
FOUO1 7/6/20071 7/6/2007

Douglass Post
DoD HPCMP Chief Scientist and CREATE Project Manager

post@hpcmo.hpc.mil

Inauguration of FZ-KFA Virtual Institute for High
Productivity Supercomputing

July 4, Jülich, Germany

Distribution Statement A: Approved for public release: Distribution is unlimited

The Opportunities and Challenges for
Computational Science and

Engineering

FOUO2 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO3 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO4 7/6/20074

Exponential Growth In Computer Power and Codes
Is Enabling Computational Science and Engineering

to Be a “Disruptive” Technology.

Co
m

pu
te

r
Sp

ee
d

105

107

109

1011

1013

1015

1960 1970 1980 1990 2000 2010
Year

C
om

pu
te

r P
ow

er
 (F

LO
Ps

/s
)

Computer power comes at the expense of complexity!

Enable paradigm shift
• Potential to change the

way problems are
addressed and solved

• Make reliable predictions
about the future

• Superior engineering &
manufacturing

• Enable research to make
new discoveries

• A vastly more powerful
solving methodology for
society!

FOUO5 7/6/2007

Computational Science And Engineering Is Becoming
an Important Tool In Science And Engineering

Accelerator Design
Aircraft Design
Archaeology
Armor Design
Astrophysics
Atomic And Molecular Physics
Automobile Design
Bioengineering And Biophysics
Bioinfomatics
Chemistry
Civil Engineering
Climate Prediction
Computational Biology
Computational Fluid Dynamics
Cosmology
Cryptography
Data Mining
Drug discovery
Earthquakes
Economics
Engineering Design And Analysis
Finance
Fluid Mechanics
Forces Modeling And Simulation
Fracture Analysis
General Relativity Theory
Genetics
Geophysics

Groundwater And Contaminant Flow
High Energy Physics Research
Hydrology
Image Processing
Inertial Confinement Fusion
Integrated Circuit Chip Design
Magnetic Fusion Energy
Manufacturing
Materials Science
Medicine
Microtomography
Nanotechnology And Nanoscience
Nuclear Reactor Design And Safety
Nuclear Weapons
Ocean Systems
Petroleum Field Analysis And Prediction
Optics and Optical Design
Political Science
Protein Folding
Radar signature and antenna analysis
Radiation Damage
Satellite Image Processing
Scientific Databases
Search Engines
Shock Hydrodynamics
Signal Processing
Space Weather
Volcanoes
Weather Prediction
Wild Fire Analysis

FOUO6 7/6/2007

Computational Tools Are Becoming Widely
Used In Science And Engineering

FOUO7 7/6/2007

Computational Science And Engineering (CSE) Is A
Uniquely Powerful Tool For Studying The Interaction

Of Many Different Natural Effects

Science-based: Laws of nature govern individual interactions
1. Scientific discovery
2. Experimental analysis and design
3. Prediction of operational conditions
4. Engineering design and analysis

Heuristic-based: laws governing individual interactions are heuristic
and/or empirical

5. Data collection, analysis & mining - Statistics……
Social sciences, medicine, education, research

6. Heuristic simulations and decision tools (economic
forecasts, war and strategy simulations,..)

7. Cellular automata

FOUO8 7/6/20078

Computational Science is hard.
Computational Engineering is harder.

• Computational Science is challenging:

• Develop a complex code for complex computers, apply
it to study a scientific research problem, and publish the
findings.

• Computational Engineering is even more challenging:

• Develop sets of computational engineering tools that
will used by other engineering groups to design and
analyze systems that will be built by others, tested by
others and employed in operations by others.

• Additional challenges due to the use of non-collocated,
multi-institutional teams.

FOUO9 7/6/2007

Three Challenges
Performance, Programming and Prediction

1. Performance Challenge - Computers power increasing through
growing complexity
0 Massive parallelization, multi-core & heterogeneous (CELL, FPGA,

GPU…) processors, complex memory hierarchies…..

2. Programming Challenge -Programming for Complex Computers
0 Rapid code development of codes with good performance

3. Prediction Challenge —Developing predictive codes with complex
scientific models
0 Develop accurate predictive codes

Verification
Validation
Code Project Management

Train wreck coming between the last two
Better software development and production tools are desperately
needed for us to take full advantage of computers

Programming Prediction

Hubbard, OR in 1902

FOUO10 7/6/200710

How can we develop the
computational capability we need?

