

See which OpenMP region was executed how often and when during the execution
of the application

–

Either for a particular thread or summed over all threads
–

Two most time-consuming regions of application 328.fma3d:

2: Region execution time over time
–

same as invocations but use time instead of execution count

Continuous Runtime Profiling| 22Parco 2007, Juelich, Aachen

Continuous Profiling: Data Views (2)

3. Overheads over time
–

See how overheads develop over the application run
–

How is each Δt (1sec) spent for work or for one of the overhead classes
–

Either for whole program or for a specific parallel region
–

Total incurred overhead=integral under this function

Application: 328.fma3d_m

Initialization in a critical section, effectively
serializing the execution for approx. 15
seconds. Overhead=31/32=96%

Continuous Runtime Profiling| 23Parco 2007, Juelich, Aachen

Continuous Profiling: Data Views (3)

4. Performance Properties over time
–

Severity: negative impact on performance up to the capture point: percentage of
CPU time lost due to inefficiency situation

Continuous Runtime Profiling| 24Parco 2007, Juelich, Aachen

Continuous Profiling: Data Views (4)

4. Performance Properties over time (contd.)
–

318.galgel
–

324.equake

Continuous Runtime Profiling| 25Parco 2007, Juelich, Aachen

Continuous Profiling

Performance counter heatmaps
–

x-axis: Time, y-axis: Thread-ID
–

Color: number of hardware counter events observed during sampling period
–

Application “applu”, medium-sized variant, counter: LOADS_RETIRED
–

Visible phenomena: iterative behavior, thread grouping (pairs)

Continuous Runtime Profiling| 26Parco 2007, Juelich, Aachen

Continuous Profiling

Performance counter heatmaps (contd.)
–

Application “apsi”, medium-sized variant, counter: FP_OPS_RETIRED
–

Visible phenomena: difference in thread behavior. Maybe related to placement of
threads on processors

Continuous Runtime Profiling| 27Parco 2007, Juelich, Aachen

Continuous Profiling

Performance counter heatmaps contd.
–

Application “galgel”, medium-sized variant, counter: DATA_EAR_CACHE_LAT1024
–

Visible phenomena: iterative behavior, stagger-pattern
–

Middle of the timeline cut-out

Continuous Runtime Profiling| 28Parco 2007, Juelich, Aachen

Outline

Motivation
–

OpenMP and tools support

ompP: a profiling tool for OpenMP
–

Flat profiles, callgraph

profiles, data model
–

Performance properties
–

Overhead classification

Continuous runtime profiling
–

Adding temporal dimension to profiling-type performance data
–

New performance data views:
•

Overheads, properties over time
•

Performance counter heat-maps
–

Examples from the SPEC OpenMP benchmark suite

Conclusion and future work
–

Integration and extension

Continuous Runtime Profiling| 29Parco 2007, Juelich, Aachen

Conclusion

Continuous runtime profiling
–

Add temporal dimension to profiling type performance data
–

Good balance between simplicity of profiling and insight of tracing

Phenomena that can be identified
–

Temporal location of contention for resources
–

When constructs get executed
–

Grouping of threads
–

Iterative behavior

Continuous Runtime Profiling| 30Parco 2007, Juelich, Aachen

Future Work

Integration with MPI profiler mpiP
–

Profiling for mixed-parallel codes
–

Different models of combined usage of OpenMP and MPI
–

MPI-time as communication overhead in ompP’s

overhead analysis

Support for nested OpenMP parallelism
–

Increasing interest in this model due to hierarchical organization

 of processing elelements

Further investigation of continuous profiling
–

Other triggers (API, hardware-counter based)
–

Analyze and explain visible patterns, starting from application kernels.

http://www.ompp-tool.com

Thank you for your
attention!

http://www.ompp-tool.com/

Continuous Runtime Profiling| 31Parco 2007, Juelich, Aachen

Backup Slides

Continuous Runtime Profiling| 32Parco 2007, Juelich, Aachen

Overhead Analysis Report

--
---- ompP Overhead Analysis Report ----------------------------
--
Total runtime (wallclock) : 172.64 sec [32 threads]
Number of parallel regions : 12
Parallel coverage : 134.83 sec (78.10%)

Parallel regions sorted by wallclock time:
Type Location Wallclock (%)

R00011 PARALL mgrid.F (360-384) 55.75 (32.29)
R00019 PARALL mgrid.F (403-427) 23.02 (13.34)
R00009 PARALL mgrid.F (204-217) 11.94 (6.92)
...

SUM 134.83 (78.10)

Overheads wrt. each individual parallel region:
Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)

R00011 1783.95 337.26 (18.91) 0.00 (0.00) 305.75 (17.14) 0.00 (0.00) 31.51 (1.77)
R00019 736.80 129.95 (17.64) 0.00 (0.00) 104.28 (14.15) 0.00 (0.00) 25.66 (3.48)
R00009 382.15 183.14 (47.92) 0.00 (0.00) 96.47 (25.24) 0.00 (0.00) 86.67 (22.68)
R00015 276.11 68.85 (24.94) 0.00 (0.00) 51.15 (18.52) 0.00 (0.00) 17.70 (6.41)
...

Overheads wrt. whole program:
Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%) + Mgmt (%)

R00011 1783.95 337.26 (6.10) 0.00 (0.00) 305.75 (5.53) 0.00 (0.00) 31.51 (0.57)
R00009 382.15 183.14 (3.32) 0.00 (0.00) 96.47 (1.75) 0.00 (0.00) 86.67 (1.57)
R00005 264.16 164.90 (2.98) 0.00 (0.00) 63.92 (1.16) 0.00 (0.00) 100.98 (1.83)
R00007 230.63 151.91 (2.75) 0.00 (0.00) 68.58 (1.24) 0.00 (0.00) 83.33 (1.51)
...

SUM 4314.62 1277.89 (23.13) 0.00 (0.00) 872.92 (15.80) 0.00 (0.00) 404.97 (7.33)

Number of threads, parallel
regions, parallel coverage

Wallclock

time x number of threads Overhead percentages wrt. this
particular parallel region

Overhead percentages wrt. whole
program

	Continuous Runtime Profiling of OpenMP Applications
	Outline
	Motivation (1)
	Motivation (2)
	Outline
	ompP (1)
	ompP (2)
	ompP (3)
	ompP’s Profiling Report
	Flat Region Profile (1)
	Flat Region Profile (2)
	Overhead Analysis (1)
	Overhead Analysis (2)
	OpenMP Scalability Analysis
	Performance Properties (1)
	Performance Properties (2)
	Outline
	Continuous Runtime Profiling
	Continuous Runtime Profiling
	Continuous Runtime Profiling
	Continous Profiling: Data Views (1)
	Continuous Profiling: Data Views (2)
	Continuous Profiling: Data Views (3)
	Continuous Profiling: Data Views (4)
	Continuous Profiling
	Continuous Profiling
	Continuous Profiling
	Outline
	Conclusion
	Future Work
	Slide Number 31
	Overhead Analysis Report

