## Scalability Improvements in the TAU Performance System



Sameer Shende Dir., Performance Research Laboratory, University of Oregon Workshop on Extreme Scale Performance Tools SC'12, Salt Lake City Convention Center, Room 155-F 10:45am-11am, Friday, Nov. 16, 2012

#### http://tau.uoregon.edu



#### Acknowledgments

- Prof. Allen D. Malony, Professor CIS, and Director NeuroInformatics Center, University of Oregon
- Scott Parker, Argonne National Labs
- Kalyan Kumaran, Argonne National Labs
- Dr. Kevin Huck, U. Oregon
- Wyatt Spear, U. Oregon
- John Linford, ParaTools, Inc.
- Suzanne Millstein, U. Oregon
- Scott Biersdorff, U. Oregon
- Nick Chaimov, U. Oregon
- Dr. Robert Yelle, U. Oregon



#### Outline

- Introduction to TAU
- Scalable topology displays
- Improving tool usability for extreme scale performance evaluation
- Data reduction techniques in profiling
- Conclusions

## What is TAU?

- TAU is a portable profiling and tracing tool
- Profiling and tracing can measure time as well as hardware performance counters (cache misses, instructions) from your CPU
- TAU can automatically instrument your source code using a package called PDT for routines, loops, I/O, memory, phases, etc.
- TAU runs on most HPC platforms and it is free (BSD style license)
- TAU has instrumentation, measurement, and analysis tools
- TAU interfaces with other tools such as Score-P measurement library, PAPI hardware counter library, Vampir, ParaVer, and Scalasca analysis tools
- It can scale to large core counts
- http://tau.uoregon.edu



## **TAU Performance System**<sup>®</sup>

#### Parallel performance framework and toolkit



- Goal: to supports all HPC platforms, compilers, and runtime systems
- Provides portable instrumentation, measurement, analysis



OF OREGON

# **Key features of TAU**

- Support for outer-loop level instrumentation using both source (PDT) and binary rewriting capabilities
- Support for instrumentation of memory and I/O operations for accurate heap memory usage, memory allocation/deallocation, and I/O volume and bandwidth computations
- Wrapping technology for instrumenting any external library
- Performance database technology to store performance data, cross experiment and data mining tool (PerfExplorer)
- Support for hybrid sampling and direct measurement
- 3D profile browser, ParaProf
- Automatic performance measurement system on BG/P, Q.
- Dynamic event group creation and reassignment in ParaProf
- Support for debugging (Callstack, memory leak detection, and soon runtime bounds checking)
- Cross-platform and cross-language portability



# Early Availability on New Systems

- Intel compilers with Intel MPI on Intel Xeon Phi<sup>™</sup> (MIC)
- GPI with Intel Linux x86\_64 Infiniband clusters
- IBM BG/Q and Power 7 Linux with IBM XL UPC compilers
- NVIDIA Kepler K20 with CUDA 5.0 with NVCC
- Fujitsu Fortran/C/C++ MPI compilers on the K computer
- PGI compilers with OpenACC support on NVIDIA systems
- Cray CX30 Sandybridge Linux systems with Intel compilers
- Cray CCE compilers with OpenACC support on Cray XK7
- AMD OpenCL libs with GNU on AMD Fusion cluster systems
- MPC compilers on TGCC Curie system (Bull, Linux x86\_64)
- GNU compilers on ARM Linux clusters (MontBlanc, BSC)
- Cray CCE compilers with OpenACC on Cray XK6 (K20)
- Microsoft MPI with Mingw compilers under Windows Azure
- LLVM and GNU compilers under Mac OS X



# Understanding Application Performance using TAU

- How much time is spent in each application routine and outer *loops*? Within loops, what is the contribution of each *statement*?
- How many instructions are executed in these code regions? Floating point, Level 1 and 2 data cache misses, hits, branches taken?
- What is the peak heap memory usage of the code? When and where is memory allocated/de-allocated? Are there any memory leaks? Where?
- How much time does the application spend performing I/O? What is the peak read and write bandwidth of individual calls, total volume?
- What is the contribution of different phases of the program? What is the time wasted/spent waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?
- How does the application scale? What is the efficiency, runtime breakdown of performance across different core counts?