We need to develop a complete problem
solving system:

1. Computers
2. Software—both applications and tools
3. V&V
4. Users
5. Sponsors

FOUO11 7/6/200711 4/03/2007

Next Generation Computers Offer Society
Unparalleled Power to Address Important Problems

Next generation computers will provide exciting opportunities to develop
and deploy very powerful application codes, much more powerful than
present tools:
0 Utilize accurate solution methods
0 Include all the effects we know to be important
0 Model a complete system
0 Complete parameter surveys in hours rather than days to weeks to months

Greatest opportunities include large-scale codes that integrate many multi-
scale effects to model a complete system

Developing such codes is the major bottleneck!
0 Requires large (10 to 30 professionals), multi-disciplinary, multi-

institutional teams 5 to 10 years
0 Codes must to scale to many, many thousands of processors

How do we position ourselves to take advantage of the opportunity that the
next generation of computers will offer?

FOUO12 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO13 7/6/2007

55,000 processors
330 TFlops

FOUO14 7/6/2007

HPCMP is the second largest collection of
supercomputers in the KNOWN world!

HPCMP Modernizes DoD computing with $50M annual purchases.
Peak Equiv.

Number HABU No. of GFLOPS of
of Rating Avail of 1,024-

Actual per 1,024 Memory PEs Actual PE
PEs PEs (GB) PEs HABU

ERDC SGI Origin 3900 1,024 3.08 1,024 1,008 1,434 3.08
Cray XT3 (Upgrade) 8,320 11.54 16,640 8,192 43,264 93.76
Cray Hood 8,848 10.39 17,696 8,608 40,701 89.76

NAVO IBM Regatta P4 2,944 6.55 5,968 2,832 20,019 18.83
IBM Cluster 1600 P5 2,976 12.31 5,952 2,816 20,237 35.78
IBM Cluster 1600 P5 1,504 13.66 3,008 1,408 10,227 20.06
IBM Regatta P4 1,408 2.10 1,408 1,328 7,322 2.89
IBM Regatta P4 512 6.55 736 464 3,482 3.28

ARL SGI Altix Cluster (D) 256 8.68 256 256 1,536 2.17
IBM Opteron Cluster 2,372 4.73 3,456 2,304 10,437 10.96
Linux Networx Xeon Cluster

2,100 5.80 4,096 2,048 12,852 11.89
Linux Networx Woodcrest Cluster

4,286 16.07 8,572 4,160 51,432 67.26
Linux Networx Dempsey Cluster

3,360 10.86 6,720 3,336 21,504 35.63
Linux Networx Cluster 256 5.21 256 256 1,567 1.30

ASC IBM Regatta P4 (D) 32 2.55 32 32 166 0.08
SGI Origin 3900 2,048 3.08 2,048 2,032 2,867 6.16
SGI Origin 3900 (D) 128 1.90 128 128 179 0.24
HP Opteron Cluster 2,048 6.71 4,096 2,048 10,650 13.42
SGI Altix Cluster 2,048 6.84 2,048 2,000 12,288 13.68
SGI Altix 4700 (Density) 256 12.02 1,024 250 1,638 3.00
SGI Altix 4700 (8192 2GB Density,
1024 4GB Memory) 9,216 12.02 22,528 9,000 58,982 108.14

54,506 332,784 541.4MSRC Totals

MSRC Systems

12/2007

FOUO15 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Multi-scale issues

Tools part of solution

Conclusions and recommendations

FOUO16 7/6/2007

What Kind Of Codes Are We Talking About?
We surveyed our Large, Diverse DoD HPC Community to characterize our codes

587 projects and 2,262 users at
approximately 144 sites

Requirements categorized in 10
Computational Technology Areas (CTA)

DoD HPCMP has about 20 computers with
~240 TFlops/s peak (circa 2006)

Computational Structural
Mechanics – (CSM)Electronics, Networking, and

Systems/C4I – (ENS)

Computational Chemistry, Biology
& Materials Science – (CCM)

Computational Electromagnetics
& Acoustics – (CEA)

Computational Fluid Dynamics
– (CFD)

Environmental Quality Modeling
& Simulation – (EQM)

Signal/Image Processing – (SIP)

Integrated Modeling & Test
Environments – (IMT)

Climate/Weather/Ocean Modeling
& Simulation – (CWO)

Forces Modeling &
Simulation – (FMS)

FOUO17 7/6/2007

We sent surveys to our top 40 codes (ordered by time
requested), with 15 responses so far.

