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Two Alternative Approaches in SPPEXA
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Why is this Revolutionary?

= Different refinement levels have their own domain-specific language

= About input data
= About the algorithm

= About the execution platform

= Programs are not individuals but members of a family, a "product line”
= A product line specifies variabilities (so-called features)
= Common properties and individual variations are stated explicitly and precisely

= The "programming” of a product is done by selection options (and nothing else!)

= The target code is being "weaved” automatically, optimized for the features selected

= The optimization exploits knowledge about the specific feature combination
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ExaStencils

SPPEXA http://www.exastencils.org/
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Domain: Multigrid Stencil Codes
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Algorithmic Engineering

= Discretization method A - M

= Grid transfer method / \ /
= Cycling strategy "’ / !.\ /.] " ‘\ / g

. Smoother an []

= Convergence rate (platform-independent)

= Execution time (platform-dependent)

= A-priori prediction of the convergence rate by local Fourier analysis (LFA)

- Extend LFA techniques to block-smoothers and aggressive coarsening
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Domain-Specific Representation
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implementation Complete Program Specification

Educated choice of Scala as the host language
Preliminary code generator for proof of concept finalized

Serious code generator for 80% of Layer 4 shows exascale potential
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Domain-Specific Modelling and Optimization

= Draft the software product line: identify the variabilities
= Configuration options can interact in subtle ways (feature interaction)

= Which combination of options gives the best performance?

= Adoption of techniques of automated software configuration

= Design of a variability model for the Highly Scalable Multigrid Solver (HSMGS)

= First experiments with a machine learning approach to identify efficient configurations
= New: not only binary but also numerically parameterized options

= Measurements of 10.2% of all variants — prediction accuracy of 89% on ave.

= Still, so far, no domain-specific knowledge exploited!
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Domain-Specific Modelling and Optimization

Highly Scalable Multigrid Solver (HSMGS)

post-smoothing

[0..6] [0..6]
- 3 T HSMGS S 3 |
coarse grid solver smoother
T — A
IP_CG || RED_AMG || IP_AMG || Jac || GS || GSAC || RBGS || RBGSAC || BS

sum (pre-smoothing, post-smoothing) >0

Legend:

IP_CG = In-Place Conjugate Gradient

IP_AMG = In-Place Algebraic multigrid
RED_AMG = Algebraic multigrid with data reduction
GSAC = Gauss-Seidel with additional communication
RBGSAC = Red-Black Gauss-Seidel with additional communication

Jac = Jacobi
GS = Gauss-Seidel

RBGS = Red-Black Gauss-Seidel

BS = Block-Smoother
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Preliminary Code Generator

Variability Layer Options
Computational domain DSL 1 UnitSquare, UnitCube
Operator DSL 1 Laplacian, ComplexDiffusion
Boundary conditions DSL 1 Dirichlet, Neumann
Location of grid points DSL 2 node-based, cell-centered
Discretization DSL 2 finite differences, finite volumes
Data type DSL 2 single/double accuracy, complex numbers
Multigrid smoother DSL 3  w-Jacobi, w-Gauss-Seidel, red-black variants
Multigrid inter-grid transfer DSL 3  constant and linear interpolation and restriction
Multigrid coarsening DSL 3  direct (re-discretization)
Multigrid parameters DSL 3  various
Platform Hardware CPU, GPU
Parallelization Hardware serial, OpenMP
Novelties:

« Variant-driven code generation
* Wide spectrum of stencil codes
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What Makes a Domain Suitable for the Radical Approach?

= Considerably smaller than by contemporary expectations

= Algebra

= Conditional equations

« Stable abstract view

= Stable, sustained user community

= FFTW: the fastest Fourier transform in the West
= Spiral: discrete linear transforms

= DBMSs: relational query optimization

= cpp: Linux operating system configuration

= ExaStencils: Multigrid stencil codes
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(a) Laplacian (b) Divergence (c) Gradient (d) Hyperthermia

3D 7-point stencil, 3D 6-point stencil, 3D 6-point stencil, 3D 7-point stencil,

scalar — scalar vector — scalar scalar — vector scalar + 9 coefficients
— scalar
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(e) 6™ order Laplacian (f) Tricubic interpolation (g) Wave (h) Edge detection /
3D 19-point stencil, 3D 64-point stencil, 3D 13-point stencil, Game of Life
scalar — scalar scalar — scalar scalar — scalar 2D 9-point stencil,

depending on 2 time steps scalar — scalar
© Matthias Christen
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