
Case Studies in Dataflow Composition of  

 Scalable High Performance Applications 

Justin M Wozniak, Timothy Armstrong,  
Daniel Katz, Michael Wilde, Ian Foster 

wozniak@mcs.anl.gov 

http://swift-lang.org 

 
Workshop on Extreme Scale Programming Tools 
 at SC 

 November 17, 2014 – New Orleans 



The Scientific Computing Campaign 

 

 

 

 

 

 

 

 

 

 

 

 Swift addresses most of these components 

2 

THINK about  
what to run next 

RUN a battery  
of tasks 

COLLECT 
results 

IMPROVE 
methods  and 

codes 



Software for the Computing Campaign 

 Swift: Composing the computational experiment 
– Code coupling 

– Task communication 

– Expressing complex workflows  

– Deploying large workloads 

 Performance visualization 
– Debugging and performance analysis for workflows 

– Plotting and visualization 

 Case studies 
– Streamline visualization – parallel tasks 

– X-ray science – remote I/O and analysis 

3 



SWIFT OVERVIEW 

Case Studies in Dataflow Composition of Scalable High Performance Applications 

4 



Goal: Programmability for large scale analysis 

 Our solution is “many-task” computing: higher-level applications 
composed of many run-to-completion tasks: input→compute→output 
Message passing is handled by our implementation details 

 

 Programmability 
• Large number of applications have this natural structure at upper levels: Parameter 

studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming,  UQ 

• Coupling extreme-scale applications to preprocessing, analysis, and visualization 

 Data-driven computing 
• Dataflow-based execution models 

• Data organization tools in the programming languages 

 Challenges 
• Load balancing, data movement, expressibility 



Practical context: The Swift language 

 

Swift was designed to handle many aspects of the computing campaign 

 

 Ability to integrate many application components into a new workflow 
application 

 

 Data structures for complex data organization 

 

 Portability- separate site-specific configuration from application logic 

 

 Logging, provenance, and plotting features 

6 

THINK RUN 

COLLECT IMPROVE 



Swift programming model: 

all progress driven by concurrent dataflow 

 

 F() and G() implemented in native code or external programs 

 F() and G()run in concurrently in different processes 

 r is computed when they are both done 

 

 This parallelism is automatic 

 Works recursively throughout the program’s call graph 

 

 

 

 

7 

(int r) myproc (int i, int j) 

{ 

    int f = F(i);     

    int g = G(j); 

    r = f + g; 

} 

 



8 

More concurrency: Loops and arrays 

O(100K) 
drug 

candidates 

O(10) 
proteins 
implicated 
in a disease 

Tens of fruitful 
candidates for 
wetlab & APS 

= 1M 
docking 

tasks 

 
foreach p, i in proteins { 

   foreach c, j in ligands { 

      (structure[i,j], log[i,j]) = 

       dock(p, c, minRad, maxRad); 

   } 

} 

scatter_plot = analyze(structure) 

• Protein docking: attempt to  
dock various drugs against  to a 
handful of protein targets 

• Each task is a simulator invocation 
• Generates millions of tasks 



Large-scale many-task applications using Swift 

 Simulation of metals 
under stress 

 Molecular dynamics: 
NAMD 

 Molecular dynamics: 
LAMMPS 

 X-ray scattering data 
aggregation 

 X-ray imaging analysis 

 Multiscale subsurface 
flow modeling 

 Modeling of the power 
grid  

 Climate data extraction 

 … and many more 
 

T0623, 25 res., 8.2Å to 6.3Å  
(excluding tail) 

Protein loop modeling. Courtesy A. Adhikari 

Native 
   Predicted 

Initial 

E 

D 

C 

A B 

F 



Swift/T: Swift for high-performance computing 

10 

Had this: 
(Swift/K) 

For extreme scale, we need this: 
(Swift/T) 



 Write site-independent scripts  

 Automatic parallelization and data movement 

 Run native code, script fragments as applications 

 Rapidly subdivide large partitions for  
MPI jobs 

 Move work to data locations 
 

11 

www.ci.uchicago.edu/swift    www.mcs.anl.gov/exm 

Swift 
control 
process 

Swift 
control 
process 

Swift/T 
control 
process 

Swift worker 
process 

 
 
 
 
 
 

C 
C

++ 

Fortr
an 

 
 
 
 
 
 

C 
C

++ 

Fortr
an 

 
 
 
 
 
 

