
Hardware Performance Monitoring:
Current and Future

Shirley Moore
shirley@cs.utk.edu

VI-HPS Inauguration
4July 2007

History of PAPI

• http://icl.cs.utk.edu/papi/
• Started as a Parallel Tools Consortium

project in 1998
• Goal was to produce a specification for a

portable interface to the hardware
performance counters available on most
modern microprocessors.

2

Timeline

SDCI HPC Improvement:
High-Productivity Performance Engineering
(Tools, Methods, Training) for NSF HPC Applications
Allen D. Malony, Sameer Shende, Shirley Moore, Nick Nystrom,
Rick Kufrin

Timeline of releases for each tool represented in the project. The vertical dashed lines indicate SC conference
dates where the tools are regularly demonstrated. TAU’s v1.0 release occurred at SC’97.

3

4

PAPI Counter Interfaces

PAPI provides 3 interfaces to the underlying counter
hardware:

1. The low level interface manages hardware events in user
defined groups called EventSets, and provides access to
advanced features.

2. The high level interface provides the ability to start, stop
and read the counters for a specified list of events.

3. Graphical and end-user tools provide facile data collection
and visualization.

5

3rd Party and GUI Tools

PAPI Low Level

Machine
Specific

Layer

Portable
Layer

PAPI Machine Dependent Substrate

PAPI Implementation

PAPI High Level

Hardware Performance Counters

Operating System

Kernel Extension

6

PAPI Hardware Events
• Preset Events

– Standard set of over 100 events for application performance tuning
– No standardization of the exact definition
– Mapped to either single or linear combinations of native events on

each platform
– Use papi_avail utility to see what preset events are available on a

given platform
• Native Events

– Any event countable by the CPU

– Same interface as for preset events

– Use papi_native_avail utility to see all available native events

• Use papi_event_chooser utility to select a compatible set of
events

PAPI Preset Events
• Of ~100 events, over half are cache related:

PAPI_L1_DCH: Level 1 data cache hits
PAPI_L1_DCA: Level 1 data cache accesses
PAPI_L1_DCR: Level 1 data cache reads
PAPI_L1_DCW: Level 1 data cache writes
PAPI_L1_DCM: Level 1 data cache misses

PAPI_L1_ICH: Level 1 instruction cache hits
PAPI_L1_ICA: Level 1 instruction cache accesses
PAPI_L1_ICR: Level 1 instruction cache reads
PAPI_L1_ICW: Level 1 instruction cache writes
PAPI_L1_ICM: Level 1 instruction cache misses

PAPI_L1_TCH: Level 1 total cache hits
PAPI_L1_TCA: Level 1 total cache accesses
PAPI_L1_TCR: Level 1 total cache reads
PAPI_L1_TCW: Level 1 total cache writes
PAPI_L1_TCM: Level 1 cache misses

PAPI_L1_LDM: Level 1 load misses
PAPI_L1_STM: Level 1 store misses

♦ Repeat for
Levels 2 and 3…

7

PAPI Preset Events (ii)
• Other cache and memory events:

PAPI_CA_SNP: Requests for a snoop
PAPI_CA_SHR: Requests for exclusive access to shared cache line
PAPI_CA_CLN: Requests for exclusive access to clean cache line
PAPI_CA_INV: Requests for cache line invalidation
PAPI_CA_ITV: Requests for cache line intervention

PAPI_TLB_DM: Data translation lookaside buffer misses
PAPI_TLB_IM: Instruction translation lookaside buffer misses
PAPI_TLB_TL: Total translation lookaside buffer misses
PAPI_TLB_SD: Translation lookaside buffer shootdowns

PAPI_LD_INS: Load instructions
PAPI_SR_INS: Store instructions

PAPI_MEM_SCY: Cycles Stalled Waiting for memory accesses
PAPI_MEM_RCY: Cycles Stalled Waiting for memory Reads
PAPI_MEM_WCY: Cycles Stalled Waiting for memory writes
PAPI_RES_STL: Cycles stalled on any resource
PAPI_FP_STAL: Cycles the FP unit(s) are stalled

