
C O M P U T E | S T O R E | A N A L Y Z E

Addressing Performance and

Programmability Challenges in

Current and Future Supercomputers

1

Luiz DeRose

Sr. Principal Engineer

Programming Environments Director

Cray Inc.

Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Outline

VI-HPS - SC'13 Luiz DeRose © 2013
2

● Computer architecture and applications trends

● Programming Environment mission

● Tools focus for extreme scale computing

● Open issues

● Conclusions

C O M P U T E | S T O R E | A N A L Y Z E

Future Architectural Directions

VI-HPS - SC'13 Luiz DeRose © 2013
3

● Nodes are becoming more parallel
● More processors per node

● More threads per processor

● Vector lengths are getting longer

● Memory hierarchy is becoming more complex

● Scalar performance is not increasing and will start decreasing

● As processors get faster, memory bandwidth cannot keep
up, resulting in:
● More complex caches

● Non-uniform memory architecture (NUMA) for shared memory
on node

● Operand alignment is becoming more important

C O M P U T E | S T O R E | A N A L Y Z E

Application Developers:
Are you ready for the future?

VI-HPS - SC'13 Luiz DeRose © 2013
4

● Today’s petascale applications are not structured to take
advantage of these architectures
● Currently 80-90% of applications use a single level of parallelism

● Message passing between cores of the MPP system

● Looking forward, application developers are faced with a
significant task in preparing their applications for the
future
● You will have to move to a hybrid (MPI, threading, & vector)

architecture

● You must start considering how to manage your arrays to have
them close to the computational engine when you need them
● We are moving to a more complex memory hierarchy that will require

user intervention to achieve good performance.

C O M P U T E | S T O R E | A N A L Y Z E

The Programming Environment Mission

 It is the role of the Programming Environment to close the gap

between observed performance and achievable performance

 Support the application

development life cycle by

providing a tightly coupled

environment with compilers,

libraries, and tools that will

hide the complexity of the

system

• Address issues of scale and

complexity of HPC systems

• Target ease of use with

extended functionality and

increased automation

application

information

Debug

information

 Export/Import

Program

Analyses
 Performance

Analysis

Queries for

Application

Optimization

Compiler

information

Port

Compile

Application

Debug

Analyze

5
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Extreme Scale Tools Focus

6

● The current and future generation of tools should focus on

● Performance

● Help users maximize the cycles to the application
● Address issues of scale and complexity of HPC systems

● Programmability
● How do you get intuitive behavior and best performance with the

least amount of effort
● Provide the best environment to develop, debug, analyze, and

optimize applications for production supercomputing

● Power
● One of the biggest challenges facing extreme scale systems

● Need to develop power-aware tools and techniques to aid the user to
properly direct the system's use of power

Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

What is needed to support the Performance,
Programmability, and Power?

VI-HPS - SC'13 Luiz DeRose © 2013
7

● Transitioning tools to assist the user in assessing and re-
balancing an application for performance and power

● An environment that allows the developer to change
applications a little at a time

● Provide support for user-directed tuning guidance
● for both performance and power

● Provide analysis and automation as we learn more

C O M P U T E | S T O R E | A N A L Y Z E

Creating Hybrid Codes, Why Should You Care?

● For the next decade (at least) all HPC systems will have the same
basic architecture:
● Communication between nodes

● Application developers will continue to use MPI between nodes or sockets
● Maybe SHMEM, UPC, Coarray

● Shared memory programming paradigm on the node

● MPI only will not do

● Vectorization at the low level looping structures
● SSE, AVX, ...
● GPU, MIC, ...
● etc

● Hybridizing a code gives many performance advantages
● Resource contention (network, node memory, ...)

