
OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C1

OpenMPOpenMP in the Worksin the Works
July 4, 2007, JJuly 4, 2007, Jüülichlich

Dieter an Mey,
Christian Terboven, Samuel Sarholz, Alex Spiegel

Center for Computing and Communication
RWTH Aachen University, Germany

www.rz.rwth-aachen.de
anmey@rz.rwth-aachen.de

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C2

MotivationMotivation

"Software and the Concurrency Revolution"
Herb Sutter, Sep 25, 2006

Slides and video
http://www.gotw.ca/

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C3

MotivationMotivation

Burton Smith in "Reinventing Computing" during the ISC last week:
• use multithreaded cores to tolerate memory latency
• when latency increases, increase the number of threads
…
• We need to support multiple programming styles

• both functional and transactional
• data and task parallel
• message passing and shared memeory
• declarative and imperative
• implicit and explicit

…
• Consequences for HPC

• Routine combining of shared memory and message passing
• HPC will need to be reinvented along with everything else

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C4

OpenMPOpenMP in the Works in the Works -- OverviewOverview

• Loop-Level Parallelization in Fortran
• Autoscoping
• Combining Autoparallelization, OpenMP, Sun Performance Library
• Pushing Loop-Level Parallelization to the Limit

• C++ and OpenMP
• DROPS
• Realtime FEM for VR

• Nested Parallelization
• Pattern Recognition
• Critical Points
• TFS parallelized with Parawise by PSP
• Dynamic Thread Balancing for MPI+OMP

• OpenMP Tools / OpenMP on Windows
• CMP / CMT

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C5

OverviewOverview

• Loop-Level Parallelization in Fortran
• Autoscoping
• Combining Autoparallelization, OpenMP, Sun Performance Library
• Pushing Loop-Level Parallelization to the Limit

• C++ and OpenMP
• DROPS
• Realtime FEM for VR

• Nested Parallelization
• Pattern Recognition
• Critical Points
• TFS parallelized with Parawise by PSP
• Dynamic Thread Balancing for MPI+OMP

• OpenMP Tools / OpenMP on Windows
• CMP / CMT

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C6

Loop Level ParallelizationLoop Level Parallelization
PANTA 3D NavierPANTA 3D Navier--Stokes SolverStokes Solver

Hans Thermann, Bernd Wickerath, Daniel Grates, Stephan Schmidt,
Volmar,T.,Brouillet,B.,Gallus,H.E.,Benetschik,H., Institute for Turbomachinery, RWTH Aachen
University

• 121 routines with 18497 Fortran lines are
considered for auto-parallelization

• out of these 5 routines with 2799 Fortran lines
have been parallelized manually with 132
OpenMP directives (incl. cont.) and

• another 11 routines have been auto-parallelized
with Visual KAP introducing 608 OpenMP
directives.

• 1389 variables had to be scoped manually
• Could be reduced to 13 with Autoscoping !

• Speedup: 3 with 4 threads

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C7

This is what a programmer
typically has to add in order

to parallelize a loop in a
CFD code with OpenMP

!$omp parallel private(local_QSIK,local_QSIE)
!$omp do private (lijk,xiaxc,xiayc,xiazc,xiaxeb,xiayeb,xiazeb, &
!$omp & xibxnb,xibynb,xibznb,xibxsb,xibysb,xibzsb,xicxub,xicyub, &

... [...] 100 lines omitted
!$omp & dwydq1,dwydq4,dwzdq1,dwzdq4,amt,omsqr,dmtdq1,dmtdq2,dmtdq3) &
!$omp lastprivate(INE,IEE,ISE,ISW,IWW,INW,IUE,IUW,IDE,IDW,INU,IND)

do i = is,ie
[...] 1949 lines omitted

end do
!$omp end do
!$omp end parallel

PANTA PANTA –– AutoscopingAutoscoping
a parallel loop (part 1) a parallel loop (part 1)

!$omp parallel DEFAULT(__AUTO)
!$omp do

do i = is,ie
[...] 1949 lines omitted

end do
!$omp end do
!$omp end parallel

This is what a programmer
typically has to add when
using Sun’s autoscoping

feature.

