
Large-scale 
debugging with graphs

Nikoli Dryden (dryden2 <at> illinois <dot> edu) 
University of Illinois at Urbana-Champaign 

Advisor: Prof. Marc Snir (UIUC+ANL) 
 

ESPT2015 Work-in-progress



How do we get a useful 
debugging experience 

at large scales?



What is a useful experience?

• Debugger works at the same scales as application 

• Interactivity; rapid turn-around 

• Intuitive input 

• Command output and program state should be 
understandable and informative



What is a useful experience?

• Focus: Command output and program state should 
be understandable and informative 

• … And some scalability



Stack traces
• We know how to do this for stack traces 

• PGDB can merge similar stack traces 

• STAT has “3D trace/space/time” analysis 

• Etc.

PGDB: Dryden, Nikoli. “PGDB: A Debugger for MPI Applications.” XSEDE14. ACM, 2014. 
STAT: Arnold, Dorian C., et al. "Stack trace analysis for large scale debugging.” IPDPS 2007. IEEE International. IEEE, 2007.



Outline

• Merging output 

• Adding a notion of “time”: in general 

• … And in specific 

• Current status



Merging output

• Most ranks in application will be in (approximately) 
the same state 

• Define equivalence classes for different types of 
output 

• Merge output based on these and present 
overview



Merging output
print x

x=0 x=0 x=0 x=0xFF

0 1 2 3

x=0 x=0xFF

[0-2] 3



Merging output

• Tree-based reduction implements merging naturally 

• Scalable and reduces data volume



Graph cuts
• Think of the graph of program execution (call tree) 

• Each rank is somewhere in this when you get 
debugger output 

• Regularly cutting the graph can provide context 

• Merging now additionally considers which cut the 
output came from



Graph cuts
main

init advance advance finalize…

… … … …



Collectives

• Some applications proceed in phases delineated 
by collective operations 

• Simple choice for the cut point 

• But not suitable for every application



PGDB

• Existing open-source parallel debugger for MPI  
https://github.com/ndryden/PGDB 

• Basis for work

See also: Dryden, Nikoli. “PGDB: A Debugger for MPI Applications.” XSEDE14. ACM, 2014.

https://github.com/ndryden/PGDB


Current status

• Initial proof-of-concept implemented at small scale 
in PGDB 

• Merging using MRNet filters 

• But PGDB is currently text-based (not as pretty) 

• Code available soon



Quick example
backtrace
...
[0|1] #7 in PMPI_Reduce (...) at src/mpi/coll/reduce.c:
1216
[0|1] #8 in advance (rank=0) at mpideadlock.c:14
[0|1] #9 in main (...) at mpideadlock.c:26
...
[1-2,4-15|2] #7 in PMPI_Reduce (...) at src/mpi/coll/
reduce.c:1216
[1-2,4-15|2] #8 in advance (...) at mpideadlock.c:14
[1-2,4-15|2] #9 in main (...) at mpideadlock.c:26
...
[3|1] #2 in pthread_mutex_lock() from /lib64/
libpthread.so.0
[3|1] #3 in advance(...) at mpideadlock.c:9
[3|1] #4 in main(...) at mpideadlock.c:26



Future work

• Other notions for when to cut 

• Handle MPI communicators better 

• Further testing and scalability work 

• Exploration: How well can we apply this to 
(lightweight) threads, etc.?



Thanks!

• Questions?


