LEIBNIZ RECHEN ZENTRUM

Autotuning the Energy Consumption

{carmen.navarrete, carla.guillen, wolfram.hesse, matthias.brehm, <u>david.brayford</u>}@lrz.de

Overview

- Processors operating at lower clock speed consume proportionately less power and generate less heat.
- Dynamic scaling of the clock speed gives some control in power consumption, when not operating at full capacity.
- Lower processor frequency does not necessarily reduce energy consumption (application will take longer).

Overview

5 Governors:

- Static (no thresholds)
 - Peformance : Max(frequency).
 - Powersave : Min(frequency).
 - Userspace : User defined frequency.
- Dynamic:
 - Ondemand: Single threshold increases and decreases the frequency step size.
 - Conservative : Dual threshold (up & down frequency) reduces the possibility of oscillation between frequency steps.

Features

- Written in C++
- Bindings for C and Fortran codes
- Support for:
 - Parallel codes: MPI, OpenMP and Hybrid.
 - Sequential codes.
- Socket and node level counter measurements.
- Compatible with PAPI v₄ and PAPI v₅ headers
- Provides accesses to kernel mode operations:
 - Changing CPUFreq infrastructure parameters.
 - Accesses to the MSR devices.

SandyBridge microarchitecture

SandyBridge sensors

1-6: RAPL (Running Average Power Limit) Counters.

7-8: IBM AEM (Advanced Energy Management) Kernel Module.

1 & 2: Energy of the 8 cores.

3 & 4: Energy of the complete

Package (core + uncore).

5 & 6: DRAM Energy.

7: DC Counter.

8: AC Counter.

Components

kademie der Wissenschaften

Metrics

- PAPI RAPL
 - PAPI_TOT_CYC
 - PAPI_TOT_INS
 - PAPI_L3_TCM
 - PACKAGE_ENERGY:PACKAGEx
 - PPo_ENERGY:PACKAGEx
 - DRAM_ENERGY:PACKAGEX
- Paddle Card (HWMON kernel driver)
 - AC Counter
 - DC Counter
- Time metrics
- Future: other counters: temperature, fan, network counters...

Validation

Comparison of measurements with three external tools.

Tool	DRAM	SOCKET	NODE	RACK
LIKWID	X	Χ		
PAPI-RAPL	X	X		
PaddleCard			X	
PDU				X

Tool	Technology	Resolution
LIKWID	MSR	1ms
PAPI-RAPL	MSR	1ms
PaddleCard	Ibmaem-HWMON	300 ms
PDU	Power meter	1 min

Validation

sleep(10) command

	LIKWID	RAPL	IBMAEM	IBMAEM
PKGo	105 J	103 J	-	-
PKG1	-	104 J	-	-
DRAMo	25 J	25.5 J	-	-
DRAM1	-	25.5 J	-	-
DC	-	-	491 J	449 J
E/Node	260 J	257 J	245.5 J	224.5 J

Validation

MSR and Paddle Card comparison

MSR and Paddle Cards Power utilization

Bayerische Akademie der Wissenschaften

Tests and Results

- APEX-MAP benchmark
 - Generates artificial calculations and memory accesses for measurement purposes.
 - Assumes that performance behavior of scientific apps can be modeled by a set of specific performance factors.
 - Simulate compute and memory bound applications.
 - Developed by the Laurence Berkeley National Laboratory
 - Specific performance factors: memory bandwidth and FLOPS

Plugin for the Energy Consumption via CPUFreq

- Aim
 - Optimize the energy consumption of an arbitrary application, by choosing the best combination of frequencies for each code region.
- Integration with periscope
 - The start of each code region calls (per callback) the corresponding library function to change:
 - The CPU governor
 - The CPU frequency
 - The code is executed for each combination of frequencies and governors, looking for the minimum energy consumption.

Energy model

Used by loadleveler to minimize the energy-to-solution

$$PWR_{Fn} = PWR_{F0} * func_0 (CPI_{F0}, L2_{F0}, L3_{F0}, GIPS_{F0}, GBS_{F0},...)$$

$$T_{Fn} = T_{F0} * func_1 (CPI_{F0}, L2_{F0}, L3_{F0}, GIPS_{F0}, GBS_{F0},...)$$

- CPI, L2, L3, GIPS, GBS... are measured at nominal frequency Fo.
- Coefficients of functions are measured for the given platform at all possible frequencies.
- Hides the dependency of GIPS and GBS of a given clock frequency

Energy model

Predicted energy use (model) vs Observed energy used (measured)

LEIBNIZ RECHEN ZENTRUM

Your turn!

Questions?