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C8
1 Thread 4 Threads

PANTAPANTA–– AutoscopingAutoscoping
performance comparisonperformance comparison

(original) OpenMP version OMP
Autoparallel version APA
Autoscope version ASC
Edited autoscope version ASM

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C9

Direct Numerical Simulation (DNS) of Turbulences

A combination of
• Sun Performance Library

a special version of the 3D FFT
routines has been parallelized
upon request

• Autoparallelization
Sun Fortran Compiler

• OpenMP directives
Sun Fortran Compiler

leads to good scalability.
0

2

4

6

8

10

12

0 4 8 12 16

#threads

speed-
up

Lipo Wang, Institut für Technische Verbrennung, RWTH Aachen University

Sun Fire E2900
(grid size 256^3)

The distribution of
extreme points
attached with vorticity
sheets

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C10

• simulation of the heat flow in a
rocket combustion chamber

• Finite Element Method
• 200,000 cells
• 230 MB memory footprint
• 29000 lines of Fortran

• OpenMP Parallelelization
• ~ 200 OpenMP directives
• 69 parallel loops
• 1 main parallel region (orphaning)

• Explicite worksharing by precalculating loop limits
to improve load balancing

• Time for production run cut down
from 2 weeks to 1 day on 16 CPUs
and to 9 hours on a 72 CPUs

Heat Flow Simulation with FEM Heat Flow Simulation with FEM -- ThermoFlow60ThermoFlow60

Thomas Haarmann, Wolfgang Koschel, Jet Propulsion Laboratory, RWTH Aachen University

Speedup: 40 with 68 threads

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C11

OverviewOverview

• Loop-Level Parallelization in Fortran
• Autoscoping
• Combining Autoparallelization, OpenMP, Sun Performance Library
• Pushing Loop-Level Parallelization to the Limit

• C++ and OpenMP
• DROPS
• Realtime FEM for VR

• Nested Parallelization
• Pattern Recognition
• Critical Points
• TFS parallelized with Parawise by PSP
• Dynamic Thread Balancing for MPI+OMP

• OpenMP Tools / OpenMP on Windows
• CMP / CMT

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C12

DROPS: IntroductionDROPS: Introduction

• Numerical simulation of two-phase flow
• The two-phase flow is modeled by the

instationary and non-linear Navier-Stokes
equation

• So-called level set function is used to describe
the interface between the two phases

• DROPS is written in C++
(object-oriented, templates, STL, compile-time polymorphism,
nested solvers with its preconditioners, smoothers etc.)

• (Adaptive) Tetrahedral Grid Hierarchy
• Finite Element Method (FEM)

Example:
Silicon oil drop in D2O
(fluid/fluid)

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C13

DROPS: Nested SolversDROPS: Nested Solvers

• Time integration by fractional step method
• Fixed point iteration for the decoupled Navier-

Stokes and the advection equations for the
level set function

• Fixed point iteration for non-linear convection
term in the Navier-Stokes equations

• Stokes solvers: Uzawa, Schur, MinRes,
GMRES

• Inner solvers for Poisson-type problems.
- preconditioned conjugate gradient (PCG)
- multi-grid (MG)

• Preconditioners / smoothers: Jacobi or SSOR
The GMRES and

PCG solvers
were employed
and parallelized

in this work

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C14

DROPS: ParallelizationDROPS: Parallelization

PCG(const Mat& A, Vec& x, const Vec& b,
const PreCon& M, int& max_iter,
double& tol)

{
Vec p(n), z(n), q(n), r(n);
[…]
for (int i=1; i<=max_iter; ++i) {

[…]
q = A * p;
double alpha = rho / (p*q);
x += alpha * p;
r -= alpha * q;
[…]

y_Ax_par(&q.raw()[0],
A.num_rows(), A.raw_val(),
A.raw_row(), A.raw_col(),
Addr(p.raw()));

#pragma omp for reduction
(+:alpha_sum)

for (long j=0; j<n; j++)
alpha_sum += p[j]*q[j];

#pragma omp single {
alpha = rho/alpha_sum;

}

#pragma omp for
for (long j=0; j<n; j++){

x[j] += alpha * p[j];
r[j] -= alpha * q[j];

}

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C15

OpenMP and C++OpenMP and C++

• A clean C++ object oriented coding style may be very helpful for
OpenMP parallelization:
• Encapsulation prohibits unintended data dependencies and thus

simplifies data dependency analysis
• Class members are typically local and therefore private by default

which leads to a good locality in combination with first touch policy
• (static variables would have to be protected by critical regions)

• BUT: there are several issues with OpenMP and C++
• Compilers (may) have problems with OpenMP C++ codes
• Non-POD types not well support (privatization, reduction)
• Parallelization of STL Iterator loops not directly possible
• Several issues with writing parallel libraries with OpenMP

• Still the combination works in practice, as we can see now …

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C16

VRFEM: VRFEM: RealtimeRealtime FEMFEM

• VRFEM: Lenka Jerabkova, Center for Computing and Communication

• Physically based simulation is an indispensable component of many
interactive virtual environments. Main challenge: realtime requirement.