5,169,100PRONTO

5,864,500ALE3D

5,975,000CPMD

11,700,000ETA

8,125,000Various

14,165,750COBALT

8,835,500OVERFLOW

18,540,000MOM

10,974,120MUVES

23,462,500XPATCH

12,125,857ZAPOTEC

15,165,000Xflow

18,437,500VASP

17,898,520ANSYS

21,000,000CAML

26,500,000ICEPIC

32,815,000ALLEGRA

49,256,850GAUSSIAN

89,005,100HYCOM

93,435,421CTH

HoursApplication Code

2,600,000Freericks Solver

3,600,600TURBO

3,500,000MS-GC

3,800,000POP

4,466,000AMBER

4,050,000FLAPW

4,000,000ParaDis

2,420,000Our DNS code (DNSBLB)

4,691,000GASP

3,955,610FLUENT

4,210,000USM3D

4,700,000STRIPE

5,142,250GAMESS

5,500,000Loci-Chem

5,080,000NCOM

4,578,430MATLAB

4,100,750ADCIRC

5,719,000CFD++

4,950,000ICEM

5,200,100DMOL

HoursApplication Code

FOUO18 7/6/2007

Characteristics Aren’t Surprising.

Even now, codes are developed by teams
Most codes have more users than just the development
team
Codes are big
58% of the codes are written in Fortran.
New languages with higher levels of abstraction are
attractive, but they will have to be compatible and inter-
operable with Fortran with MPI.

275276Median
13%13%17%34%24%8205,03838Mean

other
SLOC
C++
(k)

SLOC
C (k)

SLOC
Fortran

90, 95 (k)

SLOC
Fortran
77 (k)

Total
SLOC(k)

users

Team
size
FTEs

FOUO19 7/6/2007

Further Data Isn’t Surprising Either.

128128
1000 to

30007.015.517.5
Median

0.75-4Sometimes

292225
1000 to

30006.915.119.8
Mean

Memory
processor

GBytes
/proc

Is
memory a
limitation

?

Typical
Maximum

of
processors

Typical
minimum

of
processors

Largest
Degree of
Parallelism

total
number

of
different

platforms

age
production

version

Total
Age
(yr)

• Most codes are at least 15 years old
• Most codes run on at least 7 different platforms
• Most codes can run on ~1000 processors, but don’t
• Most users want at least 1 GByte / processor of

memory.

FOUO20 7/6/2007

HPCMP Acquisition Application Benchmark Codes
Perform Differently On Different Platforms.

Aero – Aeroelasticity CFD code
(Fortran, serial vector, 15,000 lines of code)
AVUS (Cobalt-60) – Turbulent flow CFD code

(Fortran, MPI, 19,000 lines of code)
GAMESS – Quantum chemistry code

(Fortran, MPI, 330,000 lines of code)
HYCOM – Ocean circulation modeling code

(Fortran, MPI, 31,000 lines of code)
OOCore – Out-of-core solver

(Fortran, MPI, 39,000 lines of code)
CTH – Shock physics code (SNL)

(~43% Fortran/~57% C, MPI, 436,000 lines of code)
WRF – Multi-Agency mesoscale atmospheric model

(Fortran and C, MPI, 100,000 lines of code)
Overflow-2 – CFD code originally developed by NASA

(Fortran 90, MPI, 83,000 lines of code)

FOUO21 7/6/2007

Performance Depends On The Computer And
On The Code.

0 2 4 6 8 10
WRF Std

Avus Lg

GAMESS Std

GAMESS Lg

HYCOM Std

HYCOM Lg

OOCore Std

OOCore Lg

Overflow2 Std

Overflow2 Lg

RFCTH2 Std

RFCTH2 Lg

Code Performance (by machine)

Cray X1
IBM P3
IBM P4
IBM P4+
HP SC40
HP SC45
SGI O3800
SGI O3900
Xeon Cluster
Xeon Cluster
SGI Altix
IBM Opteron

Code Performance by machine

• Normalized Performance = 1 on the NAVO IBM SP3 (HABU) platform with 1024 processors
(375 MHz Power3 CPUs) assuming that each system has 1024 processors.