C C++ Fortran 

MPI 

Swift/T worker 

64K cores of Blue Waters 
2 billion Python tasks 
14 million Pythons/s 

Swift/T: Enabling high-performance workflows 



Dataflow script produces work for work queue 

12 

 Including MPI libraries 
 We use a Scioto-like algortithm for hierarchical work-stealing  

among ADLB servers (ADLB/X, our fork of ADLB) 



Characteristics of very large Swift programs 

13 

 The goal is to support billion-way 
concurrency: O(109) 
 

 Swift script logic will control trillions 
of variables and data dependent 
tasks 
 

 Need to distribute Swift logic 
processing over the HPC compute 
system 
 

 
 

int X = 100, Y = 100; 

int A[][]; 

int B[]; 

foreach x in [0:X-1] { 

  foreach y in [0:Y-1] { 

    if (check(x, y)) { 

      A[x][y] = g(f(x), f(y)); 

    } else { 

      A[x][y] = 0; 

    } 

  } 

  B[x] = sum(A[x]); 

} 



Basic scalability 

14 

• 1.5 billion tasks/s on 512K cores of Blue Waters, so far 
• See our SC 2014 paper for comprehensive performance analysis 



Swift/T: Fully parallel evaluation                                  

of complex scripts 

15 

int X = 100, Y = 100; 

int A[][]; 

int B[]; 

foreach x in [0:X-1] { 

  foreach y in [0:Y-1] { 

    if (check(x, y)) { 

      A[x][y] = g(f(x), f(y)); 

    } else { 

      A[x][y] = 0; 

    } 

  } 

  B[x] = sum(A[x]); 

} 



A[3] = g(A[2]); 

Example execution 

 Code 

 

 

 

 Engines: evaluate dataflow operations 
 

 

 

 Workers: execute tasks 

16 

A[2] = f(getenv(“N”)); 

• Perform getenv() 

• Submit f 

• Process f 

• Store A[2] 

• Subscribe to A[2] 

• Submit g  

• Process g 

• Store A[3] 

Task put Task put 
Notification 

• Wozniak et al. Turbine: A distributed-memory dataflow engine for high 
performance many-task applications. Fundamenta Informaticae 128(3), 2013 



 
output(p(i)); 

  

 
output(p(i)); 

  

 
x = g(); 

if (x > 0) { 

  n = f(x); 

  foreach i in [0:n-1] { 

    output(p(i)); 

  }}  

  

Swift code in dataflow 

 Dataflow definitions create nodes in the dataflow graph 

 Dataflow assignments create edges 

 In typical (DAG) workflow languages, this forms a static graph 

 In Swift, the graph can grow dynamically – code fragments are evaluated 
(conditionally) as a result of dataflow  

 In its early implementation, these fragments were just tasks 

17 

 
x = g(); 

  
x 

n 
 
foreach i … {  

  output(p(i)); 

  

 
if (x > 0) {  

  n = f(x); … 

  



Support calls to embedded interpreters 

18 

We have plugins 
for Python, R, Tcl, 
Julia, and QtScript 

• Wozniak et al. Toward computational experiment management 
via multi-language applications. Proc. ASCR SWP4XS, 2014.  



STC: The Swift-Turbine Compiler 

 STC (based on ANTLR)  translates  Swift 
expressions into low-level  Turbine 
operations: 

 

19 

– Create/Store/Retrieve typed data 

– Manage arrays 

– Manage data-dependent tasks 

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013.  

• Armstrong et al. Compiler techniques for massively scalable implicit  
task parallelism. Proc. SC 2014. 



Can we build a Makefile in Swift? 

 User wants to test a variety of compiler optimizations 

 Compile set of codes under wide range of possible configurations 

 Run each compiled code to obtain performance numbers 

 Run this at large scale on a supercomputer (Cray XE6) 

 

 In Make you say: 
CFLAGS = ...  

f.o : f.c  

    gcc $(CFLAGS) f.c -o f.o  

 

In Swift you say:  
 

string cflags[] = ...;  

f_o = gcc(f_c, cflags);  
 

20 



CHEW example code 

Apps 
app (object_file o) gcc(c_file c, string cflags[]) { 

// Example: 

//  gcc   -c   -O2    -o  f.o f.c 

   "gcc" "-c" cflags "-o" o   c; 

} 

 

app (x_file x) ld(object_file o[], string ldflags[]) { 

// Example: 

//  gcc           -o  f.x f1.o f2.o ... 