• Higher computational costs than
methods typically used e.g. in computer
games.

• Realtime cannot be achieved using
sequential approaches … performance
improvement of single thread slows to
increase

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C17

VRFEM: VRFEM: SpeedupSpeedup on on MulticoreMulticore

• The presented algorithm has been parallelized with focus on recent
multicore architectures:
• Red bar: realtime requirement, only reached on two-socket

quadcore (Clovertown) system (still Pizza box)

Up to 12500 FE mesh
elements, noticeable
improv. to approx. 3000
elements with serial
algorithm

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C18

OverviewOverview

• Loop-Level Parallelization in Fortran
• Autoscoping
• Combining Autoparallelization, OpenMP, Sun Performance Library
• Pushing Loop-Level Parallelization to the Limit

• C++ and OpenMP
• DROPS
• Realtime FEM for VR

• Nested Parallelization
• Pattern Recognition
• Critical Points
• TFS parallelized with Parawise by PSP
• Dynamic Thread Balancing for MPI+OMP

• OpenMP Tools / OpenMP on Windows
• CMP / CMT

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C19

FIRE: FIRE: NestedNested ParallelizationParallelization withwith OpenMP OpenMP

• FIRE = Flexible Image Retrival Engine (written in C++)
Thomas Deselaers, Daniel Keysers, RWTH I6 (computer science 6):

Human Language Technology and Pattern Recognition
• compare the performance of common features on different databases
• analysis of correlation of different features

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C20

FIRE: FIRE: NestedNested ParallelizationParallelization withwith OpenMPOpenMP

• Q: query image, X: set of database images
• Qm, Xm: m-th feature of Q and X
• dm: distance measure, wm: weighting coefficient
• Return the k images with lowest distance to query image

• Well-suited for shared memory parallelization because of large
image database

• 3 Levels to employ parallelization:
• Process multiple query images in parallel
• Process database comparison for one query image in parallel
• Computation of distances might be parallelized as well

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C21

FIRE: FIRE: NestedNested OpenMP OpenMP improvesimproves scalabilityscalability

• How can Nested OpenMP improve the scalability?
• Some synchronization for output ordering on the higher level
• OpenMP implementation overhead increases over-linear with

the number of threads
• Dataset might better fit to the number of threads

133.3------144

67.6---56.572

30.628.929.632

15.414.114.816

---7.6---8

---3.8---4

Nested OpenMPOnly inner levelOnly outer level# Threads

Sun Fire E25K, 72 dual-core UltraSPARC-IV processorsSpeedup of FIRE

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C22

NestedCPNestedCP: Parallel : Parallel CriticalCritical Point Point ExtractionExtraction

• Virtual reality: Analysis of large-scale flow simulations
• Feature extraction from raw data
• Interactive analysis in virtual environment (e.g. a cave)

• Critical point: point in the vector field where the velocity is zero.

Andreas Gerndt
Virtual Reality Center Aachen

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C23

NestedCPNestedCP: : AddressingAddressing loadload imbalanceimbalance

• Algorithm for critical point extraction:
• Loop over the time steps of unsteady datasets
• Loop over the blocks of multi-block datasets
• Loop checking the cells within the blocks

• The time needed to check different cells may vary considerably!

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Time Level

R
un

tim
e

[s
]

Basic Load Total Runtime

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C24

NestedCPNestedCP: : AddressingAddressing loadload imbalanceimbalance

#pragma omp parallel for num_threads(nTimeThreads) \
schedule(dynamic,1)

for (cutT = 1; curT <= maxT; ++curT)
{

#pragma omp parallel for num_threads(nBlockThreads) \
schedule(dynamic,1)

for (curB = 1; curB <= maxB; ++curB)
{

#pragma omp parallel for num_threads(nCellThreads) \
schedule(guided)

for (curC = 1; curC <= maxC; ++curC)
{

findCriticalPoints(curT, curB, curC);

} } }

• Solution in OpenMP is simple:

