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HPC Debugging

• HPC bugs are expensive because:

• Program failures waste resources (time, energy, SUs, etc.)

• HPC bugs are often not reproducible

• Information collection to detect/locate failure points introduces overhead

In this work, we propose an efficient whole-program tracing
infrastructure to help the HPC debugging community. 
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Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)
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MINDSET: Pay a little 
bit more upfront to 
significantly reduce 

the number of overall 
debug iterations
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Towards automated 
debugging/tracing 

system
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Studying behavior of 
application at runtime 
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Regardless of system, OS, 
compiler and hardware
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Main goal of 
our work

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications



Desired Tracing Features

• “Always-on” tracing capability

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime and storage)

Contribution 1: We use Pin, a 
dynamic binary instrumentation tool 
by Intel, to instrument binaries 
(regardless of source language and 
compiler) and capture all functions` 
entry/exit points including library 
calls for every thread/process.
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Desired Tracing Features

• “Always-on” tracing capability 

• No source-code modification

• No recompilation

• Dynamic instrumentation

• Portability

• Low overhead (runtime & storage)

Contribution 1: We use Pin, a 
dynamic binary instrumentation tool 
by Intel, to instrument binaries 
(regardless of source language and 
compiler) and capture all functions` 
entry/exit points including library 
calls for every thread/process. Contribution 2: An incremental data 

compression algorithm that drastically 
reduces the overhead of on-the-fly 
whole-program tracing
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ParLOT Design

• Parallel Low Overhead Tracing Tool

• Tracing Operations

• Incremental Compression

• Compression Algorithm

• Call-stack Correction
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Binary Instrumentation

• ParLOT instrumentation

• Every thread launch and termination

• Every function entry and exit

• Separate trace file for each thread

• Each file contains ordered sequence 

of function calls and returns
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• Per-thread information

• Thread ID

• Current function ID

• Current call stack

• Current SP value (for stack 

correction)
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Incremental Compression

• Conventional compression approaches

• Trace first written to buffer (in memory), buffer is compressed once full

• Threads sporadically block to compress data → highly non-uniform latency

• Distorts trace when one thread polls data from another blocked thread

• Incremental Compression

• Every trace element is compressed right away before writing it to memory

• Resulting compression latency is much more uniform

• Greatly improves fidelity of trace data
19

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications



Compression Algorithm

• CRUSHER: automatic compression algorithm synthesis tool

• Trained on traces from the Mantevo miniapps

• Resulting best algorithm: LZ followed by ZE

• Delivers high compression ratio with low overhead
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Compression Algorithm
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• Delivers high compression ratio with low overhead
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- Byte-level transformation
- Eliminates zeros

ZE
- Word-level transformation
- Removes repeating patterns

LZ
Trace entries Sequence of bytes Bitmap + 

non-zero bytes

ParLOT: Efficient Whole-Program Call Tracing for HPC Applications



Call-Stack Correction

• PIN cannot identify some function exit points

• E.g., the instructions of an inlined function may be interleaved with the caller’s instructions
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Call-Stack Correction

• PIN cannot identify some function exit points

• E.g., the instructions of an inlined function may be interleaved with the caller’s instructions

• ParLOT’s solution

• Records the SP value at each function entry and exit

• Pops the internal call stack until consistent with SP value

• Other DBIs might [not] need such correction
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Evaluation
• MPI-based NAS Parallel Benchmarks (input classes B and C)

• San Diego Supercomputer Center – Comet

• 1, 4, 16 and 64 compute nodes (each with 16 cores)

• Compute nodes: Xeon E5-2680 v3 processors – 28 cores – 128 GB memory

• Measured metrics
• Tracing overhead

• Tracing bandwidth

• Compression ratio
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Tracing Overhead

ParLOT(m): collects traces from the main image

ParLOT(a): collects traces from all images 
(including library function calls)

Callgrind: DBI-based tracing tool that collects 
function-call graphs and performance data

Average overheads (input C)
- ParLOT(m): 1.94
- ParLOT(a): 2.73
- Callgrind: 4.63
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Required Bandwidth

ParLOT(m): collects traces from the main image

ParLOT(a): collects traces from all images 
(including library function calls)

Callgrind: DBI-based tracing tool that collects 
function-call graphs and performance data

Average required bandwidth on input C
- ParLOT(m): 7.8 kB/s
- ParLOT(a): 56.4 kB/s
- Callgrind: 9.8 kB/s
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Compression Ratio

Average compression ratio of ParLOT(a) on 
input C: 644.3

Corresponding required bandwidth: 56.4 kB/s

ParLOT can collect 36 MB worth of data per 
core per second while only requiring 56 kB/s

CG behavior: conjugate gradient method with 
irregular memory accesses and communication –
larger number of distinct calls with more 
complex patterns
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Overheads
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Breakdown of average ParLOT overhead on NAS - Input C – 1, 4, 16 and 64 nodes  
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Overheads
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Breakdown of average ParLOT overhead on NAS - Input C – 1, 4, 16 and 64 nodes  

- Compression Impact
- Other DBIs might do better
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Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that  

collects and compresses function-call traces on-the-fly
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Summary & Conclusion
• ParLOT: a portable low-overhead whole-program tracing approach that  

collects and compresses function-call traces on-the-fly.

• Includes new trace compression approach

• Incrementally compresses trace data to make latency uniform

• Yields high compression ratio to drastically reduce bandwidth and storage requirement

• Efficiently implemented to minimize runtime overhead

• Enables comprehensive post-mortem analysis on traces (debugging, 

performance analysis, program understanding, etc.)
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Thanks.
Any questions?
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