## How does TAU work?

#### **Instrumentation**: Adds probes to perform measurements

- Source code instrumentation using pre-processors and compiler scripts
- Wrapping external libraries (I/O, MPI, Memory, CUDA, OpenCL, pthread)
- Rewriting the binary executable using MAQAO (UVSQ, Intel Exascale Labs)

### **Measurement:** Profiling or Tracing using wallclock time or hardware counters

- Direct instrumentation (Interval events measure exclusive or inclusive duration)
- Indirect instrumentation (Sampling measures statement level contribution)
- Throttling and runtime control of low-level events that execute frequently
- Per-thread storage of performance data
- Interface with external packages (e.g. PAPI hw performance counter library)

**Analysis**: Visualization of profiles and traces

- 3D visualization of profile data in paraprof, perfexplorer tools
- Trace conversion & display in external visualizers (Vampir, Jumpshot, ParaVer)



## **Identifying Potential Bottlenecks**



#### Sorting Derived Flops Metric by Exclusive Time (Score-P with PAPI)

TAU: ParaProf: node 0, thread 0 - profile.cubex

|   | - N  |
|---|------|
| _ | - CA |
|   |      |

| File Options Windows Help                                                                                                          |                                                                                                                                                                                                                                                                                                             |   |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Metric: ( PAPI_FP_INS / Time )<br>Value: Exclusive<br>Units: Derived metric shown in seconds format<br>Sorted By: Exclusive (Time) |                                                                                                                                                                                                                                                                                                             |   |
| 3.0217E9<br>3.0217E9<br>3.2421E9<br>3.2421E9<br>2.022250                                                                           | MAIN => adi_ => y_solve_ => !\$omp parallel @y_solve.f:43 => !\$omp do @y_solve.f:52<br>!\$omp do @y_solve.f:52<br>MAIN => adi_ => z_solve_ => !\$omp parallel @z_solve.f:43 => !\$omp do @z_solve.f:52<br>!\$omp do @z_solve.f:52                                                                          | - |
| 3.0673E9<br>3.0673E9<br>3.3299E9<br>3.3298E9<br>3.5138E9                                                                           | MAIN_ => adi_ => x_solve_ => !\$omp parallel @x_solve.f:46 => !\$omp do @x_solve.f:54<br>!\$omp do @rhs.f:191<br>MAIN_ => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:191<br>!\$omp do @rhs.f:80                                                                                  |   |
| 3.514E9<br>1965740.083  <br>2518815.107  <br>2518981.066  <br>3.502E8                                                              | MAIN_ => adi _=> compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:80<br>!\$omp implicit barrier<br>!\$omp parallel @rhs.f:28<br>MAIN_ => adi _=> compute_rhs_ => !\$omp parallel @rhs.f:28<br>!\$omp do @rhs.f:37                                                                              |   |
| 3.4975E8<br>4.0207E9<br>4.0205E9<br>393146.074  <br>393024.443                                                                     | MAIN_ => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:37<br>!\$omp do @rhs.f:301<br>MAIN_ => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:301<br>!\$omp do @rhs.f:62<br>MAIN_ => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:62 |   |
| 60.754  <br>60.754  <br>2218222.902  <br>2218222.902  <br>2217983.431                                                              | MAIN_ => mpi_setup_ => MPI_Init_thread<br>MPI_Init_thread<br>MAIN_ => exch_qbc_ => copy_x_face_<br>copy_x_face_<br>MAIN_ => exch_qbc_ => copy_y_face                                                                                                                                                        |   |
| 2217983.431<br>2691052.918<br>2691052.918<br>1.5944E9<br>1.5944E9                                                                  | copy_y_face_<br>MAIN => exch_qbc_<br>exch_qbc_<br>!\$omp do @rhs.f:384<br>MAIN => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:384                                                                                                                                                 |   |
| 65007.137                                                                                                                          | MAIN_ => exch_qbc_ => MPI_Waitall                                                                                                                                                                                                                                                                           | - |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                             |   |