Substantial variation of codes
for a single computer.

0 2 4 6 8 10

Cray X1

IBM P3

IBM P4

IBM P4+

HP SC40

HP SC45

SGI O3800

SGI O3900

Xeon Cluster (3.06)

Xeon Cluster (3.4)

SGI Altix

Code performance (grouped by machine)

AERO Std
AERO Std
WRF Std
Avus Std
Avus Lg
Gamess Std
GAMESS Lg
HYCOM Std
HYCOM Lg
OOCore Std
OOCore Lg
Overflow2 Std
Overflow2 Lg
RFCTH2 Std
RFCTH2 Lg

Relative code performance

• GAMESS had the most variation among platforms.

―SC 2005 panel Tour de HPCylces

FOUO22 7/6/2007

Eagle Hawk
Falcon Condor

Nene

number of languages

core team size

nonimal age
lines of source code

1

10

100

1000

10000

100000

1000000

Project Name

Attribute

Code Attributes

number of languages
core team size
nonimal age
lines of source code

Also Did Detailed Case Studies Of First 6 Large
US Federal Agency CSE Codes And Then
Another Set Of 5 Large-scale CSE Codes

76
0k

80
k

40
5k

13
4k

~2
00

k
253

10 206

9
2

3 4
4

104
17

33

5 CSE codes (academia and lab)

(years)

FOUO23 7/6/2007

Nine Cross-Study Observations

1. Once selected, the primary languages (typically Fortran) adopted by existing code
teams do not change.
2. The use of higher level languages (e.g. Matlab) has not been widely adopted by
existing code teams except for "bread-boarding" or algorithm development.
3. Code developers in existing code teams like the flexibility of UNIX command line
environments.
4. Third party (externally developed) software and software development tools are
viewed as a major risk factor by existing code teams.
5. The project goal is scientific discovery or engineering design. "Speed to solution"
and "execution time" are not highly ranked goals for our existing code teams unless
they directly impact the science.
6. All but one of the existing code teams we have studied have adopted an "agile"
development approach.
7. For the most part, the developers of existing codes are scientists and engineers,
not computer scientists or professional programmers.
8. Most of the effort has been expended in the "implementation" workflow step.
9. The success of all of the existing codes we have studied has depended most on
keeping their customers (not always their sponsors) happy.

—R. Kendall, A. Mark, J. Carver, D. Post, et al

FOUO24 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO25 7/6/2007

What do CSE Application People Need?

To develop and run complex applications, they want and need:
0 Sufficient performance to enable large problems, fast turnaround, simple

code development, accurate answers
0 Fast integer and floating point arithmetic (with fast divides)
0 Simple memory hierarchies that are fast, globally addressable, reliable,

have low latencies and high bandwidth, and lots of data storage
0 Stable, long-lived and reliable platforms and architectures
0 Stable, long-lived and reliable software development and production tools

that provide the needed capability and are simple and easy to use
0 Developers want something like a Unix/LINUX or Mac or even PC

workstation development environment, or better

Summary: Users and developers want to solve their scientific or engineering
problem and not worry about the architectural details of computers

FOUO26 7/6/2007

What Are They Getting?

Complex, distributed
memory with only very
slowly improving
memory bandwidth

Slowing rate of
processor speed
growth

J. Mitchell, Sun Microsystems

Growth in Power Density

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Year
1985 1990 1995 2000 2005 2010
1

10

100

i386

i486 Pentium

Pentium MMX

Pentium 4

Pentium II

hot plate

space shuttle tile

nuclear reactor fuel cell

1000

 2x in 3.3 years

QuickTime™ and a
 decompressor

are needed to see this picture.