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C25

NestedCPNestedCP: : AddressingAddressing loadload imbalanceimbalance

• The achievable speedup heavily depends on the selected dataset
• No load imbalance → almost perfect scalability can be achieved

• Speedup on Sun Fire E25K, 72 dual-core UltraSPARC-IV processors
with 128 threads:
• Without load-balancing: 10.3

static scheduling

• Dynamic / Guided 33.9
Time = 4, Block = 4, Cell = 32

• Dynamic / Guided (Sun extension) 55.3
Weight factor = 20

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C26

NestedCPNestedCP: : AddressingAddressing loadload imbalanceimbalance

• High speed-up
• Nearly optimal mainly by time-level

parallelization
• T32, B1, C4: 125.30

• Block sizes considerably larger
• Dataset shows good balancing
• Static case only 8% worse

Fig.: Speed-up; Shock Dataset; automatic load balancing

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128
Number of Processes

S
pe

ed
up

t1 b1 t2 b1 t4 b1
t32 b1 t128 b1 Optimum

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C27

TFS TFS -- nested parallelization with OpenMP nested parallelization with OpenMP
• TFS models human nasal flow for computer aided surgery

Ingolf Hörschler, Aerodynamic Institute, RWTH Aachen
Steve Johnson, Cos Ierotheou, Parallel Software Products

• Require an efficient OpenMP version of TFS code which contains ~20000
lines in 141 routines with 583 DO loops

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C28

TFSTFS

• TFS has been tuned for vectorization (performs excellent on NEC SX8)
• Loop level parallelization delivers speedup of 5-6 using 8 threads (US IV)
• MPI on block level would be laborious because of complex geometry
• Also, blocks differ heavily in size => load imbalance

• ParaWiseToolkit for (semi-) automatic parallelization of Fortran codes
• Global static program analysis, generation of OpenMP directives
• Profile feedback,
• Expert system (GUI) to assist user for further improvement of

parallelization

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C29

ParaWise/CAPO by Parallel Software ProductsParaWise/CAPO by Parallel Software Products
www.parallelsp.comwww.parallelsp.com

• Toolkit for (semi-) automatic
parallelization of Fortran codes

• Global static program analysis
• Generation of OpenMP directives
(CAPO, NASA Ames)

• Runtime analysis
• Expert system (GUI) to assist
user to give feed-back for further
improvement of parallelization

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C30

TFS TFS SpeedupSpeedup

Sweet spot for
loop level

parallelization
Sweet spot for block
level parallelization

Maximum speed-up
17.5 – 20.0

• experimental threading library from
Sun (maintain thread affinity) +

• processor binding +
• data migration (Solaris) =>
• increase speedup with 64 threads

from 20 to 25 !

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C31

NavierNavier--StokesStokes SolverSolver FLOWerFLOWer

• Navier-Stokes-Solver FLOWer (DLR=German Aerospace Center)
• PHOENIX, a small scale prototype

of the space launch vehicle HOPPER
designed to take off horizontally and
glide back to earth after placing its cargo in orbit.

Birgit Reinartz, Michael Hesse, Laboratory of Mechanics,
RWTH Aachen University

MPI + autoparallelization => hybrid

DTB Library to automatically
adjust number of threads
to improve load balance of MPI version.

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C32

FLOWerFLOWer -- Vampir Vampir TimelineTimeline Display (Display (zoomed)zoomed)
10 x 2 Processors10 x 2 Processors

process 5 has
too much to do

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C33

FLOWerFLOWer -- Manual Manual LoadLoad BalancingBalancing
10x1+5 10x1+5 ProcessorsProcessors

Process 0: 2 Threads
Process 5: 5 Threads
Processes 1-4,6-9: 1 Thread each

Total: 15 Processors used only

18.1 secs for 4 iterations versus
24.6 secs with 10x2 processors !

1.8 times higher efficiency

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C34

FLOWer FLOWer -- Dynamic Thread BalancingDynamic Thread Balancing
23x2 Processors23x2 Processors

0

4

8

12

16

20

24

28

32

36

40

44

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

iterations

pr
oc

es
so

rs

Sun Fire E25K

23 MPI procs start with
2 threads each.

•Warm-up phase (1-12)
artificially vary number
or threads per process

•Steering phase (13-30)
increase number of
threads of busy procs

•Production phase (31-)
freeze thread numbers
“nexttouch”

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C35

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200

runtime [secs]

