
July 4th 2007 VI-HPS Inauguration Workshop

Scalable Performance Analysis
of Large-scale Applications
Markus Geimer
m.geimer@fz-juelich.de



Markus Geimer2

Central Institute for Applied Mathematics

• One of the most powerful
scientific computing centers
in Europe
• John von Neumann Institute

for Computing

• Research
• Methodological advancement of supercomputing
• Operation of supercomputers as scientific large-scale

devices
• Essential component: performance analysis tools
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Outline

• Motivation
• Performance measurement & analysis
• Addressing scalability: SCALASCA
• Experimental evaluation
• Conclusion
• Outlook
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Increasing parallelism

• Advanced numerical simulations harness higher
degrees of parallelism
• Custom-built large-scale systems
• More CPU cores instead of higher clock speeds

• Scalability is a major concern
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Performance gap

• Available systems are not used efficiently
• Sustained application performance << peak performance

• Growing size and complexity of platforms and codes
• Limited parallelism in applications
• Hierarchies of latencies and

bandwidths
• Remote data accesses
• Multi-physics applications

Optimization difficult and
time consuming
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Cost-effective development of efficient code

• Higher degrees of parallelism 
• Also new demands on scalability of software tools

• Traditional tools cease to work in a satisfactory               
manner for large processor counts
• Escalating memory requirements, limited I/O bandwidth, etc. 

• Scalable performance tools must become an integral part 
of the software-development environment

Will have significant impact on the overall productivity
of high-performance computing systems
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Runtime summarization vs. event tracing

• Process-local calculation of 
various metrics, e.g.,
• Time spent in each function
• Message statistics
• Hardware counters

• Summarized in single report
• Provides overview of program’s 

execution

• Recording of time-stamped 
events at runtime, e.g.,
• Entering / leaving a function
• Sending / receiving a 

message
• Collective operations

• Post-mortem analysis
• High level of detail through 

reconstruction of dynamic 
program behavior

Both approaches are valuable and should be tightly 
integrated to produce the best results possible
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Time-line visualization

• Useful for fine-grained investigation of performance problems
• “Human client”

Discovery of wait 
states

zoom in
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Automatic off-line trace analysis

• Idea
• Automatic search for patterns of inefficient behavior
• Classification of behavior
• Quantification of significance

• Guaranteed to cover the entire event trace
• Identifies bottleneck instances

• Can be used to direct time-line visualization
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Sequential trace analysis approach

Source Code Automatic multilevel
instrumentation

Executable

Global trace file Sequential analyzer
Trace analysis

reportMerge

Execution on
parallel machine

Local trace files

Instrumentation

Measurement

Analysis
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Trace size limits scalability

Execution time
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• Serially analyzing a single global 
trace file does not scale to 1000s 
of processors

• Main memory might be insufficient 
to store context of current event

• Amount of trace data might not                
fit into single file 
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SCALASCA

• Helmholtz-University Young Investigators Group
• Started in January 2006
• Funded by Helmholtz Initiative and Networking Fund

• Objective: develop a scalable performance analysis tool
• Basic ideas:

• Parallelization of trace analysis
• Integration of runtime summarization

• Current focus: single-threaded MPI-1 applications
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SCALASCA’s integrated analysis process

Trace analysis
report

Source Code Automatic multilevel
instrumentation

Executable

Runtime
summary reportReport analysis

Execution on
parallel machine

Local trace files

Instrumentation

Measurement

Analysis

C
on

fig
ur

at
io

n
/ r

ef
in

em
en

t

Parallel trace
analyzer



Markus Geimer14

Parallel pattern analysis

• Analyze separate local trace files in parallel
• Exploit distributed memory and processing capabilities
• Often allows keeping whole trace in main memory

• Parallel replay of target application‘s communication 
behavior
• Analyze communication with an operation of the same type
• Traverse local traces in parallel
• Exchange data at synchronization points of target 

application
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Experimental evaluation

• Scalability test
• ASC SMG2000 benchmark
• Semi-coarsening multi-grid solver
• Fixed problem size per process – weak scaling behavior

• Application analysis
• XNS fluid dynamics code
• FE simulation on unstructured meshes
• Constant overall problem size – strong scaling behavior

• Test platform: IBM Blue Gene/L in Jülich (JUBL)
8 Racks with 8192 dual-core nodes
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Scalability of trace analysis

At 16,384 CPUs:
• 230 GB compressed

trace data
• > 40 · 109 events
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XNS CFD application

• Academic computational fluid dynamics code for 
simulation of unsteady flows
• Developed by group of Marek Behr, Computational Analysis 

of Technical Systems, RWTH Aachen University
• Exploits finite-element techniques, unstructured 3D meshes, 

iterative solution strategies
• >40,000 lines of Fortran90 using MPI

• Simulation of blood pump haemodynamics
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SCALASCA: Wait states in tuned version of XNS

Wait states in XNS (tuned version)
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SCALASCA XNS analyses 
of 4096 processes 
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Conclusion

• Wait states addressed by our analysis can be significant 
performance problems – especially at larger scales

• Scalability of the trace analysis can be addressed by 
parallelization
• Process local trace files in parallel
• Replay target applications communication behavior

• Promising results with prototype implementations
• Analysis scales up to 16,384 processes
• Enables analyzing traces of previously impractical size
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Vision: Integrated tool environment

Trace analysis
report

Source Code Automatic multilevel
instrumentation
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Runtime
summary reportReport analysis

Execution on
parallel machine

Local trace files

C
on

fig
ur

at
io

n
/ r

ef
in

em
en

t

Parallel trace
analyzer

Correctness checker
MARMOT

Time-line visualizer
VAMPIR



Markus Geimer22

Thank you!

For more information, visit
our project home page:

http://www.scalasca.org

SWEEP3D virtual topology, Wait at NxN, 16K CPUs