Shared
cache

TLB

Resource
Stalls

8

PAPI Preset Events (iii)
• Program flow:

PAPI_BR_INS: Branch instructions
PAPI_BR_UCN: Unconditional branch instructions
PAPI_BR_CN: Conditional branch instructions
PAPI_BR_TKN: Conditional branch instructions taken
PAPI_BR_NTK: Conditional branch instructions not taken
PAPI_BR_MSP: Conditional branch instructions mispredicted
PAPI_BR_PRC: Conditional branch instructions correctly predicted

PAPI_BTAC_M: Branch target address cache misses

PAPI_CSR_FAL: Failed store conditional instructions
PAPI_CSR_SUC: Successful store conditional instructions
PAPI_CSR_TOT: Total store conditional instructions

Branches

Conditional
Stores

9

PAPI_TOT_CYC: Total cycles

PAPI_TOT_IIS: Instructions issued
PAPI_TOT_INS: Instructions completed
PAPI_INT_INS: Integer instructions
PAPI_LST_INS: Load/store instructions completed
PAPI_SYC_INS: Synchronization instructions completed

PAPI_BRU_IDL: Cycles branch units are idle
PAPI_FXU_IDL: Cycles integer units are idle
PAPI_FPU_IDL: Cycles floating point units are idle
PAPI_LSU_IDL: Cycles load/store units are idle

PAPI_STL_ICY: Cycles with no instruction issue
PAPI_FUL_ICY: Cycles with maximum instruction issue
PAPI_STL_CCY: Cycles with no instructions completed
PAPI_FUL_CCY: Cycles with maximum instructions completed

PAPI_HW_INT: Hardware interrupts

PAPI Preset Events (iv)
• Timing, efficiency, pipeline:

10

PAPI Preset Events (v)
• Floating point:

PAPI_FP_INS: Floating point instructions
PAPI_FP_OPS: Floating point operations
PAPI_FML_INS: Floating point multiply instructions
PAPI_FAD_INS: Floating point add instructions
PAPI_FDV_INS: Floating point divide instructions
PAPI_FSQ_INS: Floating point square root instructions
PAPI_FNV_INS: Floating point inverse instructions
PAPI_FMA_INS: FMA instructions completed
PAPI_VEC_INS: Vector/SIMD instructions

11

What’s a Native Event?

8 mask bits 8 bits: 256 events

16 mask bits 6 bits: 64 events

PMC: Pentium 4

PMC: Intel Pentium II, III, M, Core; AMD Athlon, Opteron

PMD: AMD Athlon, Opteron

12

Intel Pentium Core: L2_ST
{ .pme_uname = "SELF",

.pme_udesc = "This core",

.pme_ucode = 0x40\
},
{ .pme_uname = "BOTH_CORES",

.pme_udesc = "Both cores",

.pme_ucode = 0xc0\
}

},
.pme_numasks = 7

},

…

…
{ .pme_name = "L2_ST",

.pme_code = 0x2a,

.pme_flags = PFMLIB_CORE_CSPEC,

.pme_desc = "L2 store requests",

.pme_umasks = {
{ .pme_uname = "MESI",

.pme_udesc = "Any cacheline access",

.pme_ucode = 0xf\
},
{ .pme_uname = "I_STATE",

.pme_udesc = "Invalid cacheline",

.pme_ucode = 0x1\
},
{ .pme_uname = "S_STATE",

.pme_udesc = "Shared cacheline",

.pme_ucode = 0x2\
},
{ .pme_uname = "E_STATE",

.pme_udesc = "Exclusive cacheline",

.pme_ucode = 0x4\
},
{ .pme_uname = "M_STATE",

.pme_udesc = "Modified cacheline",

.pme_ucode = 0x8\
}

PRESET,
PAPI_L2_DCA,
DERIVED_ADD,
L2_LD:SELF:ANY:MESI,
L2_ST:SELF:MESI

13

PAPI and BG/L
• Performance Counters:

– 48 UPC Counters
• shared by both CPUs
• External to CPU cores
• 32 bits

– 2 Counters on each FPU
• 1 counts load/stores
• 1 counts arithmetic operations

– Accessed via blg_perfctr
– 15 Preset Events

• 10 PAPI presets
• 5 Custom BG/L presets

– 328 native events available

2 FPU PMCs

2 FPU PMCs

UPC Module
48 Shared
Counters

14

15

PAPI Data and Instruction
Range Qualification

• Implemented a generalized PAPI interface for data structure
and instruction address range qualification

• Applied that interface to the specific instance of the Itanium2
platform

• Extended an existing PAPI call, PAPI_set_opt(), with the
capability of specifying starting and ending addresses of data
structures or instructions to be instrumented

option.addr.eventset = EventSet;
option.addr.start = (caddr_t)array;
option.addr.end = (caddr_t)(array + size_array);
retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);

• An instruction range can be set using PAPI_INSTR_ADDRESS
• papi_native_avail was modified to list events that

support data or instruction address range qualification.

16

• TAU (U Oregon) http://www.cs.uoregon.edu/research/tau/

• HPCToolkit (Rice Univ) http://hipersoft.cs.rice.edu/hpctoolkit/
• KOJAK (UTK, FZ Juelich) http://icl.cs.utk.edu/kojak/
• PerfSuite (NCSA) http://perfsuite.ncsa.uiuc.edu/
• Titanium (UC Berkeley)

http://www.cs.berkeley.edu/Research/Projects/titanium/

• SCALEA (Thomas Fahringer, U Innsbruck)
http://www.par.univie.ac.at/project/scalea/

• Open|Speedshop (SGI)
http://oss.sgi.com/projects/openspeedshop/

• SvPablo (UNC Renaissance Computing Institute)
http://www.renci.unc.edu/Software/Pablo/pablo.htm

Tools that use PAPI

17

Component PAPI (PAPI-C)
• Goals:

– Support simultaneous access to on- and off-processor
counters

– Isolate hardware dependent code in a separable
‘substrate’ module

– Extend platform independent code to support multiple
simultaneous substrates

– Add or modify API calls to support access to any of
several substrates

– Modify build environment for easy selection and
configuration of multiple available substrates

• Will be released as PAPI 4.0

18

Architecture for Support
of Multiple Components

PAPI Low Level

Machine
Specific
Layer

Portable
Layer

PAPI High Level

PAPI Machine Dependent
Substrate

Hardware Performance Counters

Operating System

Kernel
Extension

Hardware Independent Layer

PAPI Machine Dependent
Substrate

Off-Processor Hardware Counters

Operating System

Kernel
Extension

19

PAPI-C Status
• PAPI 3.9 pre-release available with documentation
• Implemented Myrinet substrate (native counters)
• Implemented ACPI temperature sensor substrate
• Working on Inifinband and Cray Seastar substrates (access

to Seastar counters not available under Catamount but
expected under CNL)

• Asked by Cray engineers for input on desired metrics for
next network switch

• Tested on HPC Challenge benchmarks
• Tested platforms include Pentium III, Pentium 4,

Core2Duo, Itanium (I and II) and AMD Opteron

20

PAPI-C New Routines

• PAPI_get_component_info()
• PAPI_num_cmp_hwctrs()
• PAPI_get_cmp_opt()
• PAPI_set_cmp_opt()
• PAPI_set_cmp_domain()
• PAPI_set_cmp_granularity()

21

PAPI-C Building and Linking
• CPU components are automatically detected by configure

and included in the build
• CPU component assumed to be present and always

configured as component 0
• To include additional components, use configure option

--with-<cmp> = yes
• Currently supported components

– with-acpi = yes
– with-mx = yes
– with-net = yes

• The make process compiles and links sources for all
requested components into a single library

22

Myrinet MX Counters
LANAI_UPTIME
COUNTERS_UPTIME
BAD_CRC8
BAD_CRC32
UNSTRIPPED_ROUTE
PKT_DESC_INVALID
RECV_PKT_ERRORS
PKT_MISROUTED
DATA_SRC_UNKNOWN
DATA_BAD_ENDPT
DATA_ENDPT_CLOSED
DATA_BAD_SESSION
PUSH_BAD_WINDOW
PUSH_DUPLICATE
PUSH_OBSOLETE
PUSH_RACE_DRIVER
PUSH_BAD_SEND_HANDLE_MAGIC
PUSH_BAD_SRC_MAGIC
PULL_OBSOLETE
PULL_NOTIFY_OBSOLETE
PULL_RACE_DRIVER
ACK_BAD_TYPE
ACK_BAD_MAGIC
ACK_RESEND_RACE
LATE_ACKh

ACK_NACK_FRAMES_IN_PIPE
NACK_BAD_ENDPT
NACK_ENDPT_CLOSED
NACK_BAD_SESSION
NACK_BAD_RDMAWIN
NACK_EVENTQ_FULL
SEND_BAD_RDMAWIN
CONNECT_TIMEOUT
CONNECT_SRC_UNKNOWN
QUERY_BAD_MAGIC
QUERY_TIMED_OUT
QUERY_SRC_UNKNOWN
RAW_SENDS
RAW_RECEIVES
RAW_OVERSIZED_PACKETS
RAW_RECV_OVERRUN
RAW_DISABLED
CONNECT_SEND
CONNECT_RECV
ACK_SEND
ACK_RECV
PUSH_SEND
PUSH_RECV
QUERY_SEND
QUERY_RECV

REPLY_SEND
REPLY_RECV
QUERY_UNKNOWN
DATA_SEND_NULL
DATA_SEND_SMALL
DATA_SEND_MEDIUM
DATA_SEND_RNDV
DATA_SEND_PULL
DATA_RECV_NULL
DATA_RECV_SMALL_INLINE
DATA_RECV_SMALL_COPY
DATA_RECV_MEDIUM
DATA_RECV_RNDV
DATA_RECV_PULL
ETHER_SEND_UNICAST_CNT
ETHER_SEND_MULTICAST_CNT
ETHER_RECV_SMALL_CNT
ETHER_RECV_BIG_CNT
ETHER_OVERRUN
ETHER_OVERSIZED
DATA_RECV_NO_CREDITS
PACKETS_RESENT
PACKETS_DROPPED
MAPPER_ROUTES_UPDATE

ROUTE_DISPERSION
OUT_OF_SEND_HANDLES
OUT_OF_PULL_HANDLES
OUT_OF_PUSH_HANDLES
MEDIUM_CONT_RACE
CMD_TYPE_UNKNOWN
UREQ_TYPE_UNKNOWN
INTERRUPTS_OVERRUN
WAITING_FOR_INTERRUPT_DMA
WAITING_FOR_INTERRUPT_ACK
WAITING_FOR_INTERRUPT_TIMER
SLABS_RECYCLING
SLABS_PRESSURE
SLABS_STARVATION
OUT_OF_RDMA_HANDLES
EVENTQ_FULL
BUFFER_DROP
MEMORY_DROP
HARDWARE_FLOW_CONTROL
SIMULATED_PACKETS_LOST
LOGGING_FRAMES_DUMPED
WAKE_INTERRUPTS
AVERTED_WAKEUP_RACE
DMA_METADATA_RACE

23

Multiple Measurements

• HPCC HPL benchmark on Opteron with 3 performance metrics:
– FLOPS; Temperature; Network Sends/Receives

– Temperature is from an on-chip thermal diode

24

Multiple Measurements (2)

• HPCC HPL benchmark on Opteron with 3 performance metrics:
– FLOPS; Temperature; Network Sends/Receives

