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Talk Abstract

Earth system modeling is one of the grand challenges for super computers.
Not only does it require massive computational power, it also challenges
1/0O systems of disks and tape drives. The whole workflow from early
program development phases to data analysis asks for efficient tool
support.

The talk will concentrate on the different phases of knowledge gaining with
earth system modeling. We will discuss the usual issues like debugging
and performance analysis. However, there are also more exotic
requirements like bitwise reproducibility and application integrated
checkpointing. With postprocessing we will look at tools for numerical and
visual analytics of the data. Data volumes are tremendous, thus 1/0
performance plays an important role in the game.

The talk will discuss tool support during the data life cycle that is defined
by the scientists™ workflows. We will analyse who will need what types of
tools during which phases and what is available on the market to support
this HPC-based research. With Exascale getting closer we have to review
our requirements and define new priorities for extreme-scale tools. g
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Early 90s

Tools@TUM: Tools for Parallel Systems (TOPSYS)

On-line: debugger, performance analyzer, visualizer,
load balancer, checkpointer, computational steering
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Ludwig / Wismuller

 OMIS — On-line monitoring interface
specification

e OCM — OMIS compliant monitoring system

Cooperations

e Apart: Working Group on Automatic Performance
Analysis — Resources and Tools
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Early 2000

PIOviz:Trace-based tools for 1/0 server evaluation
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DKRZ — Partner for Climate Science

Maximum Compute Performance.
Mature Data Management. Competent Service.

Founded in 1987 — 25 years of HPC service
Operated as a limited non-profit company
70 staff, 10 in research group

Detalls about DKRZ and climate research at
booth #329
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 |IBM Power6
« Rank 368 in TOP500/Junl13
e 8,064 cores, 115 TFLOPS Linpack

e 6PB disks

18.11.2013 © DKRZ | Supercomputing 2013, Denver

AAAAAAAAAAAAAAAAAAAAA




Tape Library

e 90 tape drives
100 PB storage capacity
e HPSS HSM system
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— “Normal” Tools

DKRZ actively uses tools and teaches tool usage
Together with VI-HPS
— Basic profiling and hardware counter usage
— Score-P
— Cube
— Vampir
— Scalasca
— DDT

More tools for data and workflow management and
visualization

However, tool usage is complicated

EEEEEEEEEEEEEEEEEEE

~ 18.11.2013 © DKRZ | Supercomputing 2013, Denver



Next generation climate computer
— 1-3 PFlop/s
— 45 PByte on disk
— An estimated 2 EByte as tape library capacity

Storage: 30-50% of investment and energy costs
e Currently it is more like 10%

Storage 50% of the overall complexity ?
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Climate Modeling
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Model Components
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Model Components...
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Program Complexity

Mostly: Multiple Program, Multiple Data (MPMD)

E.g. MPI-ESM (Max-Planck-Institute Earth System Model)
— Atmospheric model: ECHAM (192 MPI processes)
o Stand-alone as MP1/OpenMP program
— Ocean model: MPI-OM (63 MPI processes)
— Model coupler OASIS3 (1 MPI process)

How to debug? How to tune”?

EEEEEEEEE
EEEEEEEEEEEEEEEEEEE

18.11.2013 © DKRZ | Supercomputing 2013, Denver



Program Complexity...

E.g. IRO-2 (Ice Forecast and Routing Optimization)

— Atmospheric model: METRAS (26 OpenMP
threads)

— Sea ice model: MESIM (currently include In
METRAS)

— Ocean model: HAMSOM (5 MPI processes)
— Model coupler: OASIS (1 MPI process)
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Requirements for workflow management
— Schedule the individual steps of the process chain

— Be platforms independent

— Enable monitoring of processes

— Support testing and quality checking (QC)
— Ease failure handling

— Enable restart / controlled repetition of an
experiment

— Deliver / produce provenance data

We need tools! E.g. Cylc, a meta-scheduler
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Workflow Complexity...

Identify, schedule and control serial and

Gam parallel (independent) sub tasks
| => Efficient use of hardware resources
R * Schedule distributed suites

=> submit different tasks on different hosts
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Software Engineering

Non-standard development process

Comprehensive ESM
— 500-1000 PY development effort
— 100.000s of LOC
— Moving target
« Software is a dialog between scientists
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Checkpointing

Checkpointing is mandatory
Climate models are very long running applications

Good:

Integrated application checkpointing good for
resilience aspects with Exascale machines

Bad.:
Increases demands for 1/0 performance

EEEEEEEEE
EEEEEEEEEEEEEEEEEEE

18.11.2013 © DKRZ | Supercomputing 2013, Denver



Earth system science is extremely 1/0-intensive
— High data volumes because of global models

— Long term storage required to validate results
— Uses own formats: netCDF, GRIB, no MPI-10

Mostly, data must be kept in the center because of
their size — move program to data
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DKRZ (115 TFlop/s, 26 TByte main memory)

produces an estimated data transfer mem<->disk
— 5-10 GB/s (430-860 TB/day)
— ca. 100 TB/day are saved for further inspection
— ca. 20 TB/day are archived to tape