## **Memory Leaks in MPI**

| Name △    Total    MeanValue    NumSamples    MaxValue    MinValue    Std. Dev.      ▼ .TAU application    ▼ MPI_Finalize()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A Context Events for thread: n,c,t, 0,0,0 - samarc_obe_4p_iomem_cp.ppk    |            |            |            |           |          |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|------------|------------|-----------|----------|-------------|
| ▼ .TAU application    ▼ MPI_Finalize()    free size  23,901,253  22,719.822  1,052  2,099,200  2  186,920.944    malloc size  5,013,902  65,972.395  76  5,000,000  2  569,732.815    MEMORY LEAK!  5,000,264  500,026.4  10  5,000,000  3  1,499,991.2    ▼ read()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name 🛆                                                                    | Total      | MeanValue  | NumSamples | MaxValue  | MinValue | Std. Dev.   |
| ▼ MPI_Finalize()    free size  23,901,253  22,719.822  1,052  2,099,200  2  186,920.944    malloc size  5,013,902  65,972.395  76  5,000,000  2  569,732.81!    MEMORY LEAK!  5,000,264  500,026.4  10  5,000,000  3  1,499,991.2    ▼ read()  ▼  •  •  •  •  •  •    Bytes Read  4  4  1  4  4  •  •    Bytes Read <file="pipe">  0.308  1  0.308  0.308  •  •    Bytes Read <file="pipe">  4  4  1  4  4  •  •    READ Bandwidth (MB/s)  0.308  1  0.308  0.308  •  •    WRITE Bandwidth (MB/s)  0.635  102  12  0  1.472</file="pipe"></file="pipe">                                                                                                                                                                                                                                                                          | ▼ .TAU application                                                        |            |            |            |           |          |             |
| free size  23,901,253  22,719.822  1,052  2,099,200  2  186,920.944    malloc size  5,013,902  65,972.395  76  5,000,000  2  569,732.811    MEMORY LEAK!  5,000,264  500,0264  10  5,000,000  3  1,499,991.2    ▼ read()  ▼  •  •  •  •  •  •    Bytes Read  4  4  1  4  4  •  •    Bytes Read <file="pipe">  0.308  1  0.308  0.308  •  •    Bytes Read <file="pipe">  4  4  1  4  4  •  •    READ Bandwidth (MB/s)  616="pipe"&gt;  0.308  1  0.308  0.308  •  •    WRITE Bandwidth (MB/s)  0.635  102  12  0  1.472</file="pipe"></file="pipe">                                                                                                                                                                                                                                                                               | MPI_Finalize()                                                            |            |            |            |           |          |             |
| malloc size  5,013,902  65,972.395  76  5,000,000  2  569,732.811    MEMORY LEAK!  5,000,264  500,0264  10  5,000,000  3  1,499,991.2    * read()  *  *  4  4  1  4  4  0    Bytes Read  4  4  1  4  4  0    Bytes Read <file="pipe">  0.308  1  0.308  0.308  0    Bytes Read <file="pipe">  4  4  1  4  4  0    READ Bandwidth (MB/s)  61635  0.308  1  0.308  0.308  0  0    WRITE Bandwidth (MB/s)  0.635  102  12  0  1.472</file="pipe"></file="pipe">                                                                                                                                                                                                                                                                                                                                                                     | free size                                                                 | 23,901,253 | 22,719.822 | 1,052      | 2,099,200 | 2        | 186,920.948 |
| MEMORY LEAK!  5,000,264  500,0264  10  5,000,000  3  1,499,991.:    * read()  Bytes Read  4  4  1  4  4  0    Bytes Read  4  4  1  4  4  0    Bytes Read <file="pipe">  0.308  1  0.308  0.308  0    Bytes Read <file="pipe">  4  4  1  4  4  0    Bytes Read <file="pipe">  4  4  1  0.308  0.308  0    Bytes Read <file="pipe">  4  4  1  0.308  0.308  0    WRITE Bandwidth (MB/s)  0.635  102  12  0  1.472</file="pipe"></file="pipe"></file="pipe"></file="pipe">                                                                                                                                                                                                                                                                                                                                                          | malloc size                                                               | 5,013,902  | 65,972.395 | 76         | 5,000,000 | 2        | 569,732.815 |
| ▼ read()  N    Bytes Read  4  4  1  4  4  0    READ Bandwidth (MB/s) <file="pipe">  0.308  1  0.308  0.308  0    Bytes Read <file="pipe">  4  4  1  4  4  0    READ Bandwidth (MB/s)  4  4  1  4  4  0    READ Bandwidth (MB/s)  0.308  1  0.308  0.308  0    WRITE Bandwidth (MB/s)  0.635  102  12  0  1.472</file="pipe"></file="pipe">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEMORY LEAK!                                                              | 5,000,264  | 500,026.4  | 10         | 5,000,000 | 3        | 1,499,991.2 |
