
FEPA – A framework for
systematic energy and performance
analysis of extreme-scale applications
in HPC computing centers

J. Treibig a joint project with:
RRZE

2

Goals

§  Provide tooling infrastructure which allows to globally
profile application performance in large
supercomputing centers

§  Embed application profiling in a pattern-driven
performance engineering process aiming for maximum
resource utilization

§  Provide knowledge which enables to significantly
improve the efficient use of HPC compute resources
across all application domains

3

Technical Project Overview

Builds upon the results of
previous BMBF projects:

§  ISAR (LRZ)
§  TIMaCS (NEC)

Opportunity to establish
the LIKWID Open Source
project as an alternative
to established solutions

All components will be
Open Source and can
also be used stand alone

4

Philosophy

§  Motivated by a resource driven view
§  Provide a structured iterative process based on:

§  Performance patterns
§  A diagnostic performance model

§  Performance patterns are typical performance limiting bottlenecks
§  Patterns are indicated by signatures which can consist of:

§ HPM data
§  Scaling behavior
§ Other data

§  Uses one of the most powerful tools available:

Your brain !

You are a investigator making sense of what’s going on.
And there is no alternative to that.

5

Performance Pattern Classification

1.  Maximum Resource utilization
2.  Hazards
3.  Work related (Application or Processor)

The system offers two basic resources:

§ Execution of instructions (primary)
§ Transferring data (secondary)

 A good architectures allows you to fully exploit the design

capabilities without road blocks or detours.

SSE, AVX, AVX2
Alignment/Gather

6

Model validation
Traces /

HW metrics

Optimize for better

resource utilization

expedient activity

Eliminate non−

Hardware,

instruction set
Microbenchmarking Algorithm /

code analysis

Adjust

model input

Identify

correct pattern

M
o

d
e

l
a

d
ju

s
tm

e
n

t

Performance model

Validation

OK?

Yes

No

M
o

d
e

l
b

u
il

d
in

g
O

p
ti

m
iz

a
ti

o
n

S
a

m
e

 p
a

tt
e

rn

C
h

a
n

g
e

 p
a

tt
e

rn

C
h

a
n

g
e

 p
a

tt
e

rn

S
a

m
e

 p
a

tt
e

rn

Pattern

Notions of work
§  Application work
§  Processor work

Pattern: qualitative

Model: quantitative

Find the relevant
limiting bottleneck!

7

Overview Performance Patterns
Pattern Behavior

Bandwidth saturation saturating speedup across cores sharing a data path

Limited
Instruction
throughput

Pipeline saturation throughput at design limit

Pipelining hazards in-core throughput far from design limit, performance
insensitive to data size Control flow issues

Inefficient
data access

Strided Access simple BW models far too optimistic
 Erratic Access

Microarchitectural anomalies large discrepancy from simple performance models

False cacheline sharing very low speedup, or slowdown / discrepancy from
model only in parallel case

Bad ccNUMA page placement bad/no scaling across locality domains, better
performance w/ interleaved placement

Load imbalance saturating/sub-linear speedup

Synchronization overhead speedup going down as more cores are added / no
speedup with small problem sizes

Code
composition
issues

Instruction overhead low application performance, good scaling across
cores, performance insensitive to problem size Expensive instructions

Ineffective instructions

8

Connection to application monitoring

Check Memory
Bandwidth Usage:
Is code memory

Bound?
Check for strided

access or bad
locality

Yes

Check Ratio: Loads/
Misses

Check Ratio: Loads/
Stores

No

Compute
bound code

Check for bad code.

Check FLOP/s

Branch rate and
miss predicted
branches ratio

Check ratio
Single/Double

precision

Check if code
was vectorized
AVX or Packed

Instructions

Yes Check
AVX/SSE Ratio

High Ratio

High Ratio

Check for
expensive

instructions

Many expensive
 instructions

Check for language
problem: Flops/CPI High Ratio

Low

No

Check for register
and pipeline stalls High rateCompute

bound code

Check Cache Rate
L3, L3/Inst, L3/

Cycles and L3 Cost
High rateCompute

bound code
Check Hit/MissHigh rate

Check in code for strided
accesses, bad data
locality, or if data volume
is not being used

Try to remove dependencies
in kernel. Compile code with
AVX.

Compile code with
AVX. Try to increase
vectorized
operations

Try to switch to
single precision.

Try to remove or reorder the
conditionals. Check
optimization options in
compiler.

Check for expensive operations in
kernel: divisions, exponentials,
sqrt... Take it out of loops, use
reciprocal division, use look up
tables.

Check inlining in
C++

Detailed anaylisis with
instrumented code. If
dependencies can not be
removed consider SMT

1

1

1

1 2

2

NUMA: QPI
Bandwidth rate.
Memory locality

Decision tree allows to
detect limiting pattern
automatically.

Estimate urgency.

Identify dangerous
applications.

9

Conclusion

§  FEPA will provide a low overhead framework which allows to
measure system wide application performance/energy data

§  The effective interpretation of the raw profiling data is enabled by
introducing performance patterns

§  The effectiveness of the approach will be evaluated at several

Gauss member HPC centers

HPC is computing at a bottleneck

10

Thank you for your attention!

Any Questions?

Visit us tomorrow at the Poster reception, 5:15PM :
Pattern-Driven Node-Level Performance Engineering

