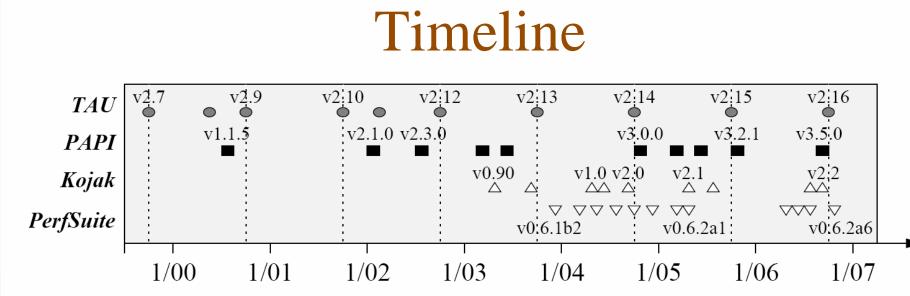
Hardware Performance Monitoring: Current and Future

Shirley Moore

<u>shirley@cs.utk.edu</u>

VI-HPS Inauguration

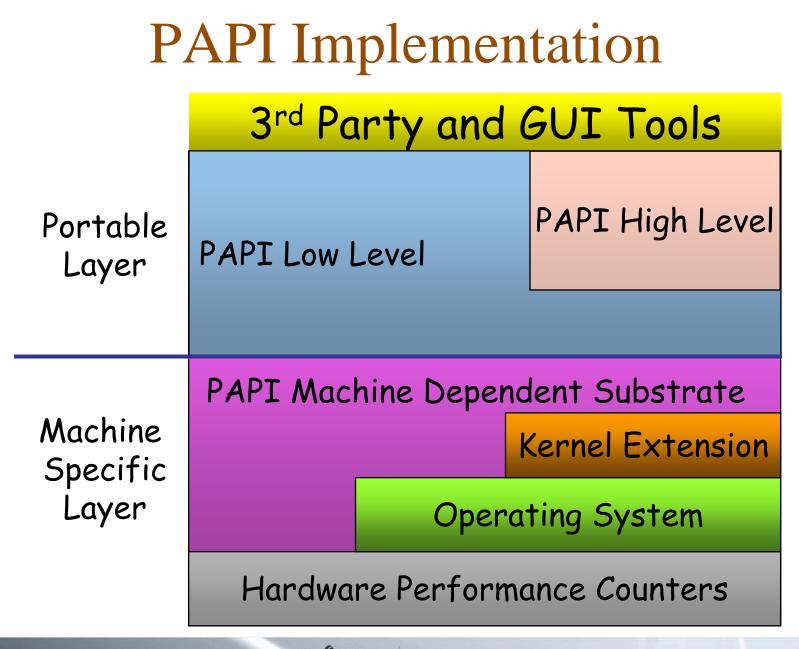
4July 2007



History of PAPI

- <u>http://icl.cs.utk.edu/papi/</u>
- Started as a Parallel Tools Consortium project in 1998
- Goal was to produce a specification for a portable interface to the hardware performance counters available on most modern microprocessors.

Timeline of releases for each tool represented in the project. The vertical dashed lines indicate SC conference dates where the tools are regularly demonstrated. TAU's v1.0 release occurred at SC'97.


SDCI HPC Improvement: High-Productivity Performance Engineering (Tools, Methods, Training) for NSF HPC Applications Allen D. Malony, Sameer Shende, Shirley Moore, Nick Nystrom, Rick Kufrin

PAPI Counter Interfaces

PAPI provides 3 interfaces to the underlying counter hardware:

- 1. The low level interface manages hardware events in user defined groups called *EventSets*, and provides access to advanced features.
- 2. The high level interface provides the ability to start, stop and read the counters for a specified list of events.
- 3. Graphical and end-user tools provide facile data collection and visualization.

