
Understanding software sustainability:
Learning from Parsl and other projects

Daniel S. Katz, dskatz@illinois.edu, d.katz@ieee.org, @danielskatz
Assistant Director for Scientific Software & Applications, NCSA

Research Associate Professor, CS, ECE, iSchool

An increasingly common story…
▪ I’m developing an application and I need

to link together external tools +
functions

– (where each tool is dependent on data from
the previous tool)

▪ I have a notebook that does X and I need
to run it on a cloud, cluster,
supercomputer

▪ I need to run my analysis using a range
of local and distributed datasets

▪ …
▪ And I want to do this in an interactive

environment

Parsl: Interactive parallel scripting in Python

pip install parsl
Annotate functions to make Parsl apps

• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result that
might not yet be available

Apps run concurrently respecting data
dependencies.
Natural parallel programming!

Parsl scripts are independent of where they run.
Write once run anywhere!

When do you need automated workflow?
Example application: protein-ligand docking for drug screening

(B)

O(100K)
drug

candidates

…then hundreds of
detailed MD

models to find
10-20 fruitful
candidates for
wetlab & APS

crystallography

O(10) proteins
implicated in a disease

= 1M
docking
tasks…

X

…

Expressing a many task workflow in Parsl

1) Wrap the protein docking code:

@bash_app
def dock(p, c, minRad, maxRad)
return 'dock.sh {0} {1} {2} {3}'.format(p,
c ,minRad, maxRad)

Expressing a many task workflow in Parsl

2) Execute the protein docking workflow:

for p in proteins:
for c in ligands:

structure[p][c] =
dock(p, c, minRad, maxRad)

scatter_plot = analyze(structure)

Workflows beyond batch computational science

…
predict

f(x)

preprocess

Curate

Analyze

Identify
shower
candidates

Detector Detector

Online computing

Machine learning Interactive computing

Brief history: the Swift parallel scripting language
▪ 10+ years of development
▪ C-like language with implicit

parallelism
▪ Applied in dozens of scientific

domains
▪ Data management, multi-site

execution, coasters, etc.
▪ Leveraging lessons and

components to build Parsl

Parsl

Parsl host: login node, laptop, …

Data servers

Parsl in action: dynamic dataflow execution

Parsl is Python

▪ Use Python libraries natively
▪ Stage Python data

transparently
▪ Integrates with Python

ecosystem

pip3 install parsl

Parsl scripts are execution provider independent

▪ The same script can be run locally, on grids, clouds, or supercomputers
– Works directly with the scheduler (no HTC-like setup)

▪ Containers can be used for per-app execution or repeated invocation of the same app
▪ Currently supported execution providers:

– Local, Cloud (AWS, private), Slurm, Torque, Condor, Cobalt

Separation of code and execution

* Config format for Parsl 0.6

Pilot jobs on
a cluster

Local threads

Interactive supercomputing in Jupyter notebooks

▪ Parsl can be used within a
Jupyter notebook with no
modifications necessary

▪ Tunneling and OAuth-
based flows supports
remote execution from
the notebook

▪ Visualization of Parsl
graph in notebook

A variety of execution models

• Thread Pool
• Local

• High throughput
• Pilot job model

• Extreme scale
• MPI-based pilot jobs

• New execution models can
be added

Parsl

Engine Engine Engine

Controller

• A&A is hard today
• 2FA, X509, etc.

• Integration with Globus Auth to
support native app integration
for accessing Globus (and
other) services

• Using scoped access tokens,
refresh tokens, delegation
support

Authentication and authorization

Transparent (wide area) data management

• Implicit data movement to/from
repositories, laptops,
supercomputers, …

• Globus for third-party, high
performance and reliable data
transfer
• Support for site-specific DTNs

• HTTP/FTP direct data
download/upload

• Compliments node-specific staging
and caching models

parsl_file =
File(globus://EP/path/file)

App caching (memoization)
• Parsl apps are often expensive to

recompute
• In many development modes

results need not be recomputed
• During development or interactive

workflow
• Memoization optimizes execution

by caching app results when called
with the same inputs

• Parsl relies on user control to
annotate deterministic functions

@python_app(cache=True)
def simulate(input_variable):

return input_variable * 10

Cache

Simulate(1) = 10

Simulate(7) = 70

Simulate(23) = 230

• Machine learning to predict stopping
power in materials

• Protein and biomolecule
structure and interaction

• Information extraction to discovery
facts in publications

• Materials science at the Advanced
Photon Source

• Cosmic ray showers as part of
QuarkNet

• Weak lensing using sky surveys

• Machine learning and data analytics
(DLHub)

