A Scalable Auto Tuning Framework
using Machine Learning Techniques

Outline

Introduction

Our approach
— Optimization problem
— Feature selection

— Machine learning techniques
Experimentation and results
Conclusions

Future work

Introduction

What is the main challenge?

Traditional performance analysis |7 /L. . 4%\
approach might not be enough | @9 =
to get optimal performance

More information is needed

More tools interaction is needed
to get a better and useful
information

Cost modeling for auto tuning

AN
LY Performance
Measurement
’P'aths of

Interoperation

will be a big challenge for the
future HPC

Introduction

Performance
Search Space

Representation
Search Space

HPCTools Group, University of Houston

Motivation

* To get a better cost model:

— We need a better search space which ensures that
we have an optimal solution (or maximum
number of good points)

— We need a better representation search space
which can capture uniqueness of a given kernel,
application etc.

— We need a better technique that can map both
spaces effectively to find the best solution

Phase ordering problem

Classical NP-hard problem in compiler
Number of optimizations in the back end

What should be the parametric values for each
optimization and in which order they should be
applied?

Modern compilers use a heuristic which ensures an
acceptable performance for most of the applications

Previous work: mostly playing with the flag switching
provided by a compiler. Quality of search space is not
complete!

Data locality optimization: main optimization to gain
the performance on modern multi-core processors

Search space for data locality
optimization
 The search space for data locality optimization
— loop unrolling
— Loop fusion
— Loop fission
— Loop interchange
— Loop tiling/blocking
— Loop prefetching

Representation search space

 Static features:
— Number of instructions
— Number of basic blocks
— Number of loads instructions
— Number of store instructions
— Number of integer instructions
— Number of floating point instructions
— Number of loops
— Level of loops

Representation search space

* Dynamic features
— L1 cache miss rate
— L2 cache miss rate
— L3 cache miss rate
— TLB miss rate
— Average cycles per instruction
— Average branch taken
— Average conditional branch per branch instruction
— Average branch instruction per instruction
— Average stall cycles per instruction

Machine Learning techniques

Analytical Models

— description of a system using mathematical concepts
and language

— Low adaptability

Supervised learning

— each example is a pair consisting of an input object
(typically a vector) and a desired output value (also
called the supervisory signal)

Support Vector Machine (SVM)
Artificial Neural Network (ANN)

Machine learning techniques

Empirical Model: run each point in the
performance search space to get the best
solution

Give better solution, adaptable
Very high computational cost
Clustering / Unsupervised learning

KNN (K-Nearest Neighborhood) clustering
approach

Feature selection criteria

Information gain
Mutual Information
Chi-statistic
Frequency of feature

Classification problem

Parameter value for each optimization is a
class

Loop unrolling : number of time it can be
rolled

In which order the optimization is applied

We have two classifiers: one for finding the
parameter value for an optimization strategy
and the other find the order in a set of
optimizations

Experimentation and Results

Hardware: Intel Xeon

Compiler: OpenUH, Intel, GCC, and PGl

CHiLL framework to produce the search space
Wika machine learning tool

Benchmark: Poly-bench

Experiment (Using SVM)

* Non-linear SVM
* Accuracy more than
90%

* Improvementin
performance from 10%
to 35%

Benchmark | OpenUH | ICC | GCC | PGI
2mm 10 3 7 2
3mm 11 4 12 3

adi 11 5 9 4
atax 12 5 13 6
bicg 13 6 10 7
cholesky 15 < 16 7
correlation 28 6 18 8
coveriance 10 7 11 8
doitgen 13 9 10 7
durbin 24 3 18 6
dynprog 15 < 10 5
fdtd-2d 14 < 9 8
fdtd-apml 21 5 15 8

gauss-filter 12 7 10 9

gemm 20 3 15 10
gemver 11 8 9 7
gesummy 10 3 7 6
gramschm 10 3 9 7
lu 20 10 13 7
ludcmp 25 8 17 8
mvt 10 3 7 3
reg-detect 25 10 20 10
seidel 30 15 22 11
symm 35 13 20 11
syr2k 19 10 18 9
syrk 20 10 22 9
trisolv 15 8 10 9
trmm 25 10 20 10

* Able to reduce the
search space for
Empirical models

Experiment (Using Clustering)

Performance
improvement from 7%

to 20%

Cluster 1 Cluster 2 Cluster 3
2mm adi fdtd-2d
3mm atax fdtd-apml
symm bicg gauss-filter
syr2k cholesky gemm
syrk correlation gemver
trisolv coveriance gesummyv
trmm doitgen gramschm

durbin lu
dynprog ludcmp
mvt
reg-detect

seidel

Hybrid Approach

Combining supervised and unsupervised
learning

Clustering and then training SVM for each
cluster

Accuracy performance of SVM increased by
2%
The performance increased from 2% to 4%

Conclusions

* Machine learning techniques have great
potential to solve various tuning problems for
the future HPC

e Our results strengthen this belief

* Main challenges
— Efficient performance search space
— Better feature selection techniques
— Modeling the performance problem
— Correct selection of a learning methodology

Future work

Auto tuning for power performance using
machine learning

Runtime/dynamic tuning strategy for various
runtime libraries

Software adaptation: predicting which version of
a code will give better performance under certain
environment

Learning models for other HPC performance
issues, e.g., resilience, porting , fault tolerance

etc.

Questions!!