| Bytes Read    4    4    1    4    4    0      READ Bandwidth (MB/s) <file="pipe">    0.308    1    0.308    0.308    0      Bytes Read <file="pipe">    4    4    1    4    4    0      Bytes Read <file="pipe">    4    4    1    4    4    0      READ Bandwidth (MB/s)    0.308    1    0.308    0.308    0      WRITE Bandwidth (MB/s)    0.635    102    12    0    1.472</file="pipe"></file="pipe"></file="pipe">                                                                                                                                                                                                                                                                                                                                                                                                         | ▼ read()                                                                  | 8          |            |            |           |          |             |
| READ Bandwidth (MB/s) <file="pipe">  0.308  1  0.308  0.308  0.008    Bytes Read <file="pipe">  4  4  1  4  4  0    READ Bandwidth (MB/s)  0.308  0.308  1  0.308  0.308  0    ▼ write()  0.635  102  12  0  1.472</file="pipe"></file="pipe">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bytes Read                                                                | 4          | 4          | 1          | 4         | 4        | 0           |
| Bytes Read <file="pipe">    4    1    4    4    0      READ Bandwidth (MB/s)    0.308    1    0.308    0.308    0      ▼ write()    0.635    102    12    0    1.472</file="pipe">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | READ Bandwidth (MB/s) <file="pipe"></file="pipe">                         |            | 0.308      | 1          | 0.308     | 0.308    | 0           |
| READ Bandwidth (MB/s)    0.308    1    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308    0.308 | Bytes Read <file="pipe"></file="pipe">                                    | 4          | 4          | 1          | 4         | 4        | 0           |
| ▼ write()<br>WRITE Bandwidth (MB/s) 0.635 102 12 0 1.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | READ Bandwidth (MB/s)                                                     |            | 0.308      | 1          | 0.308     | 0.308    | 0           |
| WRITE Bandwidth (MB/s) 0.635 102 12 0 1.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>write()</pre>                                                        |            |            |            |           |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WRITE Bandwidth (MB/s)                                                    |            | 0.635      | 102        | 12        | 0        | 1.472       |
| Bytes Written <file=" dev="" infiniband="" rdma_cm"=""> 24 24 1 24 24 0</file=">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bytes Written <file=" dev="" infiniband="" rdma_cm"=""></file=">          | 24         | 24         | 1          | 24        | 24       | 0           |
| Bytes Written 1,456 14.275 102 28 4 5.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bytes Written                                                             | 1,456      | 14.275     | 102        | 28        | 4        | 5.149       |
| WRITE Bandwidth (MB/s) <file=" dev="" infiniband="" uverbs0"="">    0.528    97    12    0.089    1.37</file=">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WRITE Bandwidth (MB/s) <file=" dev="" infiniband="" uverbs0"=""></file="> |            | 0.528      | 97         | 12        | 0.089    | 1.32        |
| Bytes Written <file="pipe"> 64 16 4 28 4 17</file="pipe">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bytes Written <file="pipe"></file="pipe">                                 | 64         | 16         | 4          | 28        | 4        | 12          |
| WRITE Bandwidth (MB/s) <file=" dev="" infiniband="" rdma_cm"=""> 1.714 1 1.714 1.714 (</file=">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WRITE Bandwidth (MB/s) <file=" dev="" infiniband="" rdma_cm"=""></file="> |            | 1.714      | 1          | 1.714     | 1.714    | 0           |
| Bytes Written <file=" dev="" infiniband="" uverbs0"=""> 1,368 14.103 97 24 12 4.567</file=">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bytes Written <file=" dev="" infiniband="" uverbs0"=""></file=">          | 1,368      | 14.103     | 97         | 24        | 12       | 4.562       |
| WRITE Bandwidth (MB/s) <file="pipe"> 2.967 4 5.6 0 2.644</file="pipe">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WRITE Bandwidth (MB/s) <file="pipe"></file="pipe">                        |            | 2.967      | 4          | 5.6       | 0        | 2.644       |
| ▼ writev()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vritev()                                                                  |            |            |            |           |          |             |