ICL OUT

PAPI Hardware Events

- Preset Events
 - Standard set of over 100 events for application performance tuning
 - No standardization of the exact definition
 - Mapped to either single or linear combinations of native events on each platform
 - Use *papi_avail* utility to see what preset events are available on a given platform
- Native Events

6

- Any event countable by the CPU
- Same interface as for preset events
- Use *papi_native_avail* utility to see all available native events
- Use *papi_event_chooser* utility to select a compatible set of events

PAPI Preset Events

• Of ~100 events, over half are cache related:

PAPI_L1_DCH:	Level 1 data cache hits
PAPI_L1_DCA:	Level 1 data cache accesses
PAPI_L1_DCR:	Level 1 data cache reads
PAPI_L1_DCW:	Level 1 data cache writes
PAPI_L1_DCM:	Level 1 data cache misses
PAPI_L1_ICH:	Level 1 instruction cache hits
PAPI_L1_ICA:	Level 1 instruction cache accesses
PAPI_L1_ICR:	Level 1 instruction cache reads
PAPI_L1_ICW:	Level 1 instruction cache writes
PAPI_L1_ICM:	Level 1 instruction cache misses
PAPI_L1_TCH:	Level 1 total cache hits
PAPI_L1_TCA:	Level 1 total cache accesses
PAPI_L1_TCR:	Level 1 total cache reads
PAPI_L1_TCW:	Level 1 total cache writes
PAPI_L1_TCM:	Level 1 cache misses
PAPI_L1_LDM:	Level 1 load misses
PAPI_L1_STM:	Level 1 store misses Levels 2 and 3

THE UNIVERSITY of TENNESSEE Computer Science Department

PAPI Preset Events (ii)

• Other cache and memory events:

Shared cache	PAPI_CA_SNP: PAPI_CA_SHR: PAPI_CA_CLN: PAPI_CA_INV: PAPI_CA_ITV:	Requests for a snoop Requests for exclusive access to shared cache line Requests for exclusive access to clean cache line Requests for cache line invalidation Requests for cache line intervention
TLB	PAPI_TLB_DM: PAPI_TLB_IM: PAPI_TLB_TL: PAPI_TLB_SD:	Data translation lookaside buffer misses Instruction translation lookaside buffer misses Total translation lookaside buffer misses Translation lookaside buffer shootdowns
Resource Stalls	PAPI_LD_INS: PAPI_SR_INS: PAPI_MEM_SCY: PAPI_MEM_RCY: PAPI_MEM_WCY: PAPI_RES_STL: PAPI_FP_STAL:	Load instructions Store instructions Cycles Stalled Waiting for memory accesses Cycles Stalled Waiting for memory Reads Cycles Stalled Waiting for memory writes Cycles stalled on any resource Cycles the FP unit(s) are stalled

PAPI Preset Events (iii)

• Program flow:

Duanahaa	PAPI_BR_INS:	Branch instructions
Branches	PAPI_BR_UCN:	Unconditional branch instructions
	PAPI_BR_CN:	Conditional branch instructions
	PAPI_BR_TKN:	Conditional branch instructions taken
	PAPI_BR_NTK:	Conditional branch instructions not taken
	PAPI_BR_MSP:	Conditional branch instructions mispredicted
	PAPI_BR_PRC:	Conditional branch instructions correctly predicted
	PAPI_BTAC_M:	Branch target address cache misses

Condition	PAPI_CSR_FAL:	Failed store conditional instructions
Stores	PAPI_CSR_SUC:	Successful store conditional instructions
010165	PAPI_CSR_TOT:	Total store conditional instructions

THEUNIVERSITY of TENNESSEE Computer Science Department

PAPI Preset Events (iv)

• Timing, efficiency, pipeline:

PAPI_TOT_CYC:	Total cycles
PAPI_TOT_IIS:	Instructions issued
PAPI_TOT_INS:	Instructions completed
PAPI_INT_INS:	Integer instructions
PAPI_LST_INS:	Load/store instructions completed
PAPI_SYC_INS:	Synchronization instructions completed

PAPI_BRU_IDL:	Cycles branch units are idle
PAPI_FXU_IDL:	Cycles integer units are idle
PAPI_FPU_IDL:	Cycles floating point units are idle
PAPI_LSU_IDL:	Cycles load/store units are idle