Chart courtesy of Dr. Gary Shaw, MIT/Lincoln LaboratoriesDistributed processor and memory systems linked together in ever larger and more
complex networks plus heterogeneous, multi-core challenges (e.g. Blue Gene,
Roadrunner,…)
Rapid turnover in machines and machine architectures (2-4 years)
Unreliable parallel file systems
Unstable development and production environment
Highly complex programming environment and challenges
0 Complex architectures—>Complex programming
0 Performance that is poor (a few % of peak) and hard to optimize
0 Frequent and challenging ports to new platforms
0 Inadequate and immature tools to develop and run codes

FOUO27 7/6/200727 4/03/2007

Computational Engineering Code Developer’s
World – Six Major Challenges and Risks

votta@alum.mit.edu

Complex
Computer

Architectures

Complex
Science
and Math

Code
Development

Complex
Organizations

Rudimentary
V&V

Methods

Science &
User Driven

Requirements

Inadequate
Software

Development
Tools

Large, multi-
disciplinary, multi-
institutional teams

Laws of nature &
user needs win

every time

Many strongly coupled effects and
massively parallel computersZillions of

processors linked
with complicated

and slow networks

Plus different kinds
of processors: X86,

Power-n, GPUs,
FPGAs, vector,

CELL……

Little help for
dealing with

complex computer
architectures

Immature methods and few
validation experiments

28 7/6/200728 7/6/2007

Developing a Large, Multi-scale, Multi-effect
Code Takes a Large Team a Long Time

2003

~20

29 7/6/200729 7/6/2007

Not the WaterFall Model!

1. Requirements
2. Design
3. Code
4. Test
5. Run

The process is complex!

Formulate
questions

Develop
Approach

Develop
Code

V&V Analyze
Results

Production
Runs

Decide;
Hypothesize

Define
Goals

Set global
Requirements

Identify
Customers

Define
General

Approach

Customer
input

Identify
algorithms

Detailed
Design

Recruit
Team

Detailed
Goals

Computing
environment

Select
Programming

Model

Write
Component

Debug
Component

Test
Component

Define
tests

Regression
Tests

Verification
Tests

Validation
Tests

Validation
Expts.

Identify
Models

Setup
Problems

Schedule
Runs

Execute
Runs

Store
Results

Initial
Analysis

Complete
Run

Optimize
runs

Optimize
Component

Analyze
Run

Identify
Next Run

Computational
Science
Workflow

Formulate
questions

Develop
Approach

Make
Decisions

Document
Decisions

Identify
Uncertainties

Identify
Next Step

Upgrade existing code
or develop new code

―D. E. Post, R. P. Kendall, Large-Scale Computational Scientific and Engineering Project Development and Production Workflows, CTWatch (2006), vol.2-4B,pp68-76.

1996 1997 1998 1999 2000 2001

Program
Planning
And Start

Program Milestones Set

New Code Projects
Launched

1st 2nd 3rd

1992 — 1995

Falcon Code Project

Kite Code Project

Jabiru Code Project

Egret Code Project

Gull Code Project

Finch Code Project

M
issed M

ilestones
M

ilestone Successes
Code Project Schedule For Six Large-scale Physics Codes

Project Start

Milestones

Project Successes —
2004

Project W
ork

C
eased

2004

*Computational Science Demands A New Paradigm,
D. E. Post, L. G. Votta, Physics Today, 2005, 58 (1):
P.35-41

It’s Risky!*

7/6/200730

FOUO31 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

32 7/6/200732 4/03/2007

What can we do to minimize risks
and address the challenges?

votta@alum.mit.edu

Complex
Computer

Architectures

Complex
Science

Code
Development

Complex
Organizations

Rudimentary
V&V

Methods

Science &
User Driven

Requirements

Inadequate
Software

Development
Tools

• Develop
collaboration
methods and
technologies

• Emphasize
building teams

• Emphasize
flexible and agile
software project
management

• Listen to users
• Design code for

engineering
design analysis

• Establish early
connection with
engineers

• Emphasize science and engineering
• Minimize risks, emphasize conservative

approaches
• Minimize risks
• Conservative

choices:
• Computers
• Algorithms
• Parallel

programming
models

• Emphasize agile and
flexible software
engineering

• Establish a
community-wide
program for tool
development and
deployment

• Support tool use by
code developers • Develop methods and connect

to experimental community

33 7/6/2007

Issues Summarized In January 2005
Physics Today Article*.