| WRITE Bandwidth (MB/s)    4.108    2    7.667    0.549    3.559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WRITE Bandwidth (MB/s)                                                    |            | 4.108      | 2          | 7.667     | 0.549    | 3.559       |
| Bytes Written 297 148.5 2 230 67 81.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bytes Written                                                             | 297        | 148.5      | 2          | 230       | 67       | 81.5        |
| WRITE Bandwidth (MB/s) <file="socket">    4.108    2    7.667    0.549    3.559</file="socket">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WRITE Bandwidth (MB/s) <file="socket"></file="socket">                    |            | 4.108      | 2          | 7.667     | 0.549    | 3.559       |
| Bytes Written <file="socket"> 297 148.5 2 230 67 81.5</file="socket">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bytes Written <file="socket"></file="socket">                             | 297        | 148.5      | 2          | 230       | 67       | 81.5        |
| ▼ readv()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ▼ readv()                                                                 |            |            |            |           |          |             |
| Bytes Read 112 28 4 36 20 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bytes Read                                                                | 112        | 28         | 4          | 36        | 20       | 8           |
| READ Bandwidth (MB/s) <file="socket"> 25.5 4 36 10 11.079</file="socket">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | READ Bandwidth (MB/s) <file="socket"></file="socket">                     |            | 25.5       | 4          | 36        | 10       | 11.079      |
| Bytes Read <file="socket"> 112 28 4 36 20 8</file="socket">                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bytes Read <file="socket"></file="socket">                                | 112        | 28         | 4          | 36        | 20       | 8           |
| READ Bandwidth (MB/s) 25.5 4 36 10 11.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | READ Bandwidth (MB/s)                                                     |            | 25.5       | 4          | 36        | 10       | 11.079      |
| ▼ MPI_Comm_free()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPI_Comm_free()                                                           |            |            |            |           |          |             |
| free size 10,952 195.571 56 1,024 48 255.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | free size                                                                 | 10,952     | 195.571    | 56         | 1,024     | 48       | 255.353     |
| ▶ read()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ▶ read()                                                                  |            |            |            |           |          |             |
| MPI_Type_free()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ▶ MPI_Type_free()                                                         |            |            |            |           |          |             |
| ► MPI_Init()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ► MPI_Init()                                                              |            |            |            |           |          |             |
| ▼ fopen64()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ▼ fopen64()                                                               |            |            |            |           |          |             |
| free size 231,314 263.456 878 568 35 221.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | free size                                                                 | 231,314    | 263.456    | 878        | 568       | 35       | 221.272     |
| MEMORY LEAK! 1,105,956 1,868.169 592 7,200 32 3,078.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MEMORY LEAK!                                                              | 1,105,956  | 1,868.169  | 592        | 7,200     | 32       | 3,078.574   |
| malloc size 1,358,286 901.318 1,507 7,200 32 2,087.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | malloc size                                                               | 1,358,286  | 901.318    | 1,507      | 7,200     | 32       | 2,087.737   |
| ► OurMain()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ► OurMain()                                                               |            |            |            |           |          |             |
| ► fclose()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ► fclose()                                                                |            |            |            |           |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |            |            |            |           |          | //          |