PAPI_STL_ICY:	Cycles with no instruction issue
PAPI_FUL_ICY:	Cycles with maximum instruction issue
PAPI_STL_CCY:	Cycles with no instructions completed
PAPI_FUL_CCY:	Cycles with maximum instructions completed

THEUNIVERSITY

Computer Science Departmen

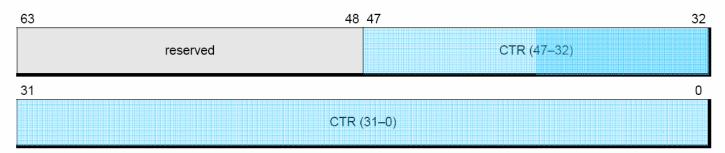
I F

Hardware interrupts

ICLOUT

INNOVATIVE COMPUTING LABORATORY

PAPI HW INT:


PAPI Preset Events (v)

• Floating point:

PAPI_FP_INS:	Floating point instructions
PAPI_FP_OPS:	Floating point operations
PAPI_FML_INS:	Floating point multiply instructions
PAPI_FAD_INS:	Floating point add instructions
PAPI_FDV_INS:	Floating point divide instructions
PAPI_FSQ_INS:	Floating point square root instructions
PAPI_FNV_INS:	Floating point inverse instructions
PAPI_FMA_INS:	FMA instructions completed
PAPI_VEC_INS:	Vector/SIMD instructions

What's a Native Event?

PMD: AMD Athlon, Opteron

31	24	23	22	21	20	19	18	17	16	15 8	7	0
CNT_MAS	SК	INV	EN	reserved	INT	РС	ш	SO	USR	UNIT_MASK 8 mask bits	EVENT_SELECT 8 bits: 256 event	s

PMC: Intel Pentium II, III, M, Core; AMD Athlon, Opteron

Intel Pentium Core: L2_ST

```
.pme name = "L2 ST",
.pme code = 0x2a,
.pme_flags = PFMLIB_CORE_CSPEC,
.pme_desc = "L2 store requests",
.pme umasks = {
  { .pme uname = "MESI",
    .pme_udesc = "Any cacheline access",
    .pme_ucode = 0xf\
  },
  { .pme_uname = "I_STATE",
    .pme_udesc = "Invalid cacheline",
    .pme ucode = 0x1
  },
   .pme_uname = "S_STATE",
    .pme udesc = "Shared cacheline",
    pme_ucode = 0x2
  },
    .pme uname = "E STATE",
    .pme udesc = "Exclusive cacheline",
    .pme ucode = 0x4
  },
    .pme_uname = "M_STATE",
    .pme udesc = "Modified cacheline",
    .pme ucode = 0x8
```


```
{ .pme_uname = "SELF",
 .pme_udesc = "This core",
 .pme_ucode = 0x40\
},
{ .pme_uname = "BOTH_CORES",
 .pme_udesc = "Both cores",
 .pme_ucode = 0xc0\
}
},
.pme_numasks = 7
},
```

```
. . .
```

```
PRESET,
PAPI_L2_DCA,
DERIVED_ADD,
L2_LD:SELF:ANY:MESI,
L2_ST:SELF:MESI
```

ICL & UF INNOVATIVE COMPUTING LABORATORY THE UNIVERSITY OF TENNESSEE Computer Science Department

PAPI and BG/L

- Performance Counters:
 - 48 UPC Counters
 - shared by both CPUs
 - External to CPU cores
 - 32 bits
 - 2 Counters on each FPU
 - 1 counts load/stores
 - 1 counts arithmetic operations
 - Accessed via blg_perfctr
 - 15 Preset Events

THEUNIVERSITY

Computer Science Department

- 10 PAPI presets
- 5 Custom BG/L presets
- 328 native events available

ICL COMPUTING INNOVATIVE COMPUTING LABORATORY

PAPI Data and Instruction Range Qualification

- Implemented a generalized PAPI interface for data structure and instruction address range qualification
- Applied that interface to the specific instance of the Itanium2 platform
- Extended an existing PAPI call, PAPI_set_opt(), with the capability of specifying starting and ending addresses of data structures or instructions to be instrumented


```
option.addr.eventset = EventSet;
option.addr.start = (caddr_t)array;
option.addr.end = (caddr_t)(array + size_array);
retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);
```