Three Challenges
0 Performance Challenge
0 Programming Challenge
0 Prediction Challenge

Where case studies are important

Case Studies are needed for success
0 The Scientific Method

Paradigm shift needed
0 Computational Science moving from few

effect codes developed by small teams to
many effect codes developed by large
teams

0 Similar to transition made by
experimental science in 1930—1960

0 Software Project Management and V&V
need more emphasis

*Computational Science Demands a New Paradigm, D.E.
Post and L.G. Votta, Physics Today,58(1), 2005, p.35-41.

Email post@ieee.org to get a copy.

FOUO34 7/6/2007

Computational Science And Engineering Is Making The Same Transition
That Experimental Science Made In 1930 Through 1960.

Computational Science and Engineering moving from “few-effect” codes developed by
small teams (1 to 3 scientists) to “many-effect” codes developed by larger teams (10, 20
or more).
Analogous experimental science transition made in 1930-1960 time frame
Small-scale science experiments involving a few scientists in small laboratories —> “big
science” experiments with large teams working on very large facilities.
“Big Science” experiments require greater attention to formality of processes, project
management issues, and coordination of team activities than small-scale science.
Experimentalists were better equipped than most computational scientists to make the
transition and they had more time to make the transition.
0 Small scale experiments require much more interaction with the outside world than

small-scale code development.
0 Experimentalists had ~20 years, while computational scientists are doing the

transition much more quickly.

Early 1930’s Late 1930’s CERN 2000

FOUO35 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO36 7/6/200736 7/6/2007

CREATE Goal
CREATE goal is to enable major improvements in the DoD Acquisition
Process
0 Detect and fix design flaws early in the design process before major

schedule and budget commitments are made
0 Begin system integration earlier in acquisition process
0 Increase acquisition program flexibility and agility to respond to

rapidly changing requirements

Improve the ability of DoD institutions to develop and exploit large-scale
computational science and engineering tools - $360M over 12 years

CONCEPT
REFINEMENT

TECHNOLOGY
DEVELOPMENT

SYSTEM DEVELOPMENT
& DEMONSTRATION

PRODUCTION &
DEVELOPMENT

OPERATIONS &
SUPPORT

Concept
Decision

Design
Readiness

Review
FRP

Decision
Review

A CB

STRENGTHEN ENGINEERING & TEST EFFORTS BY INJECTING
COMPUTATIONAL RESEARCH & ENGINEERING FOR

ACQUISITION TOOLS & ENVIRONMENTS (CREATE)

IOC FOC

CREATE

FOUO37 7/6/2007

FOUO38 7/6/200738 7/6/2007

CREATE will develop and deploy three computational engineering
tool sets for acquisition program engineers to exploit the
exponential growth in supercomputer power:
0 Aircraft tools (Aerodynamics & Structures)
0 Ship tools (Hydrodynamics & Structures)
0 Antenna Integration tools (Electromagnetics)

Aircraft design tool capability:
0 Aerodynamic control & stability and loads for complete

airframes including propulsion and control systems integrated
with the airframe response

Ship design tool capability:
0 Early stage design and shock hydrodynamics coupled to

structural mechanics for full ship shock certification integrated
with hull form optimization and capsize stability analysis with
full ship motion in ocean waves

Antenna Integration and design tool capability:
0 Coupling of antenna radiation with platforms for minimal

interference (space and frequency) and simultaneous full
power multi-antenna operation

Software Infrastructure-Meshing, Collaboration tools……..
38

Separated Flow
Loss of control

C4ISR and sensing
antennas in Network

Centric Warfare
Battlespace

Damage from
underwater
explosions

F-18E/F

DDG-1000

Computational Research and Engineering Acquisition
Tools and Environments—CREATE

FOUO39 7/6/200739 7/6/2007

What will CREATE Need To Succeed?