   "gcc" ldflags "-o" x   o; 

} 

 

app (output_file o) run(x_file x) { 

  "sh" "-c" x @stdout=o; 

} 

 

app (timing_file t) extract(output_file o) { 

  "tail" "-1" o "|" "cut" "-f" "2" "-d" " " @stdout=t; 

} 

 

Swift code 
  string program_name = "programs/program1.c"; 

  c_file c = input(program_name); 

 

  // For each 

  foreach O_level in [0:3]  { 

    make file names… 

    // Construct compiler flags 

    string O_flag = sprintf("-O%i", O_level); 

    string cflags[] = [ "-fPIC", O_flag ]; 

 

    object_file o<my_object> = gcc(c, cflags); 

    object_file objects[] = [ o ]; 

    string ldflags[] = []; 

    // Link the program 

    x_file x<my_executable> = ld(objects, ldflags); 

    // Run the program 

    output_file out<my_output> = run(x); 

    // Extract the run time from the program output 

    timing_file t<my_time> = extract(out); 

21 



PERFORMANCE TOOLS 

22 

Case Studies in Dataflow Composition of Scalable High Performance Applications 



Logging and debugging in Swift 

 Traditionally, Swift programs are debugged through the log or the TUI 
(text user interface) 

 

 Logs were produced using normal methods, containing:  

– Variable names and values as set with respect to thread 

– Calls to Swift functions 

– Calls to application code 

 

 A restart log could be produced to restart a large Swift run after certain 
fault conditions 

 

 Methods require single Swift site: do not scale to larger runs 

23 



Logging in MPI 

 The Message Passing Environment (MPE) 

 Common approach to logging MPI programs 

 Can log MPI calls or application events – can store arbitrary data 

 Can visualize log with Jumpshot 

 

 Partial logs are stored at the site of  
each process 

– Written as necessary to shared  
file system 

• in large blocks 

• in parallel 

– Results are merged into a big log file  
(CLOG, SLOG) 

 

 Work has been done optimize the  
file format for various queries 

 24 



Logging in Swift & MPI 

 Now, combine it together 

 Allows user to track down erroneous Swift program logic 

 

 Use MPE to log data, task operations, calls to native code 

 Use MPE metadata to annotate events for later queries 

 

 MPE cannot be used to debug native MPI programs that abort 

– On program abort, the MPE log is not flushed from the process-local cache 

– Cannot reconstruct final fatal events 

 

 MPE can be used to debug Swift application programs that abort 

– We finalize MPE before aborting Swift  

– (Does not help much when developing Swift itself) 

– But primary use case is non-fatal arithmetic/logic errors 

25 



Visualization of Swift/T execution 

 User writes and runs Swift script  

 Notices that native application code is called with nonsensical inputs 

 Turns on MPE logging – visualizes with MPE 

 

 

 

 

 

 

 

– PIPS task computation  Store variable         Notification (via control task) 
Blue: Get next task        Retrieve variable   
Server process (handling of control task is highlighted in yellow) 

 Color cluster is task transition:  

 Simpler than visualizing messaging pattern (which is not the user’s code!) 

 Represents Von Neumann computing model – load, compute, store 26 

Time 
Jumpshot view of PIPS application run 

P
ro

ce
ss

 r
an

k 



Debugging Swift/T execution 

 Starting from GUI, user can identify erroneous task  

– Uses time and rank coordinates from task metadata 

 Can identify variables used as task inputs  

 Can trace provenance of those variables back in reverse dataflow 

 

 

27 

erroneous task 

Aha! Found script defect. ← ← ←  (searching backwards) 

• Wozniak et al. A model for tracing and debugging large-scale task-
parallel programs with MPE. Proc. LASH-C at PPoPP, 2013.  



CASE STUDIES 

28 

Case Studies in Dataflow Composition of Scalable High Performance Applications 



Dataflow+data-parallel analysis/visualization 

29 

Analysis Library 

OSUFlow 

DIY 

Parallel Runtime 

MPI 

Data 
source 

Dataflow-structured analysis framework  
based on OSUFlow/DIY 

Data 
source 



Parameter optimization for data-parallel analysis:  

Block factor 

30 

Can map blocks to processes in varying ways 



Parameter optimization for data-parallel analysis:  

Process configurations 

31 

• Try all configurations to find best performance 
• Goal: Rapidly develop and execute sweep of MPI executions 



Refresher: MPI_Comm_create_group() 

 In  MPI 2, creating a subcommunicator was collective over the parent 
communicator 

– Required global coordination 

– Scalability concern 

– (Could use  intercommunicator merges- somewhat slow) 

 In MPI 3, the new MPI_Comm_create_group() allows the 
implementation to assemble the new communicator quickly from a group 
– only group members must participate 

– In ADLB, servers just pass rank list for new group to workers 

 

 Motivating investigation by Dinan et al. identified fault tolerance and 
dynamic load balancing as key use cases – both relevant to Swift  
(Dinan et al., EuroMPI 2011.) 