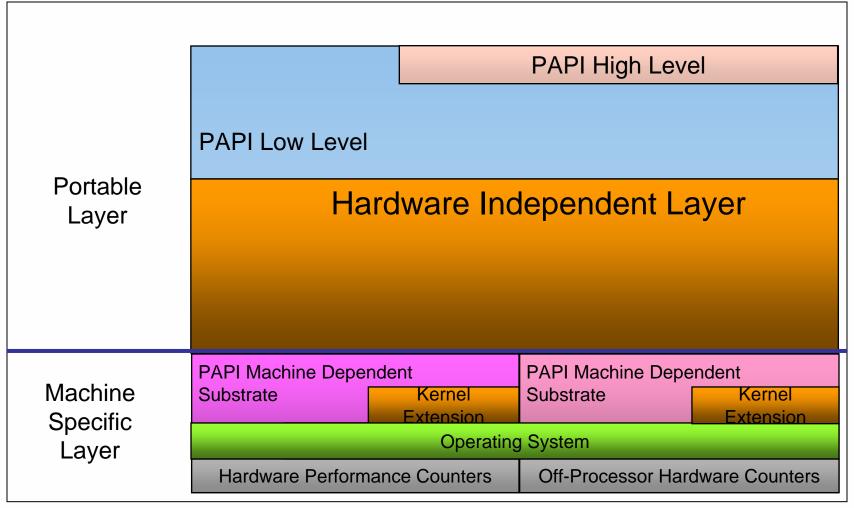
ICLEDU

- An instruction range can be set using PAPI_INSTR_ADDRESS
- papi_native_avail was modified to list events that support data or instruction address range qualification.

Tools that use PAPI

• TAU (U Oregon) <u>http://www.cs.uoregon.edu/research/tau/</u>

- KOJAK (UTK, FZ Juelich) http://icl.cs.utk.edu/kojak/
- PerfSuite (NCSA) <u>http://perfsuite.ncsa.uiuc.edu/</u>
- Titanium (UC Berkeley) http://www.cs.berkeley.edu/Research/Projects/titanium/
- SCALEA (Thomas Fahringer, U Innsbruck) http://www.par.univie.ac.at/project/scalea/
- Open|Speedshop (SGI) http://oss.sgi.com/projects/openspeedshop/
- SvPablo (UNC Renaissance Computing Institute)


http://www.renci.unc.edu/Software/Pablo/pablo.htm

Component PAPI (PAPI-C)

- Goals:
 - Support simultaneous access to on- and off-processor counters
 - Isolate hardware dependent code in a separable 'substrate' module
 - Extend platform independent code to support multiple simultaneous substrates
 - Add or modify API calls to support access to any of several substrates
 - Modify build environment for easy selection and configuration of multiple available substrates
- Will be released as PAPI 4.0

Architecture for Support of Multiple Components

ICL C UT INNOVATIVE COMPUTING LABORATORY

G THEUNIVERSITY OF TENNESSEE Computer Science Department

PAPI-C Status

- PAPI 3.9 pre-release available with documentation
- Implemented Myrinet substrate (native counters)
- Implemented ACPI temperature sensor substrate
- Working on Inifinband and Cray Seastar substrates (access to Seastar counters not available under Catamount but expected under CNL)
- Asked by Cray engineers for input on desired metrics for next network switch
- Tested on HPC Challenge benchmarks
- Tested platforms include Pentium III, Pentium 4, Core2Duo, Itanium (I and II) and AMD Opteron

PAPI-C New Routines

- PAPI_get_component_info()
- PAPI_num_cmp_hwctrs()
- PAPI_get_cmp_opt()
- PAPI_set_cmp_opt()
- PAPI_set_cmp_domain()
- PAPI_set_cmp_granularity()

