

Load-Balancing Simulator

Workshop on Extreme-Scale Programming Tools

Supercomputing 2013, Denver, November 18 Monika Lücke, German Research School for Simulation Sciences

Software engineering in HPC

Incremental development

Source: Ian Somerville, Software Engineering, Pearson, 9th edition, 2011

Load balancing

Assignment of work to processors

Objectives

- 1. Balance computational load
- 2. Minimize communication
- 3. Balance communication

Classification

- static
- dynamic

Computational load

Partitioning (comp. load balanced)

Load balancing (2)

Essential for performance and scalability

Typically added during a later stage of the development process

• Focus of the initial design: correctness & simplicity

Example

- Sea ice module of CESM
- Developed at NCAR

Problem: re-engineering a grown code base is expensive

How to evaluate a partitioning?

Analytical modeling

- + Saves computing time
- Requires expert knowledge in performance modeling
- Error-prone

+ Reliable

- Requires computing time
- Requires prior implementation

Test

<u>Too laborious</u> for the complex nature of simulation codes

<u>Too expensive</u> to re-engineer a grown code base

JÜLICH

6 Monika Lücke, Load-balancing simulator

Sea ice

Partitioning

- Space-filling curve
- Weighted by probability of sea ice
- #elements per process restricted

- Same space-filling curve
- Weighted by measured timings
- #elements unrestricted

Sea ice (2)

Computation

- Σ = 19,800 s
- min time = 2 s
- max time = 254 s
- ∆ = 252 s

- Σ = 19,800 s
- min time = 54 s
- max time = 93 s
- ∆ = 49 s

8

Sea ice (3)

Communication (incl. wait states)

- Σ = 34,200 s
- min time = 0 s
- max time = 247 s
- ∆ = 247 s

- Σ = 3,200 s
- min time = 0 s
- max time = 36 s
- ∆ = 36 s

Summary & outlook

Load-balancing simulator:

- Informed choice of a load-balancing strategy with little effort
- Test bed for alternative communication patterns
- Justification of expensive re-engineering decisions

Planned:

- Interfaces to most common partitioning libraries
- Further application case studies
- Score-P extension to automatically measure computation weights
- Communication pattern libraries

Acknowledgement

- John Dennis, National Center for Atmospheric Research
- Felix Wolf, German Research School for Simulation Sciences

ECS - Enable Climate Simulation at Extreme Scale

The G8 Research Councils Initiative on Multilateral Research Funding Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues

Advertisement

Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes (Alexandru Calotoiu) Wed 11/20/13 4:30 - 5pm room 405-407

