

# Advanced Stencil-Code Engineering (ExaStencils)

Christian Lengauer

3<sup>rd</sup> Workshop on Extreme-Scale Programming Tools New Orleans, 17.11.2014

## **Two Alternative Approaches in SPPEXA**

The evolutionary approach



The revolutionary approach



#### Why is this Revolutionary?

- No general-purpose programming language
  - Different refinement levels have their own domain-specific language
- Exploitation of domain knowledge at all levels fo refinement
  - About input data
  - About the algorithm
  - About the execution platform
- Exploitation of common properties of programs
  - Programs are not individuals but members of a family, a "product line"
  - A product line specifies variabilities (so-called features)
  - Common properties and individual variations are stated explicitly and precisely
  - The "programming" of a product is done by selection options (and nothing else!)
- Still the promise: full automation
  - The target code is being "weaved" automatically, optimized for the features selected
  - The optimization exploits knowledge about the specific feature combination

#### **Our Project in the Radical Tier of SPPEXA**





http://www.exastencils.org/

A new, tool-assisted, domain-specific codesign approach for stencil codes











Jürgen Teich,

Frank Hannig.

**Christian Schmitt** 





Matthias Bolten, Hannah Rittich



Christian Lengauer,
Armin Größlinger,
Stefan Kronawitter



Sven Apel, Alexander Grebhahn

#### **Work Flow of ExaStencils**



## **Domain: Multigrid Stencil Codes**



# **Hierarchical Hybrid Grids**



#### **Algorithmic Engineering**

#### Variabilities

- Discretization method
- Grid transfer method
- Cycling strategy
- Smoother



- Convergence rate (platform-independent)
- Execution time (platform-dependent)

#### Current activities

- A-priori prediction of the convergence rate by local Fourier analysis (LFA)
- Extend LFA techniques to block-smoothers and aggressive coarsening



### **Domain-Specific Representation**



#### Current status

- Educated choice of Scala as the host language
- Preliminary code generator for proof of concept finalized
- Serious code generator for 80% of Layer 4 shows exascale potential

## **Domain-Specific Modelling and Optimization**

#### Challenges

- Draft the software product line: identify the variabilities
- Configuration options can interact in subtle ways (feature interaction)
- Which combination of options gives the best performance?

#### Current status

- Adoption of techniques of automated software configuration
- Design of a variability model for the Highly Scalable Multigrid Solver (HSMGS)
- First experiments with a machine learning approach to identify efficient configurations
- New: not only binary but also numerically parameterized options
- Measurements of 10.2% of all variants → prediction accuracy of 89% on ave.
- Still, so far, no domain-specific knowledge exploited!

## **Domain-Specific Modelling and Optimization**

## Highly Scalable Multigrid Solver (HSMGS)



sum (pre-smoothing, post-smoothing) > 0

#### Legend:

IP CG = In-Place Conjugate Gradient

IP\_AMG = In-Place Algebraic multigrid

RED\_AMG = Algebraic multigrid with data reduction

GSAC = Gauss-Seidel with additional communication

RBGSAC = Red-Black Gauss-Seidel with additional communication

Jac = Jacobi

GS = Gauss-Seidel

RBGS = Red-Black Gauss-Seidel

BS = Block-Smoother

# **Preliminary Code Generator**

| Variability                   | Layer                     | Options                                                      |
|-------------------------------|---------------------------|--------------------------------------------------------------|
| Computational domain          | DSL 1                     | UnitSquare, UnitCube                                         |
| Operator                      | DSL 1                     | Laplacian, Complex Diffusion                                 |
| $Boundary\ conditions$        | DSL 1                     | Dirichlet, Neumann                                           |
| Location of grid points       | DSL 2                     | node-based, cell-centered                                    |
| Discretization                | DSL 2                     | finite differences, finite volumes                           |
| Data type                     | DSL 2                     | single/double accuracy, complex numbers                      |
| Multigrid smoother            | DSL 3                     | $\omega$ -Jacobi, $\omega$ -Gauss-Seidel, red-black variants |
| Multigrid inter-grid transfer | DSL 3                     | constant and linear interpolation and restriction            |
| Multigrid coarsening          | DSL 3                     | direct (re-discretization)                                   |
| Multigrid parameters          | DSL 3                     | various                                                      |
| Platform                      | Hardware                  | CPU, GPU                                                     |
| Parallelization               | $\operatorname{Hardware}$ | serial, OpenMP                                               |

#### Novelties:

- Variant-driven code generation
- Wide spectrum of stencil codes

#### What Makes a Domain Suitable for the Radical Approach?

- Size
  - Considerably smaller than by contemporary expectations
- Theoretical basis:
  - Algebra
  - Conditional equations
- Significance
  - Stable abstract view
  - Stable, sustained user community
- Examples
  - FFTW: the fastest Fourier transform in the West
  - Spiral: discrete linear transforms
  - DBMSs: relational query optimization
  - cpp: Linux operating system configuration
  - ExaStencils: Multigrid stencil codes

## Thanks for your Interest in the World of Stencils









(a) Laplacian 3D 7-point stencil,  $scalar \rightarrow scalar$ 

(b) **Divergence** 3D 6-point stencil,  $vector \rightarrow scalar$ 

(c) Gradient 3D 6-point stencil, scalar → vector

(d) Hyperthermia 3D 7-point stencil, scalar + 9 coefficients  $\rightarrow$  scalar









(e) 6<sup>th</sup> order Laplacian 3D 19-point stencil,  $scalar \rightarrow scalar$ 

(f) Tricubic interpolation (g) Wave 3D 64-point stencil,  $scalar \rightarrow scalar$ 

3D 13-point stencil, scalar → scalar depending on 2 time steps scalar  $\rightarrow$  scalar

(h) Edge detection / Game of Life 2D 9-point stencil,

© Matthias Christen