ParLOT: Efficient Whole-Program Call
Tracing for HPC Applications

Saeed Taheri Sindhu Devale Ganesh Gopalakrishnan ~ Martin Burtscher

School of Computing, University of Utah

Department of Computer Science, Texas State University

THE
U UNIVERSITY TEXAS3Je STATE
OF UTAH?® UNIVERSITY

The rising STAR of Texas 1

Outline

* HPC Debugging
* Tracing Challenges

* ParLOT Design

* Binary Instrumentation

e Compression Mechanism

e Evaluation

* Conclusion

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

HPC Debugging

* HPC bugs are expensive because:

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

HPC Debugging

* HPC bugs are expensive because:

* Program failures waste resources (time, energy, SUs, etc.)

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

HPC Debugging

* HPC bugs are expensive because:
* Program failures waste resources (time, energy, SUs, etc.)

* HPC bugs are often not reproducible

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

HPC Debugging

* HPC bugs are expensive because:

* Program failures waste resources (time, energy, SUs, etc.)
* HPC bugs are often not reproducible

* Information collection to detect/locate failure points introduces overhead

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

HPC Debugging

* HPC bugs are expensive because:

* Program failures waste resources (time, energy, SUs, etc.)
* HPC bugs are often not reproducible

* Information collection to detect/locate failure points introduces overhead

In this work, we propose an efficient whole-program tracing
infrastructure to help the HPC debugging community.

?’:‘? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

Desired Tracing Features

* “Always-on” tracing capability
* No source-code modification

* No recompilation

* Dynamic instrumentation

* Portability

* Low overhead (runtime and storage)

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

Desired Tracing Features

MINDSET: Pay a little

o ccAlways_On” tracing Capablhty bit more upfront o

* No source-code modification significantly reduce
the number of overall
* No recompilation debug iterations

* Dynamic instrumentation
* Portability

* Low overhead (runtime and storage)

?2% %18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

* “Always-on” tracing capability

Towards automated
* No source-code modification debugging/tracing

o system
* No recompilation
* Dynamic instrumentation

* Portability

* Low overhead (runtime and storage)

10

?’{% %18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

* “Always-on” tracing capability
* No source-code modification

* No recompilation

Studying behavior of

* Dynamic instrumentation application at runtime

* Portability

* Low overhead (runtime and storage)

11

?’{% %LS ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

* “Always-on” tracing capability
* No source-code modification

* No recompilation

* Dynamic instrumentation Regardless of system, OS,

« Portability compiler and hardware

* Low overhead (runtime and storage)

12

?’{% %LS ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

* “Always-on” tracing capability
* No source-code modification
* No recompilation

* Dynamic instrumentation Main goal of

our work

* Portability

* Low overhead (runtime and storage)

?’{% SC18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

Desired Tracing Features

o 66 _an?? : 11
Always-on” tracing capability Contribution 1: We use Pin, a

dynamic binary instrumentation tool

o - i]
No source-code modification by Intel, to instrument binaries

(regardless of source language and
compiler) and capture all functions’
entry/exit points including library
calls for every thread/process.

* No recompilation

* Dynamic instrumentation

* Portability

14

?’:% & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘

Desired Tracing Features

Contribution 2: An incremental data
compression algorithm that drastically

reduces the overhead of on-the-fly
. hole- traci
e LLow overhead (l‘untlme & stor age) whole-program tracing

?’:% &8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications -

ParLOT Design

* Parallel Low Overhead Tracing Tool

* Tracing Operations
* Incremental Compression
* Compression Algorithm

e Call-stack Correction

Binary
File

Pin
Initialization
v

ParLOT
Instrumentation

Instrumented
Binary

ParLOT

v

Execution)
Y

Application
Output

Traces

v
(Compression)

Compressed
Trace
Files

'rv‘ nnnnnnnn

16

8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Binary Instrumentation

e ParLOT instrumentation

* Every thread launch and termination

* Every function entry and exit

 Separate trace file for each thread

* Each file contains ordered sequence

of function calls and returns

17

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

Binary Instrumentation

° ParLOT lnstrumentatlon ¢ Per'thread 1Ilf01‘mat10n
» Every thread launch and termination * Thread ID
* Every function entry and exit * Current function ID

 C t call stack
 Separate trace file for each thread HTEI SRR

. * Current SP value (for stack
* Each file contains ordered sequence

, correction)
of function calls and returns

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

18

Incremental Compression

* Conventional compression approaches
 Trace first written to buffer (in memory), buffer is compressed once full
* Threads sporadically block to compress data — highly non-uniform latency

* Distorts trace when one thread polls data from another blocked thread

* Incremental Compression
* Every trace element is compressed right away before writing it to memory
* Resulting compression latency 1s much more uniform

* Greatly improves fidelity of trace data

?’:‘? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

19

Compression Algorithm

 CRUSHER: automatic compression algorithm synthesis tool

* Trained on traces from the Mantevo miniapps
* Resulting best algorithm: LZ followed by ZE

* Delivers high compression ratio with low overhead

20

?’:‘? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

Compression Algorithm

 CRUSHER: automatic compression algorithm synthesis tool

* Trained on traces from the Mantevo miniapps
* Resulting best algorithm: LZ followed by ZE