32 



 Swift expression: z = @par=8 f(x,y); 

 When x, y are stored, Turbine releases task f with parallelism=8 

 Performs ADLB_Put(f, parallelism=8) 

 Each worker performs ADLB_Get(&task, &comm) 

 ADLB server finds 8 available workers 

 Workers receive ranks from server 

– Perform MPI_Comm_create_group() 

 ADLB_Get() returns: 
task=f, size(comm)=8 

 Workers perform user task 

– communicate on comm 

 comm is released by Turbine 

 

Parallel tasks in Swift/T 

33 

• Wozniak et al. Dataflow coordination of data-parallel tasks via MPI 3.0. 
Proc EuroMPI, 2013.  



OSUFlow application 

// Define call to OSUFlow feature MpiDraw  

@par (float t) mpidraw(int bf) "mpidraw"; 

 

main { 

  foreach b in [0:7] { 

    // Block factor: 1-128 

    bf = round(2**b); 

    foreach n in [4:9] { 

      // Number of processes/task: 16-512 

      np = round(2**n); 

      t = @par=np mpidraw(bf); 

      printf("RESULT: bf=%i np=%i -> time=%0.3f", 

                      bf,   np,      t); 

    }}} 

 

 
34 



 Times from 222s (blue) to 948 (red) 

 Best results (fastest times) at np=256, 
high block parameter 

35 



 

36 

Advanced Photon Source (APS) 



Advanced Photon Source (APS) 

 Moves electrons at electrons at >99.999999% of the speed of light. 

 Magnets bend electron trajectories, producing x-rays, highly focused onto 
a small area 

 X-rays strike targets in 35 different laboratories – each a lead-lined,  
radiation-proof experiment station 

 

37 



Data management for the energy sciences 

 “Despite the central role of digital data in Dept. of Energy (DOE) research, 
the methods used to manage these data and to support the information 
and collaboration processes that underpin DOE research are often 
surprisingly primitive…”  
               - DOE Workshop Report on Scientific Collaborations (2011)  
 

 Our goals:  

– Modify the operating systems of APS stations to allow real-time streaming to 
a novel data storage/analysis platform. 

– Converting data from the standard detector formats (usually TIFF) to HDF5 
and adding metadata and provenance, based on the NeXus data format. 

– Rewrite analysis operations to work in a massively parallel environment. 

– Scale up simulation codes that complement analysis. 

 

 

38 



Data ingest/analysis/archive 

 

39 



Interactive analysis powered by scalable storage 

 

 

 

 

 

 

 

 

 

 

 

 Replace GUI analysis internals with operations on remote data 

 

40 

PyQt 

Pyro 

Numpy 

h5py 



Remote matrix arithmetic: Initial results  

 Initial run shows performance 
issue: addition took too long 
 

 Swift profiling isolated issue: 
convert addition routine from 
script to C function: obtained 
10,000 X speedup 
 

 Swift/T integrates with 
MPE/Jumpshot and other  
MPI-based performance analysis 
techniques 

 

41 



Future work: Extreme scale ensembles 

 Develop Swift for exascale experiment ensembles 

– Deploy stateful, varying sized jobs 

– Outermost, experiment-level coordination via dataflow 

– Plug in experiments and human-in-the-loop models (dataflow filters) 

 

 

 

 

 

 

 

 

42 

Big job 1: Type A Big job 2: Type A Big job 3: Type B 

Small job 1: 
Type A 

Small job 2: 
Type A 

Small job 3: 
Type B 

Small job 4: 
Type B 

APS 

Storage   



Summary 

 Swift: High-level scripting for outermost programming constructs 

– Handles many aspects of the scientific computing experience 

– Described how logs enable performance visualization 

– Showed use cases in streamline visualization and X-ray science 

 Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim Armstrong, 
David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder, Ioan Raicu, Dan 
Katz, Ian Foster 

 Thanks to project collaborators: Tom Peterka, Jim Dinan, Ray Osborn, 
Reinhard Neder, Guy Jennings, Hemant Sharma, Rachana  
Ananthakrishnan, Ben Blaiszik, Kyle Chard, and others 

  

 Thanks to the organizers! 

 

 Questions? 

 

 

 

 

 

 

 

 

43 

THINK RUN 

COLLECT IMPROVE 