#### **ParaProf 3D Profile Browser**





## **Scalable 3D Visualization in ParaProf**

| A Construction of the second s |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Triangle Mesh                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O Bar Plot                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ○ Scatter Plot                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O Topology Plot               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Height Metric                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exclusive TIME                |
| 211.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Color Metric                  |
| 175,992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exclusive TIME                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPI_Send()                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1846                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Height value 283.977 seconds  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Color value 283.977 seconds   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scales Plot Axes Color Render |
| A CALL CONTRACT OF A CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| Contraction Contraction Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | seconds                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sconds                        |
| Notes 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ÷                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

## **ParaProf: 3D Communication Matrix**



### **ParaProf: Scatter Plot**





# ParaProf: Topology View IBM BG/P





## ParaProf:Topology View (6D Torus)



#### **MPI Rank placement in Cray XE6 Topology**

UNIVERSITY OF OREGON



Fastest case CCSM: 4:14:08 (hh:mm:ss)



Slowest case: 5:35:50 (hh:mm:ss)





#### **TAU's MetaData Collection on Fujitsu**

| 00                 | Metadata for n,c,t 9,0,0         |  |  |
|--------------------|----------------------------------|--|--|
| Name               | Value                            |  |  |
| FUJITSU Coords     | (3,1,0)                          |  |  |
| FUJITSU Dimension  | 3                                |  |  |
| FUJITSU Size       | (6,6,6)                          |  |  |
| File Type Index    | 0                                |  |  |
| File Type Name     | ParaProf Packed Profile          |  |  |
| Hostname           | e09t14226                        |  |  |
| Local Time         | 2012-11-12T02:14:16+09:00        |  |  |
| MPI Processor Name | e09t14226                        |  |  |
| Memory Size        | 32836968 kB                      |  |  |
| Node Name          | e09t14226                        |  |  |
| OS Machine         | s64fx                            |  |  |
| OS Name            | Linux                            |  |  |
| OS Release         | 2.6.25.8                         |  |  |
| OS Version         | #1 SMP Tue Sep 11 11:04:02 JST 2 |  |  |
| Starting Timestamp | 1352654056461761                 |  |  |
| TAU Architecture   | sparc64fx                        |  |  |

% pjsub –interact –L node="6x6x6" % mpiexec –n 216 ./a.out



## Fujitsu FX10 (K computer)



#### **Issues of data reduction**

- TAU can store the mean profile in the TAUdb instead of data from each core
- Efficient access for high core count data
- Cross experiment analysis views tailored for mean data
- Dimension reduction can further reduce data to salient events (e.g., exclusive time > 3%)
- Store metadata with performance data



## **Issues of Scalability – File I/O**

- Each thread generates its own performance data
- How can we devise mechanisms to reduce this data?
- TAU\_PROFILE\_FORMAT="merged" uses MPI\_Reduce at the end of the application and computes:
  - Min, max, mean, total, std. deviation
  - Rank 0 writes a single file during MPI\_Finalize
- TAU\_SUMMARY=1 generates a single file with data from:
  - Node 0, node 1, and
  - Mean, max, min, total, std. deviation across all nodes
  - Get the essence of performance
- TAU\_LITE=1 uses a lightweight measurement core
  - 50% lower overhead than TAU's default core
  - No support for sampling, throttling, tracing, just flat profiles