PAPI-C Building and Linking

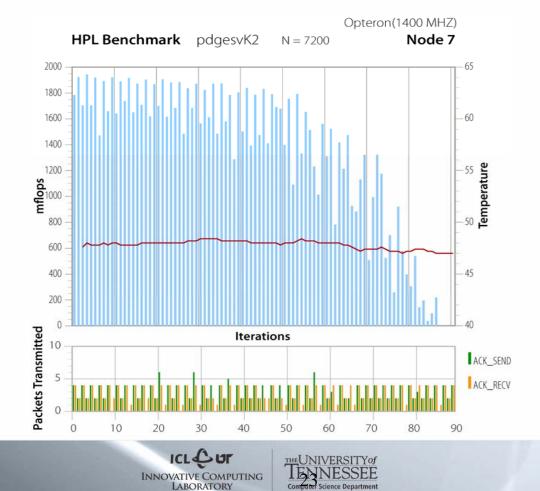
- CPU components are automatically detected by *configure* and included in the build
- CPU component assumed to be present and always configured as component 0
- To include additional components, use configure option --with-<cmp> = yes
- Currently supported components
 - with-acpi = yes
 - with-mx = yes
 - with-net = yes
- The make process compiles and links sources for all requested components into a single library

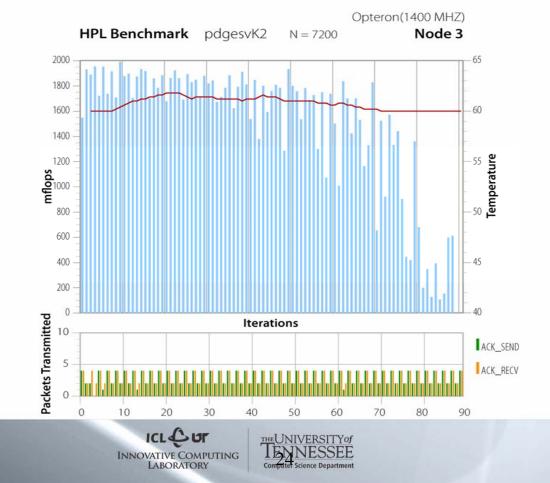
Myrinet MX Counters

LANAI_UPTIME COUNTERS UPTIME BAD_CRC8 BAD CRC32 UNSTRIPPED ROUTE PKT_DESC_INVALID RECV PKT ERRORS PKT MISROUTED DATA_SRC_UNKNOWN DATA_BAD_ENDPT DATA ENDPT CLOSED DATA BAD SESSION PUSH BAD WINDOW PUSH_DUPLICATE PUSH_OBSOLETE PUSH RACE DRIVER PUSH_BAD_SEND_HANDLE_MAGIC PUSH_BAD_SRC_MAGIC PULL OBSOLETE PULL NOTIFY OBSOLETE PULL_RACE_DRIVER ACK BAD TYPE ACK_BAD_MAGIC ACK_RESEND_RACE LATE ACKh

ACK NACK FRAMES IN PIPE NACK BAD ENDPT NACK_ENDPT_CLOSED NACK BAD SESSION NACK_BAD_RDMAWIN NACK_EVENTO_FULL SEND BAD RDMAWIN CONNECT TIMEOUT CONNECT_SRC_UNKNOWN QUERY_BAD_MAGIC OUERY TIMED OUT QUERY_SRC_UNKNOWN RAW SENDS RAW_RECEIVES RAW_OVERSIZED_PACKETS RAW RECV OVERRUN RAW DISABLED CONNECT_SEND CONNECT RECV ACK SEND ACK_RECV PUSH SEND PUSH RECV QUERY_SEND OUERY RECV

REPLY SEND REPLY RECV QUERY_UNKNOWN DATA SEND NULL DATA_SEND_SMALL DATA_SEND_MEDIUM DATA SEND RNDV DATA_SEND_PULL DATA_RECV_NULL DATA_RECV_SMALL_INLINE DATA RECV SMALL COPY DATA_RECV_MEDIUM DATA RECV RNDV DATA_RECV_PULL ETHER_SEND_UNICAST_CNT ETHER SEND MULTICAST CNT ETHER_RECV_SMALL_CNT ETHER_RECV_BIG_CNT ETHER_OVERRUN ETHER OVERSIZED DATA RECV NO CREDITS PACKETS RESENT PACKETS DROPPED MAPPER ROUTES UPDATE


ROUTE DISPERSION OUT OF SEND HANDLES OUT_OF_PULL_HANDLES OUT OF PUSH HANDLES MEDIUM_CONT_RACE CMD_TYPE_UNKNOWN UREO TYPE UNKNOWN INTERRUPTS OVERRUN WAITING_FOR_INTERRUPT_DMA WAITING_FOR_INTERRUPT_ACK WAITING_FOR_INTERRUPT_TIMER SLABS_RECYCLING SLABS PRESSURE SLABS STARVATION OUT_OF_RDMA_HANDLES EVENTO FULL BUFFER DROP MEMORY_DROP HARDWARE_FLOW_CONTROL SIMULATED PACKETS LOST LOGGING_FRAMES_DUMPED WAKE INTERRUPTS AVERTED WAKEUP RACE DMA METADATA RACE


Multiple Measurements

- HPCC HPL benchmark on Opteron with 3 performance metrics:
 - FLOPS; Temperature; Network Sends/Receives
 - Temperature is from an on-chip thermal diode

Multiple Measurements (2)

- HPCC HPL benchmark on Opteron with 3 performance metrics:
 - FLOPS; Temperature; Network Sends/Receives
 - Temperature is from an on-chip thermal diode

Perfctr

- Written by Mikael Petterson
 - Labor of love...
 - First available: Fall 1999
 - First PAPI use: Fall 2000
- Supports:
 - Intel Pentium II, III, 4, M, Core
 - AMD K7 (Athlon), K8 (Opteron)
 - IBM PowerPC 970, POWER4, POWER5

Perfctr Features

- Patches the Linux kernel
 - Saves perf counters on context switch
 - Virtualizes counters to 64-bits
 - Memory-maps counters for fast access
 - Supports counter overflow interrupts where available
- User space library
 - PAPI uses about a dozen calls

Perfctr Timeline

- Steady development
 - 1999 2004
- Concerted effort for kernel inclusion
 - May 2004 May 2005
- Ported to Cray Catamount; Power Linux
 ~ 2005
- Maintenance only
 - 2005 →

Perfmon

- Written by Stephane Eranian @ HP
- Originally Itanium only

 Built-in to the Linux-ia64 kernel since 2.4.0
- System call interface
- libpfm helper library for bookkeeping

Perfmon2*

- Provides a generic interface to access PMU
 - Not dedicated to one app, avoid fragmentation
- Must be portable across all PMU models:
 - Almost all PMU-specific knowledge in user level libraries
- Supports per-thread monitoring
 - Self-monitoring, unmodified binaries, attach/detach
 - multi-threaded and multi-process workloads
- Supports system-wide monitoring
- Supports counting and sampling
- No modification to applications or system

ABORATORY

• Built-in, efficient, robust, secure, simple, documented

* Slide contents courtesy of Stephane Eranian

Perfmon2

- Setup done through external support library
- Uses a system call for counting operations
 - More flexibility, ties with ctxsw, exit, fork
 - Kernel compile-time option on Linux
- Perfmon2 context encapsulates all PMU state
 - Each context uniquely identified by file descriptor
- int perfmonctl(int fd, int cmd, void *arg, int narg)

