
Whitelisting MSRs with msr-safe
Kathleen Shoga, Barry Rountree,
Martin Schulz, Jeff Shafer

Email: shoga1@llnl.gov

LLNL-PRES-663879
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

MSRs
• Model Specific Registers
•  Intel Architectures supported by msr-safe:

Sandy Bridge, Ivy Bridge, Haswell…

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

2

L
O
C
K

Package Power
Limit #2

Package Power
Limit #1

Time
Window
Power

Limit #2

Time
Window
Power

Limit #1

Enable Limit #2

Package Clamping Limit #2

Enable Limit #1

Package Clamping Limit #1

63 62 56 55 49 48 47 46 32 31 24 23 17 16 15 14 0

Available registers
vary depending on
the processor
architecture.

Access to MSRs is Critical
v Processors provide low-level access to
 critical information and settings via MSRs
▫  Power – package (socket) and dram power
▫  Thermal – core, package in deg C
▫  Performance Counters –
�  Effective frequency
�  Instructions retired

• Enables studies on:
▫  Advance performance measurements
▫  Power measurements
▫  Control for over-provisioned systems

3

Accessing MSR Data
•  Special instructions in kernel space:
▫  rdmsr, wrmsr

• User level access through msr kernel module
▫  Provides filesystem interface to all of the MSRs

through /dev hierarchy
▫  No finer-grained permissions

4

Problem to solve
• No access/control for regular users in existing

interfaces due to:
▫  Security Concerns
�  Full access to MSRs could allow you to “root” the

machine
�  Pointer to the vector of hardware interrupt handlers is

held in an MSR
▫  Permissions
�  All or nothing access
▫  Complexity in Registers
�  Error prone

5

Site-specific policy

Our Initial Solution
• MSR kernel module + file permissions
• Only allow “trusted” users to have access

Problem
• Updated kernel module required “capability”

check for SYS_RAW_IO (not MSR specific)
▫  However users/binaries with SYS_RAW_IO could

also:
▫  Perform I/O port operations
▫  Create memory mappings below value specified

by /proc/sys/vm/mmap_min_addr

6

Our New Solution Part 1
msr-safe kernel module + whitelist

• msr-safe kernel
▫  Same underlying structure as generic msr kernel

module
▫  No capabilities check
▫  Use whitelist instead
▫  Access through /dev/cpu/#/msr_safe

7

Our New Solution Part 2
• Whitelist instead of capabilities check
▫  Bit level granularity
▫  Access to power, thermal, and performance

counters/controls
▫  Formatted with tables to match Intel manuals

(relatively easy to add new registers)

8

63 32 31 22 16 3 0

MISC_ENABLE (0x1A0)

Automatic Thermal
Control Circuit Enable
(Disable write)

Enhanced Intel
SpeedStep Technology
Enable (Allow R/W)

Limit CPUID Maxval
(Disable write)

API
• Compile and insert the module
▫  Processor architecture is detected at compile time
▫  Whitelist created based off of architecture

• Version number exported to
▫  /sys/class/smsrs/version

•  List of available registers in the whitelist
▫  /sys/class/smsrs/avail

9

0x19A SMSR_CLOCK_MODULATION
0x19B SMSR_THERM_INTERRUPT
0x19C SMSR_THERM_STATUS
0x1A0 SMSR_MISC_ENABLE
0x1A2 SMSR_TEMPERATURE_TARGET
0x1A6 SMSR_OFFCORE_RSP_0
0x1A7 SMSR_OFFCORE_RSP_1
0x1B0 SMSR_ENERGY_PERF_BIAS
0x1B1 SMSR_PACKAGE_THERM_STATUS
0x1B2 SMSR_PACKAGE_THERM_INTERRUPT
0x309 SMSR_FIXED_CTR0
0x30A SMSR_FIXED_CTR1
0x30B SMSR_FIXED_CTR2
0x345 SMSR_PERF_CAPABILITIES
0x38D SMSR_FIXED_CTR_CTRL
0x38E SMSR_PERF_GLOBAL_STATUS
0x38F SMSR_PERF_GLOBAL_CTRL
0x390 SMSR_PERF_GLOBAL_OVF_CTRL
0x3F1 SMSR_PEBS_ENABLE
0x3F6 SMSR_PEBS_LD_LAT
0x606 SMSR_RAPL_POWER_UNIT
0x610 SMSR_PKG_POWER_LIMIT
0x611 SMSR_PKG_ENERGY_STATUS
0x614 SMSR_PKG_POWER_INFO
0x638 SMSR_PP0_POWER_LIMIT
0x639 SMSR_PP0_ENERGY_STATUS