M
io

 L
2

ca
ch

e
m

is
se

s
pe

r s
ec

on
d

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

to
ta

l G
Fl

op
/s

local access
remote accesses
total Gflops

!$omp nexttouch(*)

FLOWer FLOWer -- Dynamic Thread BalancingDynamic Thread Balancing
23x2 Processors23x2 Processors

Sun Fire 25K, ~ 65 Mflop/s per thread = 3% of peak performance
(due to high MPI communication overhead)

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C36

OverviewOverview

• Loop-Level Parallelization in Fortran
• Autoscoping
• Combining Autoparallelization, OpenMP, Sun Performance Library
• Pushing Loop-Level Parallelization to the Limit

• C++ and OpenMP
• DROPS
• Realtime FEM for VR

• Nested Parallelization
• Pattern Recognition
• Critical Points
• TFS parallelized with Parawise by PSP
• Dynamic Thread Balancing for MPI+OMP

• OpenMP Tools / OpenMP on Windows
• CMP / CMT

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C37

FVA346 FVA346 -- ContactContact Analysis of Bevel GearsAnalysis of Bevel Gears

Bevel Gear Pair Differential Gear

Laboratory for Machine Tools and Production Engineering, RWTH Aachen University

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C38

Tuning and Parallelization of a Tuning and Parallelization of a
Fortran90 Application for WindowsFortran90 Application for Windows

Target
• Pentium/Windows/Intel → Opteron/Windows/Intel + OpenMP + tuning
Procedure
• UltraSPARC IV / Solaris / SunStudio
• Etnus TotalView on : Porting (~ 2x2 hours)
• Simulog Foresys: Fortran77 → Fortran 90 (90,000 lines of code)
• Sun Analyzer: Runtime analysis
• OpenMP-Parallelization (~ 2 days incl. serial tuning, 5 PR, 70 directives)
• Intel Compiler on Linux
• Intel ThreadChecker: Verification of OpenMP version
• Opteron/Windows/Intel

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C39

Performance (Performance (Mflop/s)Mflop/s)

0

1000

2000

3000

4000

5000

6000

7000

8000
M

Fl
op

/s
1 thread
2 threads
4 threads
8 threads
16 threads
24 threads

1 thread 220 224 368 647 1072 861 1195 1649 1032 1237
2 threads 444 645 1033 1824 1382 2052 2602 1388 2125
4 threads 681 1152 1644 3011 2216 3482 4112 2255 3613
8 threads 1148 2047 4996 3246 5587 5950
16 threads 1829 3398 3534 7658
24 threads 2144 4369

Pent 4
1,8 GHz

Windows

US IV
1,2 GHz
Solaris

US IV+
1,5 GHz
Solaris

Opteron
2,2 GHz

Windows

Opt.dual
2,2 GHz
Solaris

Opt. dual
2,6 GHz
Linux

Opt.dual
2,6 GHz
Solaris

Woodcr.
3,0 GHz
Linux

Woodcr.
3,0 GHz

Windows

Clovert.
2,66 GHz

Linux

Starting
point

higher is better

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C40

OverviewOverview

• Loop-Level Parallelization in Fortran
• Autoscoping
• Combining Autoparallelization, OpenMP, Sun Performance Library
• Pushing Loop-Level Parallelization to the Limit

• C++ and OpenMP
• DROPS
• Realtime FEM for VR

• Nested Parallelization
• Pattern Recognition
• Critical Points
• TFS parallelized with Parawise by PSP
• Dynamic Thread Balancing for MPI+OMP

• OpenMP Tools / OpenMP on Windows
• CMP / CMT

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C41

Sun Fire T2000 Sun Fire T2000 –– Eight Cores x Four ThreadsEight Cores x Four Threads

MemoryMemory

corecore

8 KB 8 KB
L1L1

.75 MB L2 .75 MB L2

MemoryMemory MemoryMemory MemoryMemory

.75 MB L2 .75 MB L2 .75 MB L2 .75 MB L2 .75 MB L2 .75 MB L2

FPUFPUInternal Crossbar 134 GB/s

corecore

8 KB 8 KB
L1L1

corecore

8 KB 8 KB
L1L1

corecore

8 KB 8 KB
L1L1

corecore

8 KB 8 KB
L1L1

corecore

8 KB 8 KB
L1L1

corecore

8 KB 8 KB
L1L1

corecore

8 KB 8 KB
L1L1

25.6 GB/sec.

4 DDR2 memory controllers on chip

1GHz
4 threads
per core

1 x UltraSPARC T1 (Niagara 1) @ 1 GHz

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C42

Sparse Sparse ““PseudoPseudo””--MatrixMatrix Vector Vector Multiplication Multiplication
(long long int)(long long int)