Successful computational engineering and scientific projects emphasize*:
Verification and Validation
0 Accurate, reliable results

Computational Engineering Software Project Management
0 Large teams (~30 professionals) need a project orientation to organize and

coordinate the work; single investigator paradigm doesn’t work
Computational Engineering Software Engineering
0 Computational Engineering software development is a complex process for

producing a complex system
0 Success requires effective methods and tools that balance the need for

structured development with the required degree of flexibility and agility
0 Strong connection to the customers is required to meet their evolving needs
0 Good team dynamics: trust, respect, cooperation and commitment

DoD Challenge:
0 Establish a set of well integrated, multi-institutional, multi-disciplinary

computational engineering code development teams

*Software Project Management and Quality Engineering Practices for Complex, Coupled MultiPhysics, Massively Parallel
Computational Simulations, D. E. Post and R. P. Kendall, The International Journal of High Performance Computing
Applications, 18(2004), pp. 399-416

FOUO40 7/6/200740 7/6/2007

Prototype Codes Will Be Gradually
Replaced With Next Generation Codes

2008 2010 2013 2016 2019

Existing Legacy Codes Next Generation Codes

Knowledge
transfer

Users

Delivered
Code

Capability

R
el

at
iv

e
C

od
e

D
ev

el
op

m
en

t E
ffo

rt

Time

FOUO41 7/6/2007

CREATE is a Multi-Institutional Program

41

HPCMP Executing
Agent

CREATE Program

Official HPCMP
Advisory Panel

Ship
Project

DoD
Programs
& Services

Universities

Industry

Project
Boards

DOE/NSF/NASA
Programs

Aircraft
Project

DoD
Programs
& Services

Universities

Industry

Project
Boards

DOE/NSF/NASA
Programs

RF Antenna
Project

DoD
Programs
& Services

Universities

Industry

Project
Boards

DOE/NSF/NASA
Programs

Computational
Tools

DoD
Programs
& Services

Universities

Industry

Project
Boards

DOE/NSF/NASA
Programs

OSD

7/6/200741

FOUO42 7/6/200742 7/6/2007

Establishing a Multi-Institutional, Multi-Disciplinary
Collaboration Is a Daunting Challenge

Coordinating collocated code development by one institution has proven very
challenging
Coordinating non-collocated code development by multiple institutions will be
even more challenging
Establish the right culture, behavior and control
Form a team whose members have trust and respect for each other and a strong
commitment to the success of the project
Provide support for collaboration tools (hardware, software, and user help).
Effective desktop video communication
Effective daily communication
Propose an aggressive program to
develop and deploy collaboration
tools and methods, budgeting up to
$750k/year

FOUO43 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO44 7/6/2007

“HPC needs a tools strategy! *”

There is not a good business model for code development tools!

Academia has developed some good tools, but the support is generally
meager

Highly successful tools developers get bought by INTEL or Microsoft
or…, and then don’t serve the general community (Kuck and Associates,
Pallas…..)

Unsuccessful tool developers go out of business

Modestly successful tool developers seem to survive, but there aren’t
many (Totalview, CEI, Portland Group…)

Government support for tool development is waning

“HCP needs a tools strategy!*”

VI-HPS can play an important role!

Pick a few tools and do a good job, build the user base

Emphasize utility and user support
*HPC Needs a Tool Strategy, M. VanDeVanter, D.E. Post, M.E. Zosel, 2nd Workshop on HPC applications, ACM/IEEE
International Conference on Software Engineering, St. Louis, MO, May 22, 2005

“Last Man Standing”

FOUO

Formulate
questions

Develop
Approach

Develop
Code

V&V Analyze
Results

Production
Runs

Decide;
Hypothesize

Define
Goals

Set global
Requirements

Identify
Customers

Define
General

Approach

Customer
input

Identify
algorithms

Detailed
Design

Recruit
Team

Detailed
Goals

Computing
environment

Select
Programming

Model

Write
Component

Debug
Component

Test
Component

Define
tests

Regression
Tests

Verification
Tests

Validation
Tests

Validation
Expts.