E
C

A

B

A

B

C

D

E

F

D

G

G

F

Scientific applications using Parsl

Parsl feature summary
• Parsl’s implicit dataflow model in Python allows for simple expression of

complex dependencies
• Expressed directly in Python
• Can be used to implement a range of workflow models

• Parsl integrates with the scientific ecosystem
• Development and execution of scalable applications in Jupyter
• Use of common SciPy libraries
• Integration with Globus

• In Parsl, code is separate from the specification of computing resources
and data location: this makes Parsl scripts portable and scalable

• Parsl has a number of other important features:
• app caching, checkpointing, elasticity, container support, data transfer, and more

Parsl project summary
• Initially funded by NSF, $3m over 3 years (stretched to 4)
• 2.5 core developer FTEs, PI, co-PIs, chemistry & education

application developers, undergraduate & graduate students
• Open source, intended as open community, including library of

reusable workflows
• Some success with purely external contributions to code
• More success with collaborating projects

• What happens next? How we make Parsl sustainable?

What is sustainability?

What is sustainability?
• Most often used in the context of ecology, often specifically in the

relationship between humans and the planet
• Example: Karl-Henrik Robèrt (via Wikipedia & paraphrased)

• Natural processes are cyclical but we process resources linearly
• We use up resources, resulting in waste
• Waste doesn’t find its way back into natural cycles; not reused or

reassimilated
• Call for "life-styles and forms of societal organization based on cyclic

processes compatible with the Earth's natural cycles"

Software sustainability

Software sustainability for whom?
• (Parsl) Users

• (Parsl) Funders

• (Parsl) Managers

• (Parsl) Developers (& Maintainers)

Software sustainability for users
• The capacity of the software to endure
• Will the software (Parsl) will continue to be available in the future,

on new platforms, meeting new needs?

• Really:
• Shopping
• With elements of

• Longevity
• Robustness
• Support

Software sustainability for funders
• My definition while an NSF program officer:
• “If I give you funds for this (Parsl) now, how will you keep it going

after these funds run out?”
• “… without coming back to me for more funds”

• Really
• Portfolio management

Software sustainability for managers
• Focused on people, not software
• How do I keep the (Parsl) team going?

• Really:
• Business
• Capitalism
• Entrepreneurship

Software sustainability for developers
• Often focused on resources, not software

• How do I get the resources needed to keep my (Parsl) software alive and
up-to-date?

• And keep myself supported / employed?
• Counterpart

• How do I make keeping my software alive and up-to-date use less
resources?

• Really
• Entrepreneurship
• Community building
• Software engineering

Software collapse1

• Software stops working eventually if is not actively maintained
• Structure of computational science software stacks:

1. Project-specific software (developed by researchers): software to do a computation using
building blocks from the lower levels: scripts, workflows, computational notebooks, small
special-purpose libraries & utilities

2. Discipline-specific software (developed by developers & researchers): tools & libraries that
implement disciplinary models & methods

3. Scientific infrastructure (developed by developers): libraries & utilities used for research in
many disciplines

4. Non-scientific infrastructure (developed by developers): operating systems, compilers, and
support code for I/O, user interfaces, etc.

• Software builds & depends on software in all layers below it; any change below
may cause collapse

1http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse/

Software collapse1

• Options similar for house owners facing the risk of earthquakes:
1. Accept that your house or software is short-lived; in case of collapse, start from

scratch
2. Whenever shaking foundations cause damage, do repair work before more serious

collapse happens
3. Make your house or software robust against perturbations from below
4. Choose stable foundations

• Very short term projects might do 1 (code and throw away)
• Most active projects choose 2 (sustainability work)
• We don’t know how to do 3 (CS research needed, maybe new thinking)
• 4 is expensive & limits innovation in top layers (banks, military, NASA)

1http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse/

Common elements
• Due to software collapse, bugs, new use cases, there are lots of

risks to all parties
• Users want to make good product choices that pay off in discoveries
• Funders want to make good investments that pay off in discoveries
• Managers want to keep staff employed, also create discoveries
• Developers want their software to be used in discoveries (and want a

career)

• (Almost) all want to know, will this software work in the future?
• What’s the risk?
• And how do developers get recognized?

Back to sustainability, in the context of software
• Elinor Ostrom’s (Governing the Commons) definition of sustainability for a common-pool

resource (CPR): “As long as the average rate of withdrawal does not exceed the average
rate of replenishment, a renewable resource is sustained over time.”