#### **Communication Performance Summary**

|           | Calls      | alls Inclusive BGP_TIMERS (Microseconds) |                |                | Bytes Transferred |           |             | Name        |                            |
|-----------|------------|------------------------------------------|----------------|----------------|-------------------|-----------|-------------|-------------|----------------------------|
| Min       | Max        | Mean                                     | Min            | Max            | Mean              | Min       | Max         | Mean        |                            |
| 1.000     | 1.000      | 1.000                                    | 16669810.12471 | 16922166.95294 | 16749888.33824    | 0.00000   | 0.0000      | 0.00000     | .TAU application           |
| 80320.000 | 160640.000 | 155620.000                               | 3756604.90471  | 9764019.05294  | 7850486.06824     | 160.00000 | 240.00000   | 199.58333   | <pre>MPI_Recv()</pre>      |
| 80828.000 | 161658.000 | 156606.309                               | 569994.65765   | 3645268.14000  | 1595452.31161     | 80.00000  | 77760.00000 | 611.42134   | MPI_Send()                 |
| 508.000   | 1018.000   | 986.309                                  | 11133.31529    | 2986615.32118  | 252510.39040      | 80.00000  | 77760.00000 | 65587.87739 | <pre>MPI_Wait()</pre>      |
| 10.000    | 10.000     | 10.000                                   | 3881.93412     | 69391.22588    | 40817.46760       | 8.00000   | 40.00000    | 24.00000    | <pre>MPI_Allreduce()</pre> |
| 2.000     | 2.000      | 2.000                                    | 18.84706       | 35.60706       | 29.68785          | 0.00000   | 0.00000     | 0.00000     | <pre>MPI_Barrier()</pre>   |
| 9.000     | 9.000      | 9.000                                    | 133.23294      | 2351.46000     | 2346.84256        | 4.00000   | 40.00000    | 10.22222    | <pre>MPI_Bcast()</pre>     |
| 1.000     | 1.000      | 1.000                                    | 0.59059        | 0.74588        | 0.63449           | 0.00000   | 0.00000     | 0.00000     | <pre>MPI_Comm_rank()</pre> |
| 1.000     | 2.000      | 1.001                                    | 0.47059        | 2.31059        | 0.51387           | 0.00000   | 0.00000     | 0.00000     | <pre>MPI_Comm_size()</pre> |
| 1.000     | 1.000      | 1.000                                    | 39731.75765    | 41183.16706    | 39770.34094       | 0.00000   | 0.00000     | 0.00000     | <pre>MPI_Finalize()</pre>  |
| 1.000     | 1.000      | 1.000                                    | 60347.44588    | 312700.78706   | 140419.99977      | 0.00000   | 0.00000     | 0.00000     | <pre>MPI_Init()</pre>      |
| 508.000   | 1018.000   | 986.309                                  | 1861.14000     | 6877.39176     | 4489.96484        | 0.00000   | 0.00000     | 0.00000     | <pre>MPI_Irecv()</pre>     |
|           |            |                                          |                |                |                   |           |             |             |                            |

Summary data generated from a 1024 core execution on IBM BG/P using TAU\_SUMMARY=1 and TAU\_PROFILE\_FORMAT="merged" based reduction

% export PATH=/soft/apps/tau/tau2/bgp/bin/compilers:\$PATH Build your code as is. TAU provides mpixlf90\_r, mpixlc\_r, mpixlcxx\_r, etc. scripts No changes to build or source code.