Next generation climate computer at DKRZ
— Main memory: > x10
— Disk space: x8
— Tape space: x5-x10
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Performance

Overall performance for climate applications

— 5% to 8% of nominal system peak compute
performance

— Only a fraction of nominal system peak 1/0
performance

Main reasons
— Algorithms, code structure, data intensiveness

EEEEEEEEE
EEEEEEEEEEEEEEEEEEE

18.11.2013 © DKRZ | Supercomputing 2013, Denver



e TL™ s Past with Tools
e TL™ s Presence with DKRZ
e Climate Science Issues

 Data Life Cycle

e Exascale Challenge

e Climate Science Challenges
e Wish List / Requirements

e Conclusion

EEEEEEEEE
EEEEEEEEEEEEEEEEEEE

~ 18.11.2013 © DKRZ | Supercomputing 2013, Denver

Outline




Data Life Cycle

Insight gaining Is complicated...
— Create digital born data with climate models
— Evaluate data (numerical, visual)
— Archive data for future usage
— Disseminate data for further research
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Data Life Cycle...

DKRZ distinguishes two

layers:

Creation

a) Virtual research
environments integrates
community-based

Sl scientific research

b) Long-term archiving
supports
interdisciplinary data

utilization

Archiving
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Data Evaluation

quality control
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Data Life Cycle...

==

We need tools for the whole process !
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A First Summary

Earth system modeling
— Has a complex scientific insight gaining workflow
— Has complex program and data structures

Tools
— Are needed for program development and tuning
— Are especially important for 1/0 tuning
— Are needed for workflow management
— Are crucial for data management
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Linpack 110 TFLOPS 1 EFLOPS 1 EFLOPS

Main memory 26 TB 260 PB 32-64 PB
Disk space 6 PB 60 EB 0.5-1 EB
Tape library 100 PB 17B ?
Memory-to-disk 30 GB/s 300 TB/s 60 TB/s
Disk-to-tape 3 GB/s 30 TB/s ?

Application-to-disk too slow too slow toooo slowwwgg
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Exascale Problems

o Scalablility of programs
e Resilience
e Energy consumption

e But also
— Data 1/0
— Visualization of huge data volumes
— Management of huge workflows
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Extremely High Costs

Already now, with a 1/10 of a PFlop/s machine
— €2 M for electricity
— €0.5 M for tapes
—TCOiIs €16 M

E.g. IPCC contributions cost €1 M for electricity

Program errors cost us 3 Cent/corehour for power

With 5% CPU time for finding errors this amount to
€110.000 — enough for one more HPC specialist4 o
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Cloud Computing “1S” Us

0 2000 4000 6000 8000 10000 12000 14000

200km 25km 1km
Typical resolution of Upper limit of climate models Cloud system resolving models
IPCC AR4 models with cloud parameterizations are a transformational change

GCRM — Global Cloud Resolving Model
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The Big Bang

New Science Better Science

(new processes & interactions ____ESM+multiscale GCRM
not previously included ) 4. s

g\ (parameterizations —
explicit models )

-3::;%_ Earth System Model ?

\ Climate Model /

Spatial

: limescale
?g}ggj“on | (Years*timestep)
(simulate ﬂnmai

, \ /
Ensemble size 500\

( quantify statistical properties of simulation )

Lawrence Buja (NCAR)
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Climate Model Intercomparison Project (CMIP)
— CMIPS5 finished 2013
e 1.8 PB for 59,000 data sets stored in 4.3 Mio

Files In 23 data nodes
e CMIP5 data is about 50 times CMIP3

— We expect 100 PB for CMIP6 in 2020
e Out of v2-1 EB raw model data

CMIPS5 is only one big community project
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Application Developer

Would love not to be forced to use tools

Otherwise some special tools for
« Automated evaluation of scalability

— Add more nodes — what happens to performance?
« Computational steering

— Quickly find problems with numerical solutions
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Library Developer

In particular for 1/0
— Measure and evaluate 1/0 performance

» Application level view
o System level view
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Resource Provider

e Quickly identify low performers
— wrt. compute performance
— wrt. energy efficiency

« Decision basis for next generation machine
— Resource usage profile
— Scientific workflows

e Evaluate costs: per user/program/publication
— Monetary aspects
— Carbon footprint
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We need tools for different users
— Scientist: maximize scientific productivity

— Support staff: optimize machine usage and help
scientist

— Manager: decide on future resources

i
-

We need tools for all phases of insight gaining
— Model data generation
— Data visualization
— Data storage
— Data dissemination
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New Tools

For earth system modeling (only?)

* Performance analysis of workflows

How to map complex multi program structures onto
complex machine structures?

e Cost analysis of workflows

What is the overall resources usage and how can it
be optimized?
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Our Best Tools !

People !

Invest in training of people (scientists, support staff,
managers) for optimal team building

Will increase scientific productivity

Many thanks to Panos Adamidis, Hendryk Bockelmann,
Reneé Redler, Hannes Thiemann, Stephan Kindermann, and
Kerstin Fieg for discussions and ideas
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