
July 4th 2007 VI-HPS Inauguration Workshop

Scalable Performance Analysis
of Large-scale Applications
Markus Geimer
m.geimer@fz-juelich.de

Markus Geimer2

Central Institute for Applied Mathematics

• One of the most powerful
scientific computing centers
in Europe
• John von Neumann Institute

for Computing

• Research
• Methodological advancement of supercomputing
• Operation of supercomputers as scientific large-scale

devices
• Essential component: performance analysis tools

Markus Geimer3

Outline

• Motivation
• Performance measurement & analysis
• Addressing scalability: SCALASCA
• Experimental evaluation
• Conclusion
• Outlook

Markus Geimer4

Increasing parallelism

• Advanced numerical simulations harness higher
degrees of parallelism
• Custom-built large-scale systems
• More CPU cores instead of higher clock speeds

• Scalability is a major concern

Markus Geimer5

Performance gap

• Available systems are not used efficiently
• Sustained application performance << peak performance

• Growing size and complexity of platforms and codes
• Limited parallelism in applications
• Hierarchies of latencies and

bandwidths
• Remote data accesses
• Multi-physics applications

Optimization difficult and
time consuming

Markus Geimer6

Cost-effective development of efficient code

• Higher degrees of parallelism
• Also new demands on scalability of software tools

• Traditional tools cease to work in a satisfactory
manner for large processor counts
• Escalating memory requirements, limited I/O bandwidth, etc.

• Scalable performance tools must become an integral part
of the software-development environment

Will have significant impact on the overall productivity
of high-performance computing systems

Markus Geimer7

Runtime summarization vs. event tracing

• Process-local calculation of
various metrics, e.g.,
• Time spent in each function
• Message statistics
• Hardware counters

• Summarized in single report
• Provides overview of program’s

execution

• Recording of time-stamped
events at runtime, e.g.,
• Entering / leaving a function
• Sending / receiving a

message
• Collective operations

• Post-mortem analysis
• High level of detail through

reconstruction of dynamic
program behavior

Both approaches are valuable and should be tightly
integrated to produce the best results possible

Markus Geimer8

Time-line visualization

• Useful for fine-grained investigation of performance problems
• “Human client”

Discovery of wait
states

zoom in

Markus Geimer9

Automatic off-line trace analysis

• Idea
• Automatic search for patterns of inefficient behavior
• Classification of behavior
• Quantification of significance

• Guaranteed to cover the entire event trace
• Identifies bottleneck instances

• Can be used to direct time-line visualization

Call
path

P
ro

pe
rty

Location

Low-level
event trace

High-level
result

Analysis ≡

Markus Geimer10

Sequential trace analysis approach

Source Code Automatic multilevel
instrumentation

Executable

Global trace file Sequential analyzer
Trace analysis

reportMerge

Execution on
parallel machine

Local trace files

Instrumentation

Measurement

Analysis

Markus Geimer11

Trace size limits scalability

Execution time

t
t

large

small

Event rate

t

t

high

low

Number of processes

t

w
id

th

• Serially analyzing a single global
trace file does not scale to 1000s
of processors

• Main memory might be insufficient
to store context of current event

• Amount of trace data might not
fit into single file

Lo
ng

 tr
ac

es
W

id
e

tra
ce

s

Markus Geimer12

SCALASCA

• Helmholtz-University Young Investigators Group
• Started in January 2006
• Funded by Helmholtz Initiative and Networking Fund

• Objective: develop a scalable performance analysis tool
• Basic ideas:

• Parallelization of trace analysis
• Integration of runtime summarization

• Current focus: single-threaded MPI-1 applications

Markus Geimer13

SCALASCA’s integrated analysis process

Trace analysis
report

Source Code Automatic multilevel
instrumentation

Executable

Runtime
summary reportReport analysis

Execution on
parallel machine

Local trace files

Instrumentation

Measurement

Analysis

C
on

fig
ur

at
io

n
/ r

ef
in

em
en

t

Parallel trace
analyzer

Markus Geimer14

Parallel pattern analysis

• Analyze separate local trace files in parallel
• Exploit distributed memory and processing capabilities
• Often allows keeping whole trace in main memory

• Parallel replay of target application‘s communication
behavior
• Analyze communication with an operation of the same type
• Traverse local traces in parallel
• Exchange data at synchronization points of target

application

Markus Geimer15

Experimental evaluation

• Scalability test
• ASC SMG2000 benchmark
• Semi-coarsening multi-grid solver
• Fixed problem size per process – weak scaling behavior

• Application analysis
• XNS fluid dynamics code
• FE simulation on unstructured meshes
• Constant overall problem size – strong scaling behavior

• Test platform: IBM Blue Gene/L in Jülich (JUBL)
8 Racks with 8192 dual-core nodes

Markus Geimer16

Scalability of trace analysis

At 16,384 CPUs:
• 230 GB compressed

trace data
• > 40 · 109 events

Markus Geimer17

XNS CFD application

• Academic computational fluid dynamics code for
simulation of unsteady flows
• Developed by group of Marek Behr, Computational Analysis

of Technical Systems, RWTH Aachen University
• Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies
• >40,000 lines of Fortran90 using MPI

• Simulation of blood pump haemodynamics

Markus Geimer18

SCALASCA: Wait states in tuned version of XNS

Wait states in XNS (tuned version)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

256 512 1024 2048 4096

Number of processes

W
al

l t
im

e
(s

) f
or

 a
 s

in
gl

e
tim

e
st

ep
 lo

op

Total
P2P
Late sender
Late sender / wrong order
Collective
Wait at n-to-n
Barrier
Wait at barrier

Markus Geimer19

SCALASCA XNS analyses
of 4096 processes

Markus Geimer20

Conclusion

• Wait states addressed by our analysis can be significant
performance problems – especially at larger scales

• Scalability of the trace analysis can be addressed by
parallelization
• Process local trace files in parallel
• Replay target applications communication behavior

• Promising results with prototype implementations
• Analysis scales up to 16,384 processes
• Enables analyzing traces of previously impractical size

Markus Geimer21

Vision: Integrated tool environment

Trace analysis
report

Source Code Automatic multilevel
instrumentation

Executable

Runtime
summary reportReport analysis

Execution on
parallel machine

Local trace files

C
on

fig
ur

at
io

n
/ r

ef
in

em
en

t

Parallel trace
analyzer

Correctness checker
MARMOT

Time-line visualizer
VAMPIR

Markus Geimer22

Thank you!

For more information, visit
our project home page:

http://www.scalasca.org

SWEEP3D virtual topology, Wait at NxN, 16K CPUs