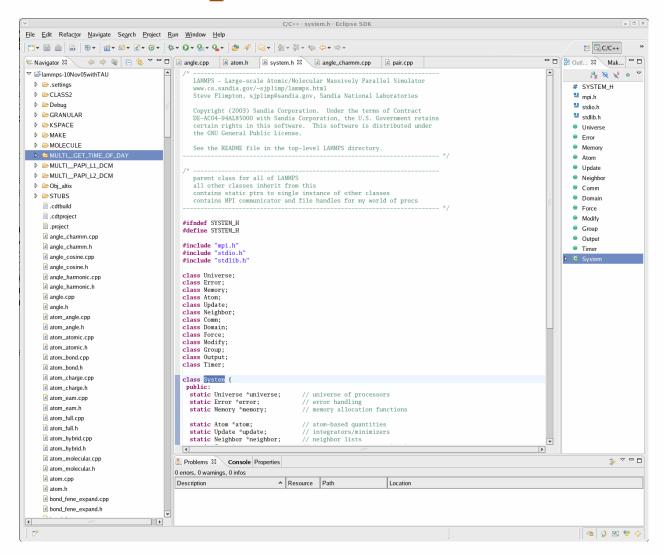
PFM_CREATE_CONTEXT	PFM_READ_PMDS	PFM_START
PFM_WRITE_PMCS	PFM_LOAD_CONTEXT	PFM_STOP
PFM_WRITE_PMDS	PFM_UNLOAD_CONTEXT	PFM_RESTART
PFM_CREATE_EVTSET	PFM_DELETE_EVTSET	PFM_GETINFO_EVTSET
PFM_GETINFO_PMCS	PFM_GETINFO_PMDS	
PFM_GET_CONFIG	PFM_SET_CONFIG	

Perfmon2 Features

- Support today for:
 - Intel Itanium, P6, M, Core, Pentium4, AMD Opteron, IBM Power, MIPS
- Full native event tables for supported processors
- Kernel based Multiplexing
 - Event set chaining
- Kernel based Sampling/Overflow
 - Time or event based
 - Custom sampling buffers

Next Steps

- Kernel integration
 - Discussion underway *now*
 - Possible inclusion in 2.6.22 kernel
- Implementation in Cray CNK, X2
- Cell
 - IBM engineers have started a port
- Leverage libpfm for PAPI native events
 - Migration underway for P6, Core, P4, Opteron
- Begin testing on perfmon2 patched kernels
 - Torc10 currently being tested
 - Woodstock dual-boot?



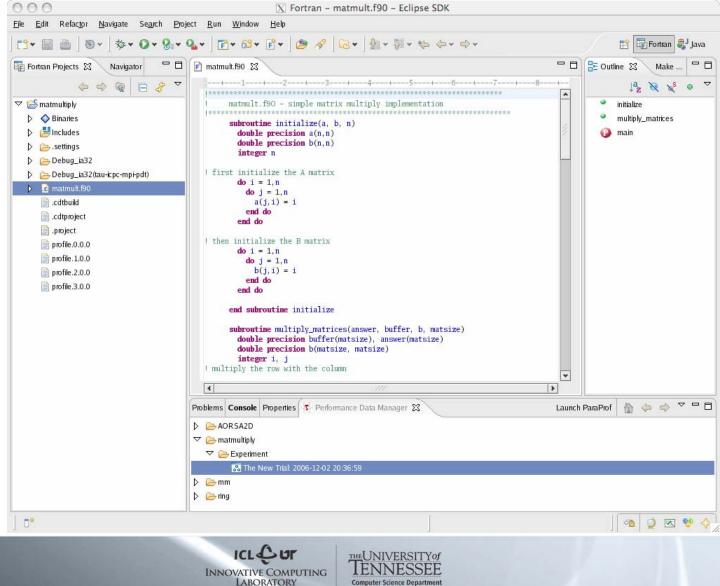
Cell Broadband Engine

- Each Cell contains 1 PPU and 8 SPUs.
 - ...and 1 PMU external to all of these.
 - 8 16-bit counters configurable as 4 32-bit counters
 - 1024 slot 128-bit trace buffer
 - 400 native events
- Working with IBM engineers on
 - developing perfmon2 pfmlib layer for Cell BE
 - Linux Cell BE kernel modifications
 - Porting PAPI-C (LANL grant)

Eclipse PTP IDE

THEUNIVERSITY

Computer Science Department


NNESSEE

IE)