Identify
Models

Setup
Problems

Schedule
Runs

Execute
Runs

Store
Results

Initial
Analysis

Complete
Run

Optimize
runs

Optimize
Component

Analyze
Run

Identify
Next Run

Enterprise Workflow

Formulate
questions

Develop
Approach

Make
Decisions

Document
Decisions

Identify
Uncertainties

Identify
Next Step

Upgrade existing code
or develop new code

Each phase
requires

development
tools

FOUO46 7/6/2007

Four HPC Code Development Tool
Categories

Category I: Code development environment—
Operating system, text editors, compilers, scripting
languages, debuggers, syntax checkers, static analysis
tools, job schedulers, performance analysis, memory
trace and analysis tools, bug trackers, issue trackers,
IDEs…
0Examples: MatLab —► Octave, TotalView, Eclipse,

Vampir, Tau, Open Speedshop……

Category II: Production tools—mesh generators, data
analysis and assessment, visualization, checkpoint
restart, runtime documentation, V&V…

FOUO47 7/6/2007

Tools we need (continued)

Category III: Software project management and
collaboration tools—configuration management, code
design, documentation, web design, project
management, issue tracking, collaboration tools…

Category IV: Libraries—computational math libraries,
data libraries, parallel programming libraries…
0Possibly best option for scaling and reuse

FOUO48 7/6/2007

How do people optimize CSE codes now?

Most start with the design of the code, take into account the
domain science and engineering, and the solution algorithms as
well as optimizing for the computer

0 Minimizing latency penalties is the first priority
0 Load balancing is the second priority

Now many, if not most, large-scale CSE codes are designed with
massive parallelization in mind

The number of codes that begin as large serial codes that are re-
factored into parallel codes is diminishing

Codes are “tuned” and reconfigured to some extent for
individual platforms, but more emphasis is given to portability

Better and easier to use tools would be a great help

FOUO49 7/6/2007

Qualitative Performance Gains Also Come From Better
Computers and Algorithms

Faster, bigger computers

+ Optimization of code performance for the computers

+ Faster, more accurate computational mathematics (FFT, Metropolis,
Krylov iteration schemes..)

+ Improved domain science algorithms (capture key features of
domain science in an algorithm without computing the most
basic phenomena)
0 Come from basic insights into the physics, chemistry,

biology, etc.
0 Flux limiters, average ion model, flux surfaces,

phenomenological models…
0 Symmetries, conservation laws, thermodynamic constraints,

detailed balance…

More emphasis on computational mathematics for massively
parallel machines is needed since they are the future

FOUO50 7/6/2007

Promise

HCPMP

Code characterization

Challenges

Solutions

CREATE - 3 new projects testing the solutions

Tools part of solution

Conclusions and recommendations

FOUO51 7/6/2007

“Top 500” list based on LINPACK is a major
impediment for good performance.

Charles Holland, DARPA IT head, terms it “Worshipping false gods”

LINPACK benchmarks are not a good indicator of the performance of real CSE
codes on today’s massively parallel computers where latency is a big problem

Yet LINPACK performance is the “de facto” metric for computer vendors

The vendors are “forced” by the market to develop computers to achieve high
Linpack performance even if it involves penalizing the performance of real
applications

As long as the top 500 list based on LINPACK continues to be the community
metric, performance for real codes will not be strongly emphasized
0 Result: Code development will continue to get more challenging

Need new metrics for computer performance, but it’s a lot of work!
0 HPC Challenge…..
0 Real codes as benchmarks (HPCMP does this! NASA and NSF adopting this)
0 Synthetic benchmarks
0 Performance analysis

Europe should learn from the mistakes of others, it shouldn’t “worship false gods”

FOUO52 7/6/2007

Recommendations
Computational science and engineering has a great potential to
solve many problems important to society, but it is challenging,
takes a long time and resources, and has risks
The growing complexity of computers provides both opportunities
and challenges
Success requires good tools for code development and production
The tools haven’t kept up with computer hardware, and the business
model is broken
Large opportunity, and challenge, for VI-HPS to have a real impact
Recommend that VI-HPS study the user community and the new
hardware architectures, identify a few crucial opportunities where
good tools will make a big difference, then develop and support
those tools as long as they are useful .
Emphasize a few good tools rather than many tools.
Multi-core, heterogeneous computing tools – emphasize ease of use

FOUO53 7/6/2007

The Future

In the words of ancient curse, we live in “exciting
times”, full of both opportunities, challenges and
dangers
CSE offers tremendous promise to address and solve
important problems
0The potential to tackle and solve problems that we

couldn’t until now
CSE faces many challenges just like every other new
problem solving methodology has faced
Don’t be discouraged if it takes a long time for the
methodology (CSE) to mature
It will take time and a lot of hard work to overcome the
challenges, but we will eventually prevail