Currently Whitelisted (Ivy Bridge)

•  List can easily be changed before compiling

0x618 SMSR_DRAM_POWER_LIMIT
0x619 SMSR_DRAM_ENERGY_STATUS
0x61B SMSR_DRAM_PERF_STATUS
0x61C SMSR_DRAM_POWER_INFO
0x010 SMSR_TIME_STAMP_COUNTER
0x017 SMSR_PLATFORM_ID
0x0C1 SMSR_PMC0
0x0C2 SMSR_PMC1
0x0C3 SMSR_PMC2
0x0C4 SMSR_PMC3
0x0C5 SMSR_PMC4
0x0C6 SMSR_PMC5
0x0C7 SMSR_PMC6
0x0C8 SMSR_PMC7
0x0E7 SMSR_MPERF
0x0E8 SMSR_APERF
0x186 SMSR_PERFEVTSEL0
0x187 SMSR_PERFEVTSEL1
0x188 SMSR_PERFEVTSEL2
0x189 SMSR_PERFEVTSEL3
0x18A SMSR_PERFEVTSEL4
0x18B SMSR_PERFEVTSEL5
0x18C SMSR_PERFEVTSEL6
0x18D SMSR_PERFEVTSEL7
0x198 SMSR_PERF_STATUS
0x199 SMSR_PERF_CTL

10

Using POWER_UNIT an
POWER_LIMIT, you can
set power limits on a per

package (socket) level

Using MPERF
and APERF, you

can calculate
effective

frequency

THERM_STATUS can
give thermal information

per core

FIXED_CTR0
provides number

of instructions
retired

Convenient access through libmsr
• Companion library developed at LLNL
▫  Call high level library functions such as:
�  dump_thermal_terse()
�  dump_rapl_limit(…)
▫  Build your own with easy to use:
�  Structs
�  Lower level functions
▫  The library will do:
�  Error Checking
�  Low Level Work

11

Successes in Deployment
•  Production machines: Cab (at LLNL)
▫  Intel Xeon E5-2670 Processors (Sandy Bridge)
▫  1,296 nodes
▫  16 cores per node

•  In TOSS (Tri-Lab Operating System Stack)
• On LANL TLCC2 machines
▫  Tri-Lab Linux Capacity Cluster 2

12

Case Study: Thermal
Measurement/Data

13
Ef

fe
ct

iv
e

Cl
oc

k
Fr

eq
ue

nc
y

(G
H

z)

 3
.0

 3
.3

Po

w
er

 (
W

at
ts

)
 0

25

 5
0

75

 0 100 200 300 400 500 600 700
Time(Seconds)

61 ˚C

48˚C

35˚C

4 Task Linpack

Green: Effective Frequency
Blue: Power
 Package- Dark
 DRAM- Light
Other: Core Temperatures

• Add registers to the whitelist
▫  Some registers have unreliable bits
▫  Find which MSRs could expose security risks

• Update register tables as new processors become
available
▫  i.e. Haswell

•  Integration with PAPI (In progress)

Future Work

14

Summary

https://github.com/scalability-llnl/msr-safe
https://github.com/scalability-llnl/libmsr

• Access to MSRs is critical for:
▫  Power and Performance measurements
▫  Power capping

•  The msr-safe kernel + whitelist enables:
▫  Safe use of MSRs for regular users
▫  Easy to use API
▫  Bit level control for security

Open Source

15