– Temperature is from an on-chip thermal diode

Perfctr
• Written by Mikael Petterson

– Labor of love…
– First available: Fall 1999
– First PAPI use: Fall 2000

• Supports:
– Intel Pentium II, III, 4, M, Core
– AMD K7 (Athlon), K8 (Opteron)
– IBM PowerPC 970, POWER4, POWER5

25

Perfctr Features

• Patches the Linux kernel
– Saves perf counters on context switch
– Virtualizes counters to 64-bits
– Memory-maps counters for fast access
– Supports counter overflow interrupts where

available
• User space library

– PAPI uses about a dozen calls

26

Perfctr Timeline
• Steady development

– 1999 – 2004

• Concerted effort for kernel inclusion
– May 2004 – May 2005

• Ported to Cray Catamount; Power Linux
– ~ 2005

• Maintenance only
– 2005

27

Perfmon

• Written by Stephane Eranian @ HP
• Originally Itanium only

– Built-in to the Linux-ia64 kernel since 2.4.0
• System call interface
• libpfm helper library for bookkeeping

28

Perfmon2*
• Provides a generic interface to access PMU

– Not dedicated to one app, avoid fragmentation
• Must be portable across all PMU models:

– Almost all PMU-specific knowledge in user level libraries
• Supports per-thread monitoring

– Self-monitoring, unmodified binaries, attach/detach
– multi-threaded and multi-process workloads

• Supports system-wide monitoring
• Supports counting and sampling
• No modification to applications or system
• Built-in, efficient, robust, secure, simple, documented

* Slide contents courtesy of Stephane Eranian* Slide contents courtesy of Stephane Eranian

29

Perfmon2

• Setup done through external support library
• Uses a system call for counting operations

– More flexibility, ties with ctxsw, exit, fork
– Kernel compile-time option on Linux

• Perfmon2 context encapsulates all PMU state
– Each context uniquely identified by file descriptor

• int perfmonctl(int fd, int cmd, void *arg, int narg)

PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART
PFM_CREATE_EVTSET PFM_DELETE_EVTSET PFM_GETINFO_EVTSET
PFM_GETINFO_PMCS PFM_GETINFO_PMDS
PFM_GET_CONFIG PFM_SET_CONFIG

30

Perfmon2 Features

• Support today for:
– Intel Itanium, P6, M, Core, Pentium4, AMD Opteron,

IBM Power, MIPS
• Full native event tables for supported processors
• Kernel based Multiplexing

– Event set chaining
• Kernel based Sampling/Overflow

– Time or event based
– Custom sampling buffers

31

Next Steps
• Kernel integration

– Discussion underway *now*
– Possible inclusion in 2.6.22 kernel

• Implementation in Cray CNK, X2
• Cell

– IBM engineers have started a port
• Leverage libpfm for PAPI native events

– Migration underway for P6, Core, P4, Opteron
• Begin testing on perfmon2 patched kernels

– Torc10 currently being tested
– Woodstock dual-boot?

32

Cell Broadband Engine
• Each Cell contains 1 PPU and 8 SPUs.

– …and 1 PMU external to all of these.
– 8 16-bit counters configurable as 4 32-bit counters
– 1024 slot 128-bit trace buffer
– 400 native events

• Working with IBM engineers on
– developing perfmon2 pfmlib layer for Cell BE
– Linux Cell BE kernel modifications
– Porting PAPI-C (LANL grant)

33

34

Eclipse PTP IDE

35

Performance Evaluation within
Eclipse PTP

36

TAU and PAPI Plugins for
Eclipse PTP

Conclusions

• PAPI has a long track record of successful
adoption and use.

• New architectures pose a challenge for off-
processor hardware monitoring as well as
interpretation of counter values.

• Integration of perfmon2 into the Linux
kernel will broaden the base of PAPI users
still further.

37

Potential VI-HPS Interactions

• Hardware monitoring support for
performance analysis tools, debugging,
applications
– Tell us what you need and we will implement

or talk to vendors.
– Error counters may be useful for debugging.

• Deeper understanding of architectures
better mapping of applications onto them

38