### ParaProf Main Window (LU, 1024 cores)

#### TAU: ParaProf: lu\_1024\_C\_tauprofile.xml

00





## **Data Reduction Techniques**

- TAU collects data from all native counters on IBM BG/P at MPI\_Init and MPI\_Finalize
- Computes mean, max, min for each counter at MPI\_Finalize
- Stores this as metadata
- Discards per-rank data

#### Metadata

| 000                        | TAU: ParaProf Manager                 |                 |            |            |
|----------------------------|---------------------------------------|-----------------|------------|------------|
| Applications               | TrialField                            | Value           |            |            |
| The Standard Applications  | Name                                  | lu_1024_C_taupr | rofile.xml |            |
| The Default App            | Application ID                        | 0               |            |            |
|                            | Experiment ID                         | 0               |            |            |
| V Default Exp              | Trial ID                              | 0               |            |            |
| ▼                          | BGP Coords                            | (0,0,0)         |            |            |
| BGP_TIMERS                 | BGP DDRSize (MB)                      | 2048            |            |            |
| Default (jdbc:h2:/Users/s  | BGP Location                          | R00-M1-N00-J2   | 23         |            |
| perfexplorer working (idt) | BGP Node Mode                         | Virtual         |            |            |
| p =                        | BGP Processor ID                      | 1               |            |            |
|                            | BGP Size                              | (8,4,8)         |            |            |
|                            | BGP isTorus                           | (0,0,0)         |            |            |
|                            | BGP numPsets                          | 256             |            |            |
|                            | BGP psetNum                           | 0               |            |            |
|                            | BGP psetSize                          | 64              |            |            |
|                            | BGP rankinPset                        | 64              |            |            |
|                            | BGP_COL_AC_CH0_VC0_MATURE             | 0               | 24         | 13         |
|                            | BGP_COL_AC_CH0_VC0_MATURE_UM1         | 0               | 24         | 13         |
|                            | BGP_COL_AC_CH0_VC1_MATURE             | 0               | 174        | 6          |
|                            | BGP_COL_AC_CH0_VC1_MATURE_UM1         | 0               | 91         | 9          |
|                            | BGP_COL_AC_CH1_VC0_MATURE             | 0               | 24         | 15         |
|                            | BGP_COL_AC_CH1_VC0_MATURE_UM1         | 0               | 24         | 13         |
|                            | BGP_COL_AC_CH1_VC1_MATURE             | 0               | 174        | 9          |
|                            | BGP_COL_AC_CH1_VC1_MATURE_UM1         | 0               | 174        | 9          |
|                            | BGP_COL_AC_CH2_VC0_MATURE             | 0               | 24         | 19         |
|                            | BGP_COL_AC_CH2_VC0_MATURE_UM1         | 0               | 24         | 19         |
|                            | BGP_COL_AC_CH2_VC1_MATURE             | 0               | 174        | 11         |
|                            | BGP_COL_AC_CH2_VC1_MATURE_UM1         | 0               | 91         | 8          |
|                            | BGP_COL_AC_INJECT_VCO_MATURE          | 24              | 24         | 24         |
|                            | BGP_COL_AC_INJECT_VCO_MATURE_UM1      | 24              | 24         | 24         |
|                            | BGP_COL_AC_INJECT_VC1_MATURE          | 0               | 0          | 0          |
|                            | BGP_COL_AC_INJECT_VC1_MATURE_UM1      | 0               | 174        | 1          |
|                            | BGP_COL_AC_PENDING_REQUESTS           | 48              | 14252911   | 2/18122    |
|                            | BGP_COL_AC_WAITING_REQUESTS           | 48              | 313        | /4         |
|                            | BGP_COL_ALC_PACKET_TAKEN              | 24              | 24         | 24         |
|                            | BGP_COL_AR0_BAD_PACKET_MARKER         | 0               | 0          | 0          |
|                            | BCP_COL_ARO_HEADER_PARTIY_ERROR       | 0               | 0          | 0          |
|                            | BGP_COL_ARO_IDLE_PACKET               | 10/140          | 107144     | 10/141     |
|                            | BCP_COL_ARO_PACKET_TAKEN              | 0               | 198        | 19         |
|                            | BGP_COL_ARO_RