

Center for Information Services and High Performance Computing (ZIH)

Performance Optimization on the Next Generation of Supercomputers

How to meet the Challenges?

Zellescher Weg 12 Tel. +49 351 - 463 - 35450

Jülich, July 4th, 2007

Wolfgang E. Nagel (wolfgang.nagel@tu-dresden.de)

Petaflops – the future is about there!

Where are we today? A view from Dresden

- Measurements
- BenchIT
- Vampir

Some concluding remarks

Performance Projection

HPC Situation at TU Dresden (HRSK)

Challenges which need PetaFlops (Scientific Case)

- Weather, Climatology and Earth Sciences
 - Climate change
 - Oceanography and Marine Forecasting
 - Meteorology, Hydrology and Air Quality
 - Earth Sciences
- Astrophysics, HEP and Plasma Physics
 - Astrophysics
 - Elementary Particle Physics
 - Plasma physics
- Materials Science, Chemistry and Nanoscience
 - Understanding Complex Materials
 - Understanding Complex Chemistry
 - Nanoscience

Challenges which need PetaFlops (Scientific Case)

Life Sciences

- Systems Biology
- Chromatine Dynamics
- Large Scale Protein Dynamics
- Protein association and aggregation
- Supramolecular Systems
- Medicine
- Engineering
 - Complete Helicopter
 - Simulation
 - Biomedical Flows
 - Gas Turbines & Internal Combustion Engines
 - Forest Fires
 - Green Aircraft
 - Virtual Power Plant

What are the major challenges ... in our area

- Getting Petaflops machines
- Getting Petaflops machines also in Europe!
- Performance problem isolation debugging when problems occur
- Metrics that capture new issues such as space, power, cooling (TCO)
- Metrics that capture hardware and software reliability and consistency
- How to measure performance on a diverse set of architectures, including heterogeneous, large-scale, etc.?
- How do you set performance expectations? Aggregate measures or performance modeling? How do you know you can trust the models?
- Users that view the machines as "utilities"
 - Usability and performance issues

(from Patricia Kovatch, SDSC)

- Probably 1 million cores with 1 GB of memory/core -> 1 PB of total memory
- We generally allocate 2 GB of memory/CPU now so what will apps do? Idle cores due to memory size and BW
 - 1 PB probably too expensive, assume 0.5 PB
- Performance changes with Petascale?
 - Expect parallel file system performance ~1 TB/s
 - ~10 minutes to write to disk at this speed, no significant changes
- Memory will be more important than cores!

- 1 TB cartridge costs ~\$100 -> 0.5 PB costs ~\$50K!
 - Assuming 0.5 PB total system memory
 - Write memory 4X/week -> \$10M/year for tapes?!!
- Or consider actual archival usage at SDSC
 - DataStar: ~5 TB/memory -> \$1M/year in tapes
 - Petascale: 100X memory -> \$100M/year in tapes?!!!
 - Much more expensive than power costs!
- Storage size?
 - Data parked on parallel file system for 3 months at a time -> 24 PB file system, 50 PB more likely
 - Assuming full system memory written 4X/wk * 0.5 PB * 12 weeks
- Storage more expensive than flops!

- Memory-driven computing
 - Allocations and queuing based on memory, not cores
 - Memory is the scare resource, cores sit unused
- Disk-driven storage
 - Allocations based on storage
 - Tape costs are prohibitive
 - RAID 6 and other schemes essential for highly reliable file systems
 - Integrated global parallel file system and archival storage
 - Users perform real-time, concurrent analysis and visualization
 - Faster/cheaper to rerun job than to restage data from archive

It is all about data ...

Cray T3E - Fortran Version

Cray T3E - C Version

High Performance Computing

High Performance Computing

High Performance Computing

Current hardware architectures allow to achieve reasonable performance, but most times only with hand-tuned code

Very difficult to predict, which hardware architecture and which software algorithm is the best for a certain user application!

Users have to be supported to run parallel systems efficiently!

BenchIT provides tools to ...

High Performance Computing

Editor

Console

DRESDEN

DRESDEN

DRESDEN

BenchIT – Step by Step

BenchIT – Step by Step

TECHNISCHE UNIVERSITÄT

DRESDEN

DRESDEN

www.benchit.org

⇒Software-Tool: "Vampir"

- Performance visualization and analysis tool
- Enables detailed understanding of dynamic process changes on massively parallel systems
- X Window based system (implemented in C, based on OSF/Motif)
- Development started more than 15 years ago at Research Centre Jülich, ZAM
- Since 1997, Vampir is developed at TU Dresden (first: collaboration with Pallas GmbH, from 2003-2005: Intel Software & Solutions Group, since January 2006: TU Dresden / ZIH)
- Vampir pretty much accepted in the field

