
Workshop on Extreme-Scale Programming Tools

Supercomputing 2013

Universitat Autónoma de Barcelona
Computer Architecture and Operating Systems Departament

Toni Espinosa

Andrea Martínez, Anna Sikora, Eduardo César and Joan Sorribes

ELASTIC: Dynamic Tuning for
Large-Scale Parallel Applications

18th November 2013

Outline

①Motivation.

②Scalable Dynamic Tuning.

③ELASTIC.

④Experimental Evaluation.

⑤Conclusions and Future Work.

3/22

Task0 Task1

Analysis and
tuning module

BE daemon BE daemon

Taskn-1

BE daemon...

Motivation

Centralised Architecture of Tuning Tools

 Elimination of a single centralised
control point.

 Distribution of the analysis and
tuning process, remaining effective.

Task0 Task1

Analysis and
tuning module

BE daemon BE daemon

Taskn-1

BE daemon...

Task0 Task1

Analysis and
tuning module
Analysis and

tuning module
Analysis and

tuning module
Analysis and

tuning module

BE daemon BE daemon

Taskn-1

BE daemon...

Outline

①Motivation.

②Scalable Dynamic Tuning.

③ELASTIC.

④Experimental Evaluation.

⑤Conclusions and Future Work.

5/22

Hierarchical Tuning Network

 Decompose.

• A base level of analysis and tuning modules (ATM) that controls
disjoint domains of application tasks.

ATM

Monitoring orders.

Events.

Tuning orders.

• Local performance improvements are achieved.

…and how to obtain global

performance improvements?

Application
Memory

Source CodeSource Code

Monitoring Analysis Tuning

Source Code

Executable

user

tool

Execution time

Analysis and
tuning domain

6/22

Hierarchical Tuning Network

 Abstract.

• The abstraction mechanism is carried out by the ATMs.

…representing the tasks of the virtual

parallel application

7/22

Hierarchical Tuning Network

 Abstract.

• The virtual parallel application is
decomposed…

ATM

 Decompose.

… and then analysed and tuned by ATMs
located at the high level.

The actuation of each ATM of the
network gives a hierarchical distribution
of the analysis and tuning process

Application
Memory

Source CodeSource Code

Monitoring Analysis Tuning

Source Code

Executable

user

tool

Execution time

Abstractor

8/22

Parallel Application Task

Abstractor

ATM

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation orders to
the immediate children

Events from the
immediate children

Instrumentation

Order Sender

Performance

Evaluator

Abstractor

ATM

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation

Order Sender

Performance

Evaluator

Level i+1

Level i

Parallel Application Task

Abstractor

ATM

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation orders to
the immediate children

Events from the
immediate children

Instrumentation

Order Sender

Performance

Evaluator

Abstractor

ATM

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation

Order Sender

Performance

Evaluator

Parallel Application Task

Level i+1

Level i

Parallel Application Task

Abstractor

ATM

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation orders to
the immediate children

Events from the
immediate children

Instrumentation orders
from the parent level

Instrumentation

Order Sender

Performance

Evaluator

Abstractor

ATM

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation

Order Sender

Performance

Evaluator

Parallel Application Task

Level i+1

Level i

Parallel Application Task

Abstractor

ATM

Instrumentation

Order Translator

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation orders to
the immediate children

Events from the
immediate children

Instrumentation orders
from the parent level

Instrumentation

Order Sender

Performance

Evaluator

Abstractor

ATM

Instrumentation

Order Translator

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation

Order Sender

Performance

Evaluator

Parallel Application Task

Level i+1

Level i

Parallel Application Task

Abstractor

ATM

Instrumentation

Order Translator

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation orders to
the immediate children

Events from the
immediate children

Instrumentation orders
from the parent level

Instrumentation

Order Sender

Performance

Evaluator

Abstractor

ATM

Instrumentation

Order Translator

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation

Order Sender

Performance

Evaluator

Parallel Application Task

Event to the parent level

Level i+1

Level i

Parallel Application Task

Abstractor

ATM

Instrumentation

Order Translator

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Instrumentation orders to
the immediate children

Events from the
immediate children

Instrumentation orders
from the parent level

Event

Creator

Instrumentation

Order Sender

Performance

Evaluator

Abstractor

ATM

Instrumentation

Order Translator

Event

Manager

IN
T

E
R

N
A

L
 A

P
I

Event

Creator

Instrumentation

Order Sender

Performance

Evaluator

Parallel Application Task

Event to the parent level

Level i+1

Level i

Abstraction Mechanism

Level i

Level i+1

9/22

Knowledge in the Tuning Network

 Performance Model

Monitoring Points

Performance Expressions

Tuning Points, Actions and Synchronisation Method

How to translate a monitoring order

How to translate a tuning order

How to create a new event

How to decompose the real or virtual parallel application

 Abstraction Model Performance Model

Monitoring Points

Performance Expressions

Tuning Points, Actions and Synchronisation Method

How to translate a monitoring order

How to translate a tuning order

How to create a new event

How to decompose the real or virtual parallel application

 Abstraction Model

Outline

①Motivation.

②Scalable Dynamic Tuning.

③ELASTIC.

④Experimental Evaluation.

⑤Conclusions and Future Work.

11/22

Application
Memory

Source CodeSource Code

Monitoring Analysis Tuning

Source Code

Executable

user

ELASTIC

Execution time

ELASTIC

• Prototype implementation in C++.

• For MPI parallel applications.

• Target systems: UNIX based supercomputers.

Event tracing
Performance and

abstraction models

Dynamic instrumentation Dynamic instrumentation

12/22

ELASTIC
Front-End

Abstractor-ATMAbstractor-ATM Abstractor-ATM

Abstractor-ATM

...

...

...

Abstractor-ATM

ELASTIC
Back-End

TMLib
Application

Task

ELASTIC
Back-End

TMLib
Application

Task

...

Abstractor-ATM

ELASTIC
Back-End

TMLib
Application

Task

ELASTIC
Back-End

TMLib
Application

Task

...

... Abstractor-ATM

ELASTIC
Back-End

TMLib
Application

Task

ELASTIC
Back-End

TMLib
Application

Task

...

...

Abstractor-ATM

ELASTIC: Architecture

 ELASTIC Front-End
 Abstractor-ATM pair
 ELASTIC Back-Ends
 TMLib

The tuning network topology can be
configured to accommodate the size of the
parallel application and the complexity of the

tuning strategy being employed.

13/22

ELASTIC Package

Set of code and configurations that implements the
performance and abstraction model.

vector<Monitoring Order> PerformanceEvaluator::InitialMonitoringOrders()

bool PerformanceEvaluator::NewEvent(Event *e)

vector<Order> PerformanceEvaluator::EvaluatePerformance()

vector<Monitoring Order> InstrumentationOrderTranslator::

 TranslateMonitoringOrder(MonitoringOrder *mo)

vector<Tuning Order> InstrumentationOrderTranslator::

 TranslateTuningOrder(TuningOrder *to)

bool EventCreator::NewEvent(Event *e)

vector<Event> EventCreator::CreateEvent()

 Performance Model

Monitoring Points

Performance Expressions

Tuning Points, Actions and Synchronisation Method

How to translate a monitoring order

How to translate a tuning order

How to create a new event

How to decompose the real or virtual parallel application

 Abstraction Model

14/22

ELASTIC Package

• Codification of the ELASTIC Package based on subclassing
Abstractor-ATM components.

This plugin architecture converts ELASTIC into a
general purpose tuning tool and gives it the

flexibility to tackle a wide range of performance
problems

Outline

①Motivation.

②Scalable Dynamic Tuning.

③ELASTIC.

④Experimental Evaluation.

⑤Conclusions and Future Work.

16/22

Experimental Evaluation

Execution Environment: Supercomputer SuperMUC at LRZ.
• 9400 compute nodes (155656 cores).
• Each node has 2 8-core 2.7 GHz Intel Xeon processors and 32GB main memory.
• SuSe Linux.

Synthetic Parallel Application Real Agent-based Parallel Application

Executing a parallel application which presents a specific performance problem
and using ELASTIC to dynamically detect and resolve the problem.

SPMD

Load balancing problem

The evaluation consists of

17/22

 0

 20

 40

 60

 80

 100

 120

 140

256 1024 2304 4096 9216 16384

E
x
e

c
u
ti
o
n

 t
im

e
 (

s
)

Number of tasks

Original application
Application tuned by ELASTIC

53.4% 50% 46.8%
40.6%

29.4%
25.8%

Experimental Evaluation
Results

18/22

 0

 50

 100

 150

 200

 250

 300

256 512 1024 2048

E
x
e

c
u
ti
o
n

 t
im

e
 (

s
)

Number of tasks

Original application
Application tuned by ELASTIC

20.8%

28.3%

30.3%

31.1%

Experimental Evaluation
Results

Outline

①Motivation.

②Scalable Dynamic Tuning.

③ELASTIC.

④Experimental Evaluation.

⑤Conclusions and Future Work.

20/22

Conclusions

 The distribution of the dynamic tuning process through a
hierarchical tuning network of analysis modules has been defined.

 ELASTIC, a tool that implements the proposed design, has been
developed.

 It offers dynamic tuning through dynamic monitoring, automatic
performance analysis and dynamic modifications.

 It presents an adaptable topology and a plugin architecture.

 The encouraging results obtained from the experimental
evaluation using ELASTIC show that our approach is effective for
large-scale dynamic tuning.

21/22

Future Work

Creation of general ELASTIC Packages which solve a given
performance problem.

 It would be required a small adaptation to applied them to specific
parallel applications.

 Combine our approach with the one implemented under the
AutoTune project.

Universitat Autónoma de Barcelona
Computer Architecture and Operating Systems Departament

Workshop on Extreme-Scale Programming Tools

Supercomputing 2013

Toni Espinosa, Andrea Martinez, Anna Sikora, Eduardo César and Joan
Sorribes

ELASTIC: Dynamic Tuning for
Large-Scale Parallel Applications

Thank you

23/66

Tuning Network Topology

Parallel Application
of N tasks

The structure of the topology will depend on the number of levels in the hierarchy
and the number of Abstractor-ATM pairs in each level

The use of tuning networks composed of the minimum number of non-saturated
Abstractor-ATM pairs.

The maximum domain size that an Abstractor-ATM pair can manage without becoming saturated.

24/66

Modelling an analysis and tuning process

N *Tm *Ea
Ea

Ec
*TcTa N() Tt * frp  

N *Tm N *Tm N *Tm

…

… …

……N *Tm N *Tm N *Tm Ta N()

…N *Tm N *Tm N *Tm Ta N()… … … …

…N *Tm N *Tm N *Tm Ta N()…… … …

……Event Batch
1 N

…
1 N 1 N

……Event Batch
1 N

…
1 N N

……Event Batch
1 N

…
1 N N

……Event Batch
1 N

…
1 N N

1

1

1

25/66

… …
fanalysis =

fe

Ea

Periodanalysis Periodanalysis

N *Tm *Ea
Ea

Ec
*TcTa N() Tt * frp   

analisisf

1

Parallel Application
of 256 tasks +

Ta

Tm

Tc

Tt

Ea

Ec

fa

fe

frp 64

64 64

64 64

64 64

64 64

Calculating the number of tasks that an analysis module
can manage without becoming saturated

26/66

Experimental Evaluation

 Logical layout: 2D grid.

 Iteration pattern:
o Computation.
o Communication.

fixed size

work units

Communication

Computation

 Load imbalance: hotspots of additional workload were introduced into the
application at runtime.

1024 Tasks (32x32 grid) - After 1st Injection

 0

 10

 20

 30

 40

 50

 60

 70

 80

W
o

rk
 U

n
it
s

1024 Tasks (32x32 grid) - After 2nd Injection

 0

 10

 20

 30

 40

 50

 60

 70

 80

W
o

rk
 U

n
it
s

1024 Tasks (32x32 grid) - After 3rd Injection

 0

 10

 20

 30

 40

 50

 60

 70

 80

W
o

rk
 U

n
it
s

Scenario 1 Scenario 210% 21%

Application and performance problem

27/66

Performance Model Abstraction Model

Measurement PointsPerformance Expressions

Tuning Points, Action and Synchronisation

Input: work units.

work units

iteration id

task id

Pe
r

ta
sk

work()

Place

Output: work units to send.

• Points: [send_north, send_south, send_east, send_west]

• Action: set the value of these variables.

• Synchronisation: at the beginning of the migration phase.

• Migration function

Constraint: the work units only can be
moved between neighbouring tasks

Experimental Evaluation
ELASTIC Package to balance the work units

28/66

Tuning NetworkReal/Virtual
Application

Decomposition Scheme

Monitoring Order Translation &
Event Creation

work units

Tuning Order Translation Tuning Network

Tuning Order
[send_south, 60]

[send_south, 20]

[send_south, 20]

[send_south, 20]

Constraint: communication
pattern between tasks

Monitoring Order

Events

Experimental Evaluation
ELASTIC Package to balance the work units

Performance Model Abstraction Model

29/66

Maximum domain size = 314

256

 100 iterations.
 20 work units per task.
 The additional load is proportional to the size of the parallel application.

