
ParLOT: Efficient Whole-
Program Call Tracing for HPC

Applications
Saeed Taheri Sindhu Devale Ganesh Gopalakrishnan Martin Burtscher

School of Computing, University of Utah
Department of Computer Science, Texas State University

ParLOT: Efficient Whole-Program Call
Tracing for HPC Applications

1

Outline

• HPC Debugging
• Tracing Challenges

• ParLOT Design
• Binary Instrumentation

• Compression Mechanism

• Evaluation

• Conclusion

2ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

HPC Debugging

• HPC bugs are expensive because:

3ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

HPC Debugging

• HPC bugs are expensive because:

• Program failures waste resources (time, energy, SUs, etc.)

4ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

HPC Debugging

• HPC bugs are expensive because:

• Program failures waste resources (time, energy, SUs, etc.)

• HPC bugs are often not reproducible

5ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

HPC Debugging

• HPC bugs are expensive because:

• Program failures waste resources (time, energy, SUs, etc.)

• HPC bugs are often not reproducible

• Information collection to detect/locate failure points introduces overhead

6
ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

HPC Debugging

• HPC bugs are expensive because:

• Program failures waste resources (time, energy, SUs, etc.)

• HPC bugs are often not reproducible

• Information collection to detect/locate failure points introduces overhead

In this work, we propose an efficient whole-program tracing
infrastructure to help the HPC debugging community.

7
ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

8ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

9

MINDSET: Pay a little
bit more upfront to
significantly reduce

the number of overall
debug iterations

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

10

Towards automated
debugging/tracing

system

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

11

Studying behavior of
application at runtime

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

12

Regardless of system, OS,
compiler and hardware

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

13

Main goal of
our work

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

Contribution 1: We use Pin, a
dynamic binary instrumentation tool
by Intel, to instrument binaries
(regardless of source language and
compiler) and capture all functions`
entry/exit points including library
calls for every thread/process.

14ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime & storage)

Contribution 1: We use Pin, a
dynamic binary instrumentation tool
by Intel, to instrument binaries
(regardless of source language and
compiler) and capture all functions`
entry/exit points including library
calls for every thread/process. Contribution 2: An incremental data

compression algorithm that drastically
reduces the overhead of on-the-fly
whole-program tracing

15ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

ParLOT Design

• Parallel Low Overhead Tracing Tool

• Tracing Operations

• Incremental Compression

• Compression Algorithm

• Call-stack Correction

16ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Binary Instrumentation

• ParLOT instrumentation

• Every thread launch and termination

• Every function entry and exit

• Separate trace file for each thread

• Each file contains ordered sequence

of function calls and returns

17ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Binary Instrumentation

• ParLOT instrumentation

• Every thread launch and termination

• Every function entry and exit

• Separate trace file for each thread

• Each file contains ordered sequence

of function calls and returns

18

• Per-thread information

• Thread ID

• Current function ID

• Current call stack

• Current SP value (for stack

correction)

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Incremental Compression

• Conventional compression approaches

• Trace first written to buffer (in memory), buffer is compressed once full

• Threads sporadically block to compress data → highly non-uniform latency

• Distorts trace when one thread polls data from another blocked thread

• Incremental Compression

• Every trace element is compressed right away before writing it to memory

• Resulting compression latency is much more uniform

• Greatly improves fidelity of trace data
19

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Compression Algorithm

• CRUSHER: automatic compression algorithm synthesis tool

• Trained on traces from the Mantevo miniapps

• Resulting best algorithm: LZ followed by ZE

• Delivers high compression ratio with low overhead

20ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Compression Algorithm

• CRUSHER: automatic compression algorithm synthesis tool

• Trained on traces from the Mantevo miniapps

• Resulting best algorithm: LZ followed by ZE

• Delivers high compression ratio with low overhead

21

- Byte-level transformation
- Eliminates zeros

ZE
- Word-level transformation
- Removes repeating patterns

LZ
Trace entries Sequence of bytes Bitmap +

non-zero bytes

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Call-Stack Correction

• PIN cannot identify some function exit points

• E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

22ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Call-Stack Correction

• PIN cannot identify some function exit points

• E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

• ParLOT’s solution

• Records the SP value at each function entry and exit

• Pops the internal call stack until consistent with SP value

23
ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Call-Stack Correction

• PIN cannot identify some function exit points

• E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

• ParLOT’s solution

• Records the SP value at each function entry and exit

• Pops the internal call stack until consistent with SP value

• Other DBIs might [not] need such correction

24
ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Evaluation
• MPI-based NAS Parallel Benchmarks (input classes B and C)

• San Diego Supercomputer Center – Comet

• 1, 4, 16 and 64 compute nodes (each with 16 cores)

• Compute nodes: Xeon E5-2680 v3 processors – 28 cores – 128 GB memory

• Measured metrics
• Tracing overhead

• Tracing bandwidth

• Compression ratio

25ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Tracing Overhead

ParLOT(m): collects traces from the main image

ParLOT(a): collects traces from all images
(including library function calls)

Callgrind: DBI-based tracing tool that collects
function-call graphs and performance data

Average overheads (input C)
- ParLOT(m): 1.94
- ParLOT(a): 2.73
- Callgrind: 4.63

26ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Required Bandwidth

ParLOT(m): collects traces from the main image

ParLOT(a): collects traces from all images
(including library function calls)

Callgrind: DBI-based tracing tool that collects
function-call graphs and performance data

Average required bandwidth on input C
- ParLOT(m): 7.8 kB/s
- ParLOT(a): 56.4 kB/s
- Callgrind: 9.8 kB/s

27
ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Compression Ratio

Average compression ratio of ParLOT(a) on
input C: 644.3

Corresponding required bandwidth: 56.4 kB/s

ParLOT can collect 36 MB worth of data per
core per second while only requiring 56 kB/s

CG behavior: conjugate gradient method with
irregular memory accesses and communication –
larger number of distinct calls with more
complex patterns

28
ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Overheads

29ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Breakdown of average ParLOT overhead on NAS - Input C – 1, 4, 16 and 64 nodes

Overheads

30ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Breakdown of average ParLOT overhead on NAS - Input C – 1, 4, 16 and 64 nodes

Overheads

31

Breakdown of average ParLOT overhead on NAS - Input C – 1, 4, 16 and 64 nodes

- Compression Impact
- Other DBIs might do better

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

32ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

• Includes new trace compression approach

• Incrementally compresses trace data to make latency uniform

33ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

• Includes new trace compression approach

• Incrementally compresses trace data to make latency uniform

• Yields high compression ratio to drastically reduce bandwidth and storage requirement

34ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly

• Includes new trace compression approach

• Incrementally compresses trace data to make latency uniform

• Yields high compression ratio to drastically reduce bandwidth and storage requirement

• Efficiently implemented to minimize runtime overhead

35ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that

collects and compresses function-call traces on-the-fly.

• Includes new trace compression approach

• Incrementally compresses trace data to make latency uniform

• Yields high compression ratio to drastically reduce bandwidth and storage requirement

• Efficiently implemented to minimize runtime overhead

• Enables comprehensive post-mortem analysis on traces (debugging,

performance analysis, program understanding, etc.)
36

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

Thanks.
Any questions?

37ParLOT: Efficient Whole-Program Call Tracing for HPC Applications