● While there is a potential acceptance of new languages for addressing

multiple levels of parallelism, most developers cannot afford this
approach until they are assured that the new language will be
accepted and the generated code is within a reasonable performance
range

VI-HPS - SC'13 Luiz DeRose © 2013
8

C O M P U T E | S T O R E | A N A L Y Z E

Moving to a Hybrid Code: a Three-Task Approach

9

● Identify potential loops to accelerate
● Determine where to add additional levels of parallelism

● Assumes the MPI application is functioning correctly
● Find top work-intensive loops

● Parallelize and vectorize identified loops
● Split loop work among threads

● Do parallel analysis and restructuring on targeted high level loops

● Add OpenMP (and then OpenACC directives)
● Add parallel directives and acceleration extensions

● Insert OpenMP directives
● Verify application and check for performance improvements

● Convert desired OpenMP directives to OpenACC

● We want a performance-portable application at the end

Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

The Problem – How Do I Parallelize This Loop?
● How do I know this is a good loop to parallelize?

● What prevents me from parallelizing this loop?

● Can I get help building a directive?

subroutine ppmlr

call boundary

call flatten

call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)

call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)

call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&

 rlft,prgh,urgh,rrgh)

call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&

 plft,ulft,rlft pmid umid)

call evolve(umid, pmid) contains more calls

call remap contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap contains more calls

return

End

subroutine sweepz

…

do j = 1, js

 do i = 1, isz

 radius = zxc(i+mypez*isz)

 theta = zyc(j+mypey*js)

 do m = 1, npez

 do k = 1, ks

 n = k + ks*(m-1) + 6

 r(n) = recv3(1,j,k,i,m)

 p(n) = recv3(2,j,k,i,m)

 u(n) = recv3(5,j,k,i,m)

 v(n) = recv3(3,j,k,i,m)

 w(n) = recv3(4,j,k,i,m)

 f(n) = recv3(6,j,k,i,m)

 enddo

 enddo

 …

 call ppmlr

 do k = 1, kmax

 n = k + 6

 xa (n) = zza(k)

 dx (n) = zdz(k)

 xa0(n) = zza(k)

 dx0(n) = zdz(k)

 e (n) = p(n)/(r(n)*gamm)+0.5 &

 *(u(n)**2+v(n)**2+w(n)**2)

 enddo

 call ppmlr

…

 enddo

enddo

10
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Tools Needed When Creating Hybrid Codes

● Tools to design your application to be performance-
portable across a wide range of systems
● Application developers want to develop a single code that can

run efficiently on multi-core nodes with or without an accelerator

● Tools to understand your application
● Where is the time spent?

● Where are the key parallel structures (loops)?

● Where are the important arrays used?

● What prohibits parallelizing these structures?

● Tools to help with scoping analysis
● Identify shared, private and ambiguous variables

VI-HPS - SC'13 Luiz DeRose © 2013
11

C O M P U T E | S T O R E | A N A L Y Z E

Simplifying the Task with Reveal

● Navigate to relevant
loops to parallelize

● Identify parallelization
and scoping issues

● Get feedback on issues
down the call chain
(shared reductions,
etc.)

● Optionally insert
parallel directives into
source

● Validate scoping
correctness on existing
directives

12
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Visualize Loopmark with Performance Information

Performance

feedback

Loopmark and optimization

annotations

Compiler feedback

VI-HPS - SC'13 Luiz DeRose © 2013
13

C O M P U T E | S T O R E | A N A L Y Z E

Access Cray Compiler Message Information

Integrated

message

‘explain support’

Access integrated

message ‘explain’

support by right clicking

on message

VI-HPS - SC'13 Luiz DeRose © 2013
14

C O M P U T E | S T O R E | A N A L Y Z E

View Pseudo Code for Inlined Functions

Search code

with Ctrl-F

Inlined call

sites marked

Expand to

see pseudo

code

VI-HPS - SC'13 Luiz DeRose © 2013
15

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – Review Scoping Results

Parallelization inhibitor

messages are provided to

assist user with analysis

User addresses

parallelization

issues variables

User addresses

issues for

variables with FAIL

status

Loops with

scoping

information are

flagged – red

needs user

assistance

VI-HPS - SC'13 Luiz DeRose © 2013
16

C O M P U T E | S T O R E | A N A L Y Z E

Reveal Gives Feedback on Scoping Results

Variable from

inlining – hover

over ‘I’ to see what

symbol means

Reduction variable

from down the call

stack - hover over

‘RI’ to see what

symbol means

VI-HPS - SC'13 Luiz DeRose © 2013
17

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – Reveal Generates Directive