Experimental Evaluation
Experimentation Plan

For the two scenarios

30/66

4096 tasks parallel application (64x64 grid)

Original application Virtual application

Experimental Evaluation
Results

Load State

31/66

 0

 50

 100

 150

256 1024 2304 4096 9216 16384

E
x
e

c
u
ti
o
n

 t
im

e
 (

s
)

Number of tasks

Original application
Application tuned by ELASTIC

65.1% 63.1%

54.6%
50.1%

33.1%

22.9%

Experimental Evaluation
Results

32/66

256 Tasks Synthetic Application 1024 Tasks Synthetic Application 2304 Tasks Synthetic Application

4096 Tasks Synthetic Application 9216 Tasks Synthetic Application 16384 Tasks Synthetic Application

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

256 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

1024 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

2304 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

4096 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

9216 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

16384 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

It
e

ra
ti
o
n

 t
im

e
 (

m
s
)

Iteration

256 Task Synthetic Application

Original Application

Application tuned by ELASTIC

Ideal balanced time

256 Tasks Synthetic Application

Experimental Evaluation
Results

Iteration Time

33/66

 0

 20

 40

 60

 80

 100

 120

 140

256 1024 2304 4096 9216 16384

E
x
e

c
u
ti
o
n

 t
im

e
 (

s
)

Number of tasks

Original application
Application tuned by ELASTIC

53.4% 50% 46.8%
40.6%

29.4%
25.8%

Experimental Evaluation
Results

34/66

Experimental Evaluation

Synthetic Parallel Application Real Agent-based Parallel Application

Application and performance problem.

ELASTIC Package developed.

Experimentation plan.

Results.

35/66

 Simulates an epidemic model.

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

n
-1

Communication

A

 Load imbalance problem due to the dynamic behaviour of the agents:
o Births and death.
o Time required to process an agent is not uniform.

A

A A

A
A

A

A

A

A

A

AA

A

A

A

A

A AA
A

A

A
 Communication pattern: any-to-any

 Large-scale agent-based simulation.

Experimental Evaluation
Application and performance problem

36/66

Performance Model Abstraction Model

Measurement PointsPerformance Expressions

Tuning Points, Action and Synchronisation

Input: #agents and computation time.

Output: #agents to send to each task.

• Migration functions.

• Points: [intradomain_migrate[], interdomain_migrate[]]

• Action: set the value of these variables.

• Synchronisation: at the beginning of the migration phase.

Marquez et al. 2013
agent

iteration id

task id

Pe
r

ta
sk

phase_4()

Place
time

Migrations can be between any two tasks in the analysis
and tuning domain

Experimental Evaluation
ELASTIC Package to balance the computation time

37/66

Tuning Network

Decomposition Scheme
Monitoring Order Translation &

Event Creation

Tuning Order Translation Tuning Network

[intradomain, 80]

[interdomain, 20]

[interdomain, 20]

[interdomain, 20]

Real/Virtual
Application

[interdomain, 20]

Monitoring Order

Tuning Order

Constraint: domains with
the same size

#agents

time

Events

Experimental Evaluation
ELASTIC Package to balance the computation time

Performance Model Abstraction Model

38/66

• Scale the number of agents.
• Scale the simulation space.

Domain size = 512

Experimental Evaluation
Experimentation Plan

39/66

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

m
s
)

Iteration

Computation times - 37500 agents on 256 tasks

Agent-based application alone

Agent-based application with ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

m
s
)

Iteration

Computation times - 75000 agents on 512 tasks

Agent-based application alone

Agent-based application with ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

m
s
)

Iteration

Computation times - 150000 agents on 1024 tasks

Agent-based application alone

Agent-based application with ELASTIC

Ideal balanced time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30 35 40 45 50

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

m
s
)

Iteration

Computation times - 300000 agents on 2048 tasks

Agent-based application alone

Agent-based application with ELASTIC

Ideal balanced time

Experimental Evaluation
Results

256 tasks

1024 tasks 2048 tasks

512 tasks

40/66

 0

 50

 100

 150

 200

 250

 300

256 512 1024 2048

E
x
e

c
u
ti
o
n

 t
im

e
 (

s
)

Number of tasks

Original application
Application tuned by ELASTIC

20.8%

28.3%

30.3%

31.1%

Experimental Evaluation
Results

