
Scalability	
 Improvements	
 in	
 the	
 TAU	

Performance	
 System	

	

	

	

Sameer	
 Shende	

Dir.,	
 Performance	
 Research	
 Laboratory,	
 University	
 of	
 Oregon	
 	

Workshop	
 on	
 Extreme	
 Scale	
 Performance	
 Tools	

SC’12,	
 Salt	
 Lake	
 City	
 ConvenGon	
 Center,	
 Room	
 155-­‐F	

10:45am-­‐11am,	
 Friday,	
 Nov.	
 16,	
 2012	

	
 	

hPp://tau.uoregon.edu	

	

Acknowledgments	

•  Prof.	
 Allen	
 D.	
 Malony,	
 Professor	
 CIS,	
 and	
 Director	

NeuroInformaGcs	
 Center,	
 University	
 of	
 Oregon	

•  ScoP	
 Parker,	
 Argonne	
 NaGonal	
 Labs	

•  Kalyan	
 Kumaran,	
 Argonne	
 NaGonal	
 Labs	

•  Dr.	
 Kevin	
 Huck,	
 U.	
 Oregon	

•  WyaP	
 Spear,	
 U.	
 Oregon	

•  John	
 Linford,	
 ParaTools,	
 Inc.	

•  Suzanne	
 Millstein,	
 U.	
 Oregon	

•  ScoP	
 Biersdorff,	
 U.	
 Oregon	

•  Nick	
 Chaimov,	
 U.	
 Oregon	

•  Dr.	
 Robert	
 Yelle,	
 U.	
 Oregon	

2	

Outline	

•  IntroducGon	
 to	
 TAU	

•  Scalable	
 topology	
 displays	

•  Improving	
 tool	
 usability	
 for	
 extreme	
 scale	
 performance	

evaluaGon	

•  Data	
 reducGon	
 techniques	
 in	
 profiling	

•  Conclusions	

	

3	

What is TAU?

•  TAU is a portable profiling and tracing tool
•  Profiling and tracing can measure time as well as hardware

performance counters (cache misses, instructions) from your CPU
•  TAU can automatically instrument your source code using a

package called PDT for routines, loops, I/O, memory, phases, etc.
•  TAU runs on most HPC platforms and it is free (BSD style license)
•  TAU has instrumentation, measurement, and analysis tools
•  TAU interfaces with other tools such as Score-P measurement

library, PAPI hardware counter library, Vampir, ParaVer, and
Scalasca analysis tools

•  It can scale to large core counts

•  http://tau.uoregon.edu

4

TAU Performance System®
 Parallel performance framework and toolkit

•  Goal: to supports all HPC platforms, compilers, and runtime
systems

•  Provides portable instrumentation, measurement, analysis

Key features of TAU
•  Support for outer-loop level instrumentation using both

source (PDT) and binary rewriting capabilities
•  Support for instrumentation of memory and I/O operations

for accurate heap memory usage, memory allocation/de-
allocation, and I/O volume and bandwidth computations

•  Wrapping technology for instrumenting any external library
•  Performance database technology to store performance

data, cross experiment and data mining tool (PerfExplorer)
•  Support for hybrid sampling and direct measurement
•  3D profile browser, ParaProf
•  Automatic performance measurement system on BG/P, Q.
•  Dynamic event group creation and reassignment in ParaProf
•  Support for debugging (Callstack, memory leak detection,

and soon runtime bounds checking)
•  Cross-platform and cross-language portability

6

Early Availability on New Systems
•  Intel compilers with Intel MPI on Intel Xeon PhiTM (MIC)
•  GPI with Intel Linux x86_64 Infiniband clusters
•  IBM BG/Q and Power 7 Linux with IBM XL UPC compilers
•  NVIDIA Kepler K20 with CUDA 5.0 with NVCC
•  Fujitsu Fortran/C/C++ MPI compilers on the K computer
•  PGI compilers with OpenACC support on NVIDIA systems
•  Cray CX30 Sandybridge Linux systems with Intel compilers
•  Cray CCE compilers with OpenACC support on Cray XK7
•  AMD OpenCL libs with GNU on AMD Fusion cluster systems
•  MPC compilers on TGCC Curie system (Bull, Linux x86_64)
•  GNU compilers on ARM Linux clusters (MontBlanc, BSC)
•  Cray CCE compilers with OpenACC on Cray XK6 (K20)
•  Microsoft MPI with Mingw compilers under Windows Azure
•  LLVM and GNU compilers under Mac OS X

7

Understanding Application
Performance using TAU

•  How much time is spent in each application routine and outer
loops? Within loops, what is the contribution of each statement?

•  How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches
taken?

•  What is the peak heap memory usage of the code? When and
where is memory allocated/de-allocated? Are there any memory
leaks? Where?

•  How much time does the application spend performing I/O? What
is the peak read and write bandwidth of individual calls, total
volume?

•  What is the contribution of different phases of the program? What
is the time wasted/spent waiting for collectives, and I/O operations
in Initialization, Computation, I/O phases?

•  How does the application scale? What is the efficiency, runtime
breakdown of performance across different core counts?