Automatically

generate

OpenMP

directive

Reveal generates

example OpenMP

directive

VI-HPS - SC'13 Luiz DeRose © 2013
18

C O M P U T E | S T O R E | A N A L Y Z E

Use Reveal to Validate User Inserted Directives

User inserted

directive with mis-

scoped variable ‘l’

VI-HPS - SC'13 Luiz DeRose © 2013
19

C O M P U T E | S T O R E | A N A L Y Z E

Moving to a Hybrid Code: a Three-Task Approach

20

● Identify potential loops to accelerate
● Determine where to add additional levels of parallelism

● Assumes the MPI application is functioning correctly
● Find top work-intensive loops

● Performance tools + compiler loop work estimates

● Parallelize and vectorize identified loops
● Split loop work among threads

● Do parallel analysis and restructuring on targeted high level loops
● Reveal with compiler feedback and source code browsing

● Add OpenMP (and then OpenACC directives)
● Add parallel directives and acceleration extensions

● Insert OpenMP directives
● Reveal with compiler scoping assistance

● Verify application and check for performance improvements
● Convert desired OpenMP directives to OpenACC

● We want a performance-portable application at the end

Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Debugging on Extreme Scale Systems

● Systems with thousands of threads of execution need a new
debugging paradigm

● Need to build tools around traditional debuggers with

innovative techniques for productivity and scalability
● Support for traditional control-centric debugging mechanism

● STAT - Stack Trace Analysis Tool

● MRNet based scalable generation of a single,
merged, stack backtrace tree

● ATP - Abnormal Termination Processing

● Scalable analysis of a sick application, delivering a STAT tree and a
minimal, comprehensive, core file set.

● Comparative debugging

● Collaboration with University Queensland
● A data-centric paradigm

● Ability to see data from multiple program executions in the same instance

21
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Stack Trace Analysis Tool (STAT)

VI-HPS - SC'13 Luiz DeRose © 2013
22

● Stack trace sampling and analysis for large scale applications
● Sample application stack traces
● Scalable generation of a single, merged, stack backtrace tree

● A comprehensible view of the entire application
● Discover equivalent process behavior

● Group similar processes
● Reduce number of tasks to debug

● Merge/analyze traces:

● Facilitate scalable analysis/data presentation
● Multiple traces over space or time
● Create call graph prefix tree

● Compressed representation
● Scalable visualization & analysis

● ATP - Automatic Termination Processing
● System of light weight back-end monitor processes on compute nodes
● Leap into action on any application process trapping

C O M P U T E | S T O R E | A N A L Y Z E

Comparative Debugger

● Helps the programmer locate errors in the program by
observing the divergence in key data structures as the
programs are executing

● Allows comparison of a “suspect” program against a “reference”

code using assertions
● Simultaneous execution of both
● Ability to assert the match of data at given points in execution
● Focus on data – not state and internal operations
● Narrow down problem without massive thread study

● Data comparison

● Tolerance control – nobody expect it to be perfect
● Array subsets – correlate serial to parallel bits
● Array index permutation – loops rearranged
● Automated asserts – let it run until a problem is found
● Forcing correct values – continue on with correct data

23
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Cray Comparative Debugger

24
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

CCDB - Comparison

25
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

CCDB – Comparison

26
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Why Application Level Power Management?

● Power consumption is one of the biggest challenges facing
extreme scale systems
● Scaling up from today’s requirements for a petaflop computer is not a

viable solution
● Sites are already increasingly constrained by power & cooling

limitations as well as cost of system power and cooling

● Hardware could attempt to manage power automatically
● This strategy would most likely be reactive and certainly be sub-

optimal

● Power management must be proactive
● Software can help by monitoring and proactively managing how power

is being used in the system
● The programmer must understand the tradeoffs between power and

performance

● More research and development is needed for
● Power measurement and monitoring tools
● Power analysis
● Management of power consumption

27
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Power Analysis

VI-HPS - SC'13 Luiz DeRose © 2013
28

● Ultimate goal is to develop power-aware tools and
techniques
● Provide suggestions of possible transformations or

implementations of the application with different
performance/power profiles

● Aid the user to properly direct the system's use of power
● Using transparent automation where possible

● Transparently adopting environmental settings to achieve a desired
power reduction and energy savings with a predetermined impact to
performance

● Can leverage the work done in automatic performance analysis

● Challenge
● Ability to identify and correctly attribute the power weights to the

individual “operation” components and map back to the
application

C O M P U T E | S T O R E | A N A L Y Z E

Power Measurement Wish List

VI-HPS - SC'13 Luiz DeRose © 2013
29

● Per H/W core or memory component
● How much does each H/W attribute (L1 cache, L2, cache, TLB, etc)

draw?
● Get relative power usage of components
● Get information on joules per operator or per access

● Example: how many joules does a DCACHE hit or miss use per
reference?

● Provide core utilization metrics

● Overall program power measurement
● Similar to wallclock (total watts or joules)
● Multiple power meters

● 1 for core
● 1 for memory system

● Correlating HWPCs to power usage in performance tools

● Can be directly or indirectly
● Roughly measured with existing H/W performance counters

C O M P U T E | S T O R E | A N A L Y Z E

Adaptive Power Management

● Statically managed
● Compiler support

● Compile-time options to direct optimization for maximum or minimum
● e.g., -P 1, 2, 3 like current -O 1, 2, 3

● Compiler directives
● Put this data there and keep it there until I tell you to release it

● Application-selected power modes/algorithms

● Runtime managed
● Based on compiler hints

● Which components are about to be utilized more or less heavily
● Integer algorithm coming up
● Intensive floating point region coming up
● Poor locality coming up, turn off cache use for this next segment

● Auto-tuning
● Auto-tuning for performance and for power (and a combination of both)

● User Guided
● Runtime assertions/options/hints

30
Luiz DeRose © 2013 VI-HPS - SC'13

C O M P U T E | S T O R E | A N A L Y Z E

Outline

VI-HPS - SC'13 Luiz DeRose © 2013
31

● Computer architecture and applications trends

● Programming Environment mission

● Tools focus for extreme scale computing

● Open Issues

● Conclusions

C O M P U T E | S T O R E | A N A L Y Z E

How About Resilience?

VI-HPS - SC'13 Luiz DeRose © 2013
32

● On extreme scale systems the probability of a node failure
is substantial

● Extreme-scale applications will have built-in resilience
support
● There will be support for detection of failure and information

about which images failed
● e.g., error return for synchronization and collective operations can

indicated that an image has failed

● Will tools be ready for resilient applications?

● Will tools be resilient themselves?

C O M P U T E | S T O R E | A N A L Y Z E

Other Issues to Think About

VI-HPS - SC'13 Luiz DeRose © 2013
33

● Running on an extreme-scale environment
● Target scalability issues in all areas of tool development

● Volume of data

● Need to rethink the performance measurement approach
● Can we focus only on things that are different?
● What kind of runtime aggregation will be possible?
● How about the “Heisenbug” effect?

● What can you do to prep the tools?

● Availability of extreme-scale systems will be limited!

● Cost/benefit estimates (porting apps)
● Can you provide an estimate to the user of the improvements that

certain transformations will bring?

● Ease of use
● Automatic program instrumentation
● Automatic analysis

C O M P U T E | S T O R E | A N A L Y Z E

CrayPat-lite

Access light version of performance tools software

Build program

Run program (no modification to batch script)

a.out (instrumented program)

Condensed report to stdout

a.out*.rpt (same as stdout)

a.out*.ap2

MPICH_RANK_XXX files

> make

aprun a.out

> module load perftools-lite

VI-HPS - SC'13 Luiz DeRose © 2013
34

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions

VI-HPS - SC'13 Luiz DeRose © 2013
35

● Extreme scale systems will be more parallel, with more
processors per node, more threads per processor, longer
vector lengths, more complex memory hierarchies, and …

● Application developers will need sophisticated tools and
adaptive runtime systems to help them address issues of
scale and complexity of these systems

● Extreme scale tools should address issues of
● Performance

● Help users maximize the cycles to the application
● Programmability

● Ease developing, porting, and tuning efforts
● Power

● Help the user understand the tradeoffs between power and
performance, and tune for both