* Delivers high compression ratio with low overhead

Trace entries | _\word-|evel transformation Sequence of bytes | - Byte-level transformation Bitmap +)
‘| - Removes repeating patterns '| - Eliminates zeros non-zero bytes

21

?’:‘? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

Call-Stack Correction

* PIN cannot 1dentify some function exit points

* E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

22

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

Call-Stack Correction

* PIN cannot 1dentify some function exit points

* E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

e ParLOT’s solution

* Records the SP value at each function entry and exit

* Pops the internal call stack until consistent with SP value

23

?’:‘? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

Call-Stack Correction

* PIN cannot 1dentify some function exit points

* E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

e ParLOT’s solution

* Records the SP value at each function entry and exit

* Pops the internal call stack until consistent with SP value

* Other DBIs might [not] need such correction

24

?’:‘? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

as|hpc

SDSC gﬁﬁE%IEgA%PUTER CENTER

Evaluation

MPI-based NAS Parallel Benchmarks (input classes B and C)

San Diego Supercomputer Center — Comet

1,4, 16 and 64 compute nodes (each with 16 cores)

Compute nodes: Xeon E5-2680 v3 processors — 28 cores — 128 GB memory

Measured metrics
* Tracing overhead
* Tracing bandwidth

* Compression ratio

25

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

Tracing Overhead

ParLOT(m): collects traces from the main image

ParLOT(a): collects traces from all images
(including library function calls)

Callgrind: DBI-based tracing tool that collects
function-call graphs and performance data

Average overheads (input C)
- ParLOT(m): 1.94
- ParLOT(a): 2.73
- Callgrind: 4.63

B ParLOT(m)
B ParLOT(a)
B Callgrind

ditlidh

sp GeoMean

wu

B

w

w

N

$18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Dallgs,|hpc

26

Required Bandwidth

B ParLOT(m)
B ParLOT(a)
B Callgrind

Uik

sp GeoMean

ParLOT(m): collects traces from the main image

[
o

W & ow a\\sm-.oo

ParLOT(a): collects traces from all images
(including library function calls)

Callgrind: DBI-based tracing tool that collects
function-call graphs and performance data
1
Average required bandwidth on input C
- ParLOT(m): 7.8 kB/s
- ParLOT(a): 56.4 kB/s
- Callgrind: 9.8 kB/s

w B ma\\xamo

27

$18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

vvvvvv

Compression Ratio

Average compression ratio of ParLOT(a) on

input C: 644.3 : ::tgig))

10

Corresponding required bandwidth: 56.4 kB/s

ParLOT can collect 36 MB worth of data per
core per second while only requiring 56 kB/s

1000
CG behavior: conjugate gradient method with
irregular memory accesses and communication —
larger number of distinct calls with more
complex patterns

sp GeoMean

8] w #mmﬁtﬂ.ﬂx

L8] W & oo

28

$18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Dallgs,|hpc

Overheads

B Tracing(w/o Compression+I/0)
B Pin-Init
B Native Run

Main.1 Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64

Breakdown of average ParLOT overhead on NAS - Input C—1, 4, 16 and 64 nodes

vvvvvv

29

Overheads

B Tracing(w/o Compression+I/0) B Tracing(Compression+I/0)
B Pin-Init B Pin-Init
B Native Run 2 B Native Run

8

7 7

6 6

5 5

Main.1 Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64 Main.1 Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64

Breakdown of average ParLOT overhead on NAS - Input C—1, 4, 16 and 64 nodes

30

?2% SC18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Dallgs|[hpe

vvvvvvvv

Overheads

B Tracing(w/o Compression+I/0) B Tracing(Compression+I/0)
B Pin-Init B Pin-Init
B Native Run B Native Run
8
7
] - Compression Impact
- Other DBIs might do better
5

Main.1 Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64 Main.1 Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64

Breakdown of average ParLOT overhead on NAS - Input C—1, 4, 16 and 64 nodes

31

?2% SC18 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Doucs.|hpc »

vvvvvvvv

Summary & Conclusion

* ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

32

Summary & Conclusion

* ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

* Includes new trace compression approach

* Incrementally compresses trace data to make latency uniform

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

33

Summary & Conclusion

* ParLOT: a portable low-overhead whole-program tracing approach that
collects and compresses function-call traces on-the-fly
* Includes new trace compression approach

* Incrementally compresses trace data to make latency uniform

* Yields high compression ratio to drastically reduce bandwidth and storage requirement

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

34

Summary & Conclusion

* ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

* Includes new trace compression approach
* Incrementally compresses trace data to make latency uniform
* Yields high compression ratio to drastically reduce bandwidth and storage requirement

* Efficiently implemented to minimize runtime overhead

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

35

Summary & Conclusion

* ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly.

* Includes new trace compression approach
* Incrementally compresses trace data to make latency uniform
* Yields high compression ratio to drastically reduce bandwidth and storage requirement
* Efficiently implemented to minimize runtime overhead

* Enables comprehensive post-mortem analysis on traces (debugging,

performance analysis, program understanding, etc.)

36

?’&? & 8 ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

'rv‘ nnnnnnnn

Thanks.
Any questions?

?ﬁ% SCIB ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

37