Vampir Server Architecture

High Performance Computing

High Performance Computing

Center for Information Services & High Performance Computing

High Performance Computing

DRESDEN

Center for Information Services & High Performance Computing

Vampir: Summary Chart

		a.otf	(0.864 ms - 29:4	42.282 = 29:42.	281)		
0.000s	1:40.0	3:20.0	5:00.0	6:40.0	8:20.0	10:00.0	11:40.0
CHEMIE							2h:11h:29>
_Sendrecv							1h:08a:13>
MIE							58:41.743>
SS_SEIDEL							30:55.334 >
TAL [435]							25:19,754 >
_Allreduce	100 C	100	11 C	100	100 C	11:2	1,147
OLL [399]						10:23.224	
D_COPY		į			8:45,698		
DE			6:13.	715	1		8
OLL [390]			6:07.4	14	1	1	1
COL [385]			6:02.48	8	1	1.1	
T_MAVES	1	1	5:56.08	5	1		
COL [391]			5,49,842		1	1	
H2::PACKBUFF	1	1	5:37.743		1	1	
TIED			5:34.073	1	1	1	
Barrier		1	5:16.478	1	1		
TEPOS			5:10.633	1	1	1	1
ACE		4.21.9	51		i i		i i
ne		4-11 648			1	1	
KOI [457]		4.05 49		1	1	1	1
KOL [458]		2+57 298	1	1	1	1	1
Cathan		7.47 749	1	1	1	1	
_Gacrier		7.40.004	1	1	1		10
IFF [300]		3:40.234	1	i	1	1	1
CET [241]	7.0	2.04	1	1	1		
	5:0	7.604		1	1	1	
_BCast	5:01	.443		i i		- E	
EL3 [402]	2:27.605	;					
W_TENDENCIES	2:15,402	1	1	1	1	1	1
UFF [434]	2:09.531	1	1				
IES [359]	2:07,148	1	(1	1		
IVELOCITY	1:58.088	1	1	1	1	1	
SO [495] 1	:38.249	1			1	1	
NGE_MDE_EXCH 1:	29.785	i	1	1	1	1	
_Recv 1	28,689	1	1	1	1		
EC3 [392] 1:19	.233	1	1	1	1		
EC3 [393] 1:18	.708	i	1	1	i.	i.	
1:17	.007	•				1. C	•
			Displayed 37 fr	rom 369 bans		All Su	mbols: Exclusiv

Vampir: Summary Timeline

High Performance Computing

Vampir: Process Profile

DRESDEN

Center for Information Services & High Performance Computing

Focus I/O: Getting Data from the Application

- Catching all I/O calls from the application
 - Adding them to the trace as performance counter data
 - Include filenames, offsets, and request sizes as OTF comments
 - Currently done with LD_PRELOAD library
 - Data needs to be merged with application OTF trace
 - Captured data: open (filename, filedescriptor), read/write (filedescriptor, size), close/dup (filedescriptor), seek (filedescriptor, position)
- Tracing I/O requests within the kernel
 - To follow the path of the request to the devices

Vampir I/O Stats per Process (work in progress)

Vampir I/O Stats per Process (work in progress)

Center for Information Services & High Performance Computing

Including DDN Statistics (work in progress)

<mark> Vampir - Ti</mark> m	eline DDN to	tals	14.1		40.0E 44				_	<u> </u>			
0,0 s ddn func 1 yaw	1.0 s	2.0 s	3.0 s	4.0 s	5.0 s	6.0 s	7.0 s	8.0 s	9.0 s	10.0 s			
									1				
268.44 e6													
201,33 e6						1							
67,11 e6							L <u>i</u>						
0													
1/3,30 167,77_e6	168 e6								Jata read o	n raidla ¦			
134,22 e6													
67,11 e6													
33,55 e6 0													
105,95	i61 e6								Data read o	n raid1þ			
201.33 e6		ļ						1					
134,22 e6													
67.11 e6													
154,13	398 e6								Data read o	n raid2a			
201.33 e6		_											
134.22 e6										<u> </u>			
67.11 e6													
0	21 e6								Data read o	n raid2h			
			_		_	_	_	_	2000 1000 0				
									/ 4				
	SCHE												

Perspective for Vampir and Vampir NG

- Parallel systems will become larger and cheaper!
- Software tools will become even more important!
- Difference between peak performance and sustained performance is huge
- Necessity for performance optimization increases with peak performance
- Unfortunately, complexity of the tools increases, too!
- Tool development today has to focus on computer architecture from tomorrow
- We will keep Vampir and Vampir NG as portable tools in the market

Activities in the VI-HPS:

we will strongly focus on an Integrated Tool Ecosystem

Thanks and Contacts

Vampir/OTF

- Holger Brunst, Heike Jagode, Hartmut Mix , Reinhard Neumann, ...
- Andreas Knüpfer, Matthias Jurenz, ...
- I/O Tracing Facilities
 - Guido Juckeland, Michael Kluge
 - Holger Mickler
 - Overall responsibility
 - Dr. Matthias Müller
 - Many many more

Visit us at www. tu-dresden. de/zi h and www. vampi r. eu

