

Uncovering degraded application performance with LWM²

Aamer Shah, Chih-Song Kuo, Lucas Theisen, Felix Wolf November 17, 2014

Motivation: Performance degradation

- Internal factors:
 - Inefficient use of hardware resources
 - Uneven work load distribution
 - Inefficient communication pattern
 - Etc.
- External factors:
 - Operating system jitter
 - Network interference from other applications
 - I/O interference from other applications
 - Inefficient process-to-compute-node mapping
 - I/O subsystem anomalous behavior
 - Etc.

LWM²: Introduction

- LWM²: Light-Weight Monitoring Module
 - Lightweight profiler
 - Supports: MPI, File I/O, OpenMP and CUDA
- Easy to use
 - No code recompilation or relinking
 - Uses library preloading to profile application
- Compact output
 - Application performance summary on console
 - Generates output files with more detailed information
 - Command line utility available to read the output files
- Main objective is to identify performance degradation from external sources by monitoring system resources

Time-slices

- LWM² also generates segmented profiles at fixed time intervals, called time-slices
 - Time-slice boundaries are synchronized system-wide

Inter-application interference

- Time-slices allow comparing of performance across applications
 - Can identify cases of inter-application interference
 - OpenFOAM: creates large number of checkpoint files during execution
 - Executed alone and against a periodic file-write-benchmark

Inter-application interference

Inter-application interference

Network monitoring on BG/Q

- Each compute node on BG/Q system has 11 network links
 - 2 x 5D for communication
 - 1 for I/O
- For each link, LWM² captures
 - Link traffic: number of 32 bytes packet sent
 - Node contention: packet arrival rate, average queue length
- Provide a separate tool (VisTorus) to visualize the network traffic^[1]
- Identify hot links and bottlenecks

[1] Will be presented in VPA'14 workshop on Friday (Nov 21)

I/O subsystem structure

Enhanced I/O monitoring

- Two components added for enhanced I/O monitoring
- Global server load monitoring
 - Monitor the overall load on the I/O servers
 - Profiles the Infiniband counters of the I/O servers
- Identifies I/O performance degradation due to high I/O subsystem load
- Lustre OST reads/writes monitoring
 - Monitor reads and writes to individual OSTs
 - Metrics aggregated together for the same OSS
 - Monitoring done at compute node level
- Identifies distribution of reads and writes on I/O subsystem
- Identifies I/O subsystem anomalies

I/O server imbalance

- Benchmark:
 - All processes simultaneously write to their own file
 - Each process writes 1MB of data, 2048 times
 - Observed large difference in I/O time of each process

I/O server imbalance

- One I/O server had low write throughput (for that execution)
- All slow processes wrote to that server
- One of the reasons identified was that large number of writes were directed to that I/O server

I/O server imbalance

- A balanced distribution of writes lead to balanced I/O time among processes
 - Programmatically specifying a dedicated OST for each process

- External factors add to variance and performance degradation of applications
- LWM² can identify interference from external factors
 - Usage of time-slices to compare performance data across applications and subsystems
 - Profile BG/Q network counters to identify hot links
 - Monitor I/O subsystem to identify server-side imbalance and other anomalies
- LWM² available at: https://jay.grs.rwth-aachen.de/hg/lwm2

- A. Shah, F. Wolf, S. Zhumatiy, and V. Voevodin. Capturing inter-application interference on clusters. In IEEE International Conference on Cluster Computing (CLUSTER), 2013, pages 1–5, 2013.
- C.-S. Kuo, A. Shah, A. Nomura, S. Matsouka, and F. Wolf. How file access patterns influence interference among cluster applications. In IEEE International Conference on Cluster Computing (CLUSTER), pages 1–8, 2014.
- C.-S. Kuo. I/O subsystem as a source of inter-application interference on supercomputers. Master's thesis, German Research School for Simulation Sciences, 2014.
- L. Theisen, A. Shah, and F. Wolf. Down to earth how to visualize traffic on high-dimensional torus networks. In Proc. of VPA: First workshop on Visual Performance Analysis, held in conjunction with Supercomputer 2014, New Orleans, LA, pages 1–6, 2014.