• Notion of a cyclic property, though cycle period not specified
• But rate of what?

• Titus Brown1: “the common pool resource in open online projects is effort”
• Sustainability of effort may be appropriate for the developer

• For effort to be available, need link to recognition, reward, position

• Sustainability of software may be appropriate for the user and funder
• Rate of what?

• Sustainability of funding may be appropriate for the manager
• Also helps developers
• Rate of funding?

1A framework for thinking about Open Source Sustainability? http://ivory.idyll.org/blog/2018-oss-framework-cpr.html

https://www.amazon.com/dp/B015WJ1C8W/
http://ivory.idyll.org/blog/2018-oss-framework-cpr.html

“Equations” of software sustainability
• Software sustainability ≡ sufficient ∆ software state

• Sufficient to deal with: software collapse, bugs, new features needed

• ∆ software state = (human effort in – human effort out - friction) * efficiency
• Software stops being sustained when

human effort out > human effort in
over some time

• Human effort ⇆ $
• All human effort works (community open source)
• All $ (salary) works (commercial software, grant funded projects)
• Combined is hard, equation is not completely true,

humans are not purely rational

• ∆ software state → users choose to volunteer effort or $
• Development choices might take this into account

Debt: The First 5,000 Years
by David Graeber

?

Software sustainability and time
• Software sustainability is a measure of a dynamic, (unpredictable), time domain system

• Back to risk…

• Software sustainability is a prediction – it can’t be known with certainty

• Software sustainability can only be measured looking backward
• How do we know that software is no longer sustainable / has stopped being sustained?

• It no longer works at all? (continuous integration fails)
• It’s not being actively maintained? (no commit in the last x months)
• It’s not being actively developed? (no non-bug fix commit in the last x months)

• What do we do for similar measures in other fields?
• Guess (aka estimate)
• Based on past performance
• E.g., Project cost

• Research is needed

Summary
• Parsl as an example of an open source project

• Started with funding and a core team
• Will need to expand to be a community project and consider how to bring in new

resources (funds or people)

• Software sustainability means different things to different groups of people
• Persistence of working software
• Persistence of people (or funding)

• Can define sustainability as
• Inflow of resources is sufficient to do the needed work
• Those resources can be turned into human effort

• In all cases, sustainability is not possible to measure in advance
• Can only measure looking backward
• Looking forward, can only predict

Acknowledgements
• Parsl (http://parsl-project.org) team: Yadu Babuji, Kyle Chard, Ben Clifford, Ian Foster, Lukasz Lacinski, Zhuozhao Li, Connor Pigg,

Michael Wilde, Anna Woodard, Justin Wozniak
• Y. Babuji, A. Brizius, K. Chard, I. Foster, D. S. Katz, M. Wilde, J. Wozniak, ”Introducing Parsl: A Python Parallel Scripting Library,”

2018. https://doi.org/10.5281/zenodo.853491
• Discussions with: Neil Chue Hong and the UK SSI; Rob Haines and Caroline Jay at U. Manchester
• Keynote by James Howison at RSE2018
• Feedback from Matt Turk, James Howison, Dan Sholler
• D. S. Katz, “Scientific Software Challenges and Community Responses,” 2015. https://www.slideshare.net/danielskatz/scientific-

software-challenges-and-community-responses
• C. C. Venters, C. Jay, L. Lau, M. K. Griffiths, V. Holmes, R. R. Ward, J. Austin, C. E. Dibsdale, J. Xu, “Software Sustainability: The

Modern Tower of Babel,” Proceedings of Third International Workshop on Requirements Engineering for Sustainable Systems
(RE4SuSy 2014), Karlskrona, Sweden. http://ceur-ws.org/Vol-1216/paper2.pdf

• C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N. Seyff, C. C. Venters, “Sustainability design and software:
The Karlskrona manifesto,” 37th International Conference on Software Engineering (ICSE’15), 2015.
https://doi.org/10.1109/ICSE.2015.179

• P. Johnston, M. Everard, D. Santillo, and K.-H. Robèrt, “Reclaiming the Definition of Sustainability,” Environmental Science and
Pollution Research, v.14(1), pp. 60-66, 2007. https://doi.org/10.1065/espr2007.01.375

https://doi.org/10.5281/zenodo.853491
https://www.slideshare.net/danielskatz/scientific-software-challenges-and-community-responses
http://ceur-ws.org/Vol-1216/paper2.pdf
https://doi.org/10.1109/ICSE.2015.179
https://doi.org/10.1065/espr2007.01.375