8

How does TAU work?
Instrumentation: Adds probes to perform measurements
•  Source code instrumentation using pre-processors and compiler scripts

•  Wrapping external libraries (I/O, MPI, Memory, CUDA, OpenCL, pthread)

•  Rewriting the binary executable using MAQAO (UVSQ, Intel Exascale Labs)

Measurement: Profiling or Tracing using wallclock time or hardware
counters
•  Direct instrumentation (Interval events measure exclusive or inclusive duration)

•  Indirect instrumentation (Sampling measures statement level contribution)

•  Throttling and runtime control of low-level events that execute frequently

•  Per-thread storage of performance data

•  Interface with external packages (e.g. PAPI hw performance counter library)

Analysis: Visualization of profiles and traces

•  3D visualization of profile data in paraprof, perfexplorer tools

•  Trace conversion & display in external visualizers (Vampir, Jumpshot, ParaVer)

9

Identifying Potential Bottlenecks

low mflops in
loops?

10

Sorting Derived Flops Metric by
Exclusive Time (Score-P with PAPI)

12	

Memory Leaks in MPI

ParaProf 3D Profile Browser

13

Scalable 3D Visualization in ParaProf

ParaProf: 3D Communication Matrix

ParaProf: Scatter Plot

 ParaProf: Topology View IBM BG/P

ParaProf:Topology View (6D Torus)

MPI	
 Rank	
 placement	
 in	
 Cray	
 XE6	
 Topology	

Fastest case CCSM:
4:14:08
(hh:mm:ss)

Slowest case:
5:35:50
(hh:mm:ss)

Cube View

Z-connected torus view

Cube View

Z-connected torus view

TAU’s	
 MetaData	
 CollecGon	
 on	
 Fujitsu	

% pjsub –interact –L node=“6x6x6”
% mpiexec –n 216 ./a.out

Fujitsu FX10 (K computer)

Issues of data reduction

22

•  TAU	
 can	
 store	
 the	
 mean	
 profile	
 in	
 the	
 TAUdb	
 instead	
 of	

data	
 from	
 each	
 core	

•  Efficient	
 access	
 for	
 high	
 core	
 count	
 data	

•  Cross	
 experiment	
 analysis	
 views	
 tailored	
 for	
 mean	
 data	

•  Dimension	
 reducGon	
 can	
 further	
 reduce	
 data	
 to	
 salient	

events	
 (e.g.,	
 exclusive	
 Gme	
 >	
 3%)	

•  Store	
 metadata	
 with	
 performance	
 data	

Issues of Scalability – File I/O

•  Each thread generates its own performance data
•  How can we devise mechanisms to reduce this data?
•  TAU_PROFILE_FORMAT=“merged” uses MPI_Reduce at the

end of the application and computes:
•  Min, max, mean, total, std. deviation
•  Rank 0 writes a single file during MPI_Finalize

•  TAU_SUMMARY=1 generates a single file with data from:
•  Node 0, node 1, and
•  Mean, max, min, total, std. deviation across all nodes
•  Get the essence of performance

•  TAU_LITE=1 uses a lightweight measurement core
•  50% lower overhead than TAU’s default core
•  No support for sampling, throttling, tracing, just flat profiles

23

CommunicaGon	
 Performance	
 Summary	

24	

Summary data generated from a 1024 core execution on IBM BG/P using
TAU_SUMMARY=1 and TAU_PROFILE_FORMAT=“merged” based reduction

% export PATH=/soft/apps/tau/tau2/bgp/bin/compilers:$PATH
Build your code as is. TAU provides mpixlf90_r, mpixlc_r, mpixlcxx_r, etc. scripts
No changes to build or source code.

ParaProf	
 Main	
 Window	
 (LU,	
 1024	
 cores)	

25	

Data Reduction Techniques

26

•  TAU	
 collects	
 data	
 from	
 all	
 naGve	
 counters	
 on	
 IBM	
 BG/P	
 at	

MPI_Init	
 and	
 MPI_Finalize	
 	

•  Computes	
 mean,	
 max,	
 min	
 for	
 each	
 counter	
 at	

MPI_Finalize	

•  Stores	
 this	
 as	
 metadata	

•  Discards	
 per-­‐rank	
 data	

27

Metadata	

File Formats for Extreme Scale

•  Investigating an indexed profile file format
•  Efficient startup of analysis tool
•  Summary data presented at the beginning of file
•  Hierarchical storage and presentation of profile

data
•  Score-P measurement library addresses

scalability issues for tracing using OTF2

28

29

Support Acknowledgments
US Department of Energy (DOE)

•  Office of Science contracts
•  SciDAC, LBL contracts
•  LLNL-LANL-SNL ASC/NNSA contract
•  Battelle, PNNL contract
•  ANL, ORNL contract

Department of Defense (DoD)
•  HPCMO

National Science Foundation (NSF)
•  Glassbox, SI-2

Partners:
University of Oregon
ParaTools, Inc.
University of Tennessee, Knoxville
T.U. Dresden, GWT
Juelich Supercomputing Center
Intel Exascale Labs, UVSQ, France

For more information

TAU Website:
 http://tau.uoregon.edu

•  Software
•  Release notes
•  Documentation

30