ICL C UT INNOVATIVE COMPUTING LABORATORY

Performance Evaluation within

Eclipse PTP

35

TAU and PAPI Plugins for Eclipse PTP

eate, manage, and run c	onfigurations			Counter	Definition	
	5		(1)	PAPI_L1_DCM	Level 1 data cache misses	
eate a configuration to lau	nch a program to be	e instrumented and profiled by TAU.	<u> </u>	PAPI_L1_ICM	Level 1 instruction cache misses	
				PAPI_LI_ICM PAPI_L2_DCM	Level 2 data cache misses	
* 🖹 🗶 🖻 🕻	Name: lammps-:	10Nov05withTAU		PAPI_L2_DCM PAPI_L2_ICM	Level 2 data cache misses Level 2 instruction cache misses	
/pe filter text	(E) Matia (A)- A	uments 🐻 Environment 🗮 Parallel 🗺 Analy	»	PAPI_L2_ICM PAPI_L1_TCM	Level 1 cache misses	
C/C++ Local Applic	🖻 Main 🐶- Arg	uments 🖉 Environment 🔠 Parallel 🚵 Analy	515 2	PAPI_L1_TCM PAPI_L2_TCM	Level 2 cache misses	
Parallel Application		PAPI Counters	//////×	PAPI_FPU_IDL	Cycles floating point units are idle	
lammps-10Nov0	MPI	Select the PAPI counters to use with TAU		PAPI_TLB_DM	Data translation lookaside buffer misses	
	Callpath Pro			PAPI_TLB_IM	Instruction translation lookaside buffer misses	
	🗌 Phase Base	✓ PAPI_L1_DCM	<u> </u>	PAPI_TLB_TL	Total translation lookaside buffer misses	
	🗌 Memory Pro			PAPI_L1_LDM	Level 1 load misses	
	🗆 OPARI	PAPI_L2_DCM		PAPI_L1_STM	Level 1 store misses	
	OpenMP			PAPI L2 LDM	Level 2 load misses	
	Epilog			PAPI_L2_STM	Level 2 store misses	
	PAPI			PAPI_STL_ICY	Cycles with no instruction issue	
			hters	PAPI_HW_INT	Hardware interrupts	
	Perflib			PAPI_BR_TKN	Conditional branch instructions taken	
	Trace			PAPI_BR_MSP	Conditional branch instructions mispredicted	
	Select Makefile	PAPI_TLB_TL PAPI_L1_LDM		PAPI TOT INS	Instructions completed	
			*	PAPI_FP_INS	Floating point instructions	
	Selective Instru			PAPI_BR_INS	Branch instructions	
	None	Select All Deselect All Counter De	escriptions	PAPI_VEC_INS	Vector/SIMD instructions	
	○ Internal			PAPI_RES_STL	Cycles stalled on any resource	
	O User Define			PAPI_TOT_CYC	Total cycles	
		ОК	Cancel	PAPI_L1_DCH	Level 1 data cache hits	
	LL(se	PAPI_L2_DCH	Level 2 data cache hits	
111.		Apply	Re <u>v</u> ert	PAPI_L1_DCA	Level 1 data cache accesses	
				PAPI_L2_DCA	Level 2 data cache accesses	
		D ₁ -fl	Class	PAPI_L2_DCR	Level 2 data cache reads	
)		<u>P</u> rofile	e Close	PAPI_L2_DCW	Level 2 data cache writes	

ICL C UT INNOVATIVE COMPUTING LABORATORY

THEUNIVERSITY of TENNESSEE Computer Science Department

Conclusions

- PAPI has a long track record of successful adoption and use.
- New architectures pose a challenge for offprocessor hardware monitoring as well as interpretation of counter values.
- Integration of perfmon2 into the Linux kernel will broaden the base of PAPI users still further.

Potential VI-HPS Interactions

- Hardware monitoring support for performance analysis tools, debugging, applications
 - Tell us what you need and we will implement or talk to vendors.
 - Error counters may be useful for debugging.
- Deeper understanding of architectures \rightarrow better mapping of applications onto them