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35

threads

M
FL

O
PS

 /
M

O
PS

SF T2000
long long
SF 2900
long long

E

19,6 Mio nonzeros
233,334 matrix dimension
225 MB memory footprint

SF T2000

www.rz.rwth-aachen.de/hpc/hw/niagara.ph

Top: Sunfire T2000 (1 x 8-core multithreaded Niagara, 1 GHz)
Bottom: Sunfire 2900 (12 x 2-core Ultrasparc IV, 1,2 GHz)

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C43

OpenMP
Threads

Sockets-
Chips-
Cores-
Threads

Runtime
[sec]

Speedup Eff. Runtime
[sec]

Speedup Eff. Runtime
[sec]

Speedup Eff. Speed
[Mflop/s]

Speedup

Eff.
1 1-1-1-1 276.33 1.00 100 66.4 1.0 100 33.6 1.0 100 141.0 1.00 100
2 1-1-2-1 161.62 1.71 85 42.8 1.55 78 18.8 1.79 90 274.8 1.95 97
2 2-1-1-1 162.95 1.70 85 42.2 1.57 79 18.9 1.78 89 243.7 1.73 86
4 2-1-2-1 90.87 3.04 76 28.9 2.30 58 11.4 2.95 74 423.8 3.01 75
1 1-1-1-1 57.96 1.00 100 29.2 1.0 100 14.3 1.0 100 371.8 1.00 100
2 1-1-2-1 34.91 1.66 83 20.7 1.41 71 11.6 1.23 62 643.5 1.73 87
2 2-1-1-1 34.79 1.67 83 18.5 1.58 79 11.6 1.23 62 721.6 1.94 97
4 2-1-2-1 20.25 2.86 72 13.6 2.15 54 8.7 1.64 41 1200.0 3.23 81
1 1-1-1-1 36.02 1.00 100 20.1 1.0 100 10.0 1.0 100 557.4 1.00 100
2 1-1-2-1 21.73 1.66 83 16.1 1.25 63 8.0 1.25 63 643.5 1.15 58
2 2-1-1-1 21.71 1.66 83 15.0 1.34 67 6.0 1.67 84 872.9 1.57 78
4 2-1-2-1 14.64 2.46 62 13.0 1.55 39 5.0 2.0 50 951.3 1.71 43
1 1-1-1-1 48.10 1.00 100 23.1 1.00 100 11.10 1.00 100 495.2 1.00 100
2 1-1-2-1 28.10 1.71 86 19.0 1.22 61 9.10 1.22 61 563.9 1.14 57
2 1-2-1-1 28.10 1.71 86 17.0 1.36 68 7.00 1.59 79 764.3 1.54 77
2 2-1-1-1 28.00 1.72 86 17.1 1.35 68 8.00 1.39 69 622.5 1.26 63
4 1-2-2-1 16.10 2.99 75 14.1 1.64 41 6.00 1.85 46 902.9 1.82 46
4 2-1-2-1 16.10 2.99 75 15.1 1.53 38 7.10 1.56 39 632.6 1.28 32
4 2-2-1-1 16.47 2.92 73 13.1 1.76 44 4.10 2.71 68 807.9 1.63 41
8 2-2-2-1 10.00 4.81 60 13.0 1.78 22 4.10 2.71 34 913.2 1.84 23

Parallel Efficiency <40%

Opteron
2.2

Wood-
crest
3.0

Clover
town
2.66

Parallel Efficiency 40-60%

USIV
1.2

Parallel Efficiency >80%
Parallel Efficiency 60-80%

DROPS (sMxV)BevelGears ThermoFlow TFS

OpenMP in the Works, July 4, 2007OpenMP in the Works, July 4, 2007
Center for
Computing and Communication

C
C

C44

ConclusionConclusion

• For our user community – engineers and natural scientists -
OpenMP frequently is an interesting alternative, as MPI
parallelization would cause much more work.

• Anyway, quite a few MPI codes are running at our site, most
of them have been "imported".

• Tools for performance analysis and verfication are critical
ingredients of the programming development environment

• OpenMP is useful for multicore architectures.
• But the memory wall will be hitting us even more in the

future => CMT.
• OpenMP 3.0 tasking concept will greatly enhance its

usability.

