| arge-scale
debugging with graphs

Nikoli Dryden (dryden2 <at> illinois <dot> edu)
University of lllinois at Urbana-Champaign
Advisor: Prot. Marc Snir (UIUC+ANL)

ESPT2015 Work-in-progress




How do we get a useful
debugging experience
at large scales”




What is a useful experience?

* Debugger works at the same scales as application
* |nteractivity; rapid turn-around
* |ntuitive input

« Command output and program state should be
understandable and informative

illinois.edu



What is a useful experience?

* Focus: Command output and program state should
be understandable and informative

e ... And some scalability

illinois.edu



Stack traces

* We know how to do this for stack traces
« PGDB can merge similar stack traces
* STAT has “3D trace/space/time” analysis

e FiC.

PGDB: Dryden, Nikoli. “PGDB: A Debugger for MPI Applications.” XSEDE 14. ACM, 2014.
STAT: Arnold, Dorian C., et al. "Stack trace analysis for large scale debugging.” IPDPS 2007. IEEE International. IEEE, 2007.




Outline

Merging output
Adding a notion of “time”: in general
... And In specific

Current status




Merging output

Most ranks in application will be in (approximately)
the same state

Define equivalence classes for different types of
output

Merge output based on these and present
OVerview

1

nois.edu



Merging output

print x

amE
B =




Merging output

* Tree-based reduction implements merging naturally

e Scalable and reduces data volume




Graph cuts

Think of the graph of program execution (call tree)

Each rank is somewhere in this when you get
debugger output

Regularly cutting the graph can provide context

Merging now additionally considers which cut the
output came from

1

nois.edu



Graph cuts




Collectives

 Some applications proceed In phases delineated
by collective operations

* Simple choice for the cut point

* But not suitable for every application

1

nois.edu



PGDB

* EXisting open-source parallel debugger for MPI
https://github.com/ndryden/PGDB

e Basis for work

See also: Dryden, Nikoli. “PGDB: A Debugger for MPI Applications.” XSEDE14. ACM, 2014.

1


https://github.com/ndryden/PGDB

Current status

Initial proof-of-concept implemented at small scale
in PGDB

Merging using MRNet filters
But PGDB is currently text-based (not as pretty)

Code available soon

1

nois.edu




Quick example

backtrace

[0]|1] #7 in PMPI Reduce (...) at src/mpi/coll/reduce.c:

1216
[0]|1] #8 in advance (rank=0) at mpideadlock.c:14
[0]1] #9 in main (...) at mpideadlock.c:26

[1-2,4-15|2] #7 in PMPI Reduce (...) at src/mpi/coll/
reduce.c:1216

[1-2,4-15|2] #8 in advance (...) at mpideadlock.c:14
[1-2,4-15|2] #9 in main (...) at mpideadlock.c:26

[3|1] #2 in pthread mutex lock() from /lib64/
libpthread.so.0

[3|1] #3 in advance(...) at mpideadlock.c:9
[3|]1] #4 in main(...) at mpideadlock.c:26

1

illinois.edu



Future work

Other notions for when to cut
Handle MP| communicators better
Further testing and scalability work

Exploration: How well can we apply this to
(ightweight) threads, etc.”?

1

nois.edu



Thanks!

e Questions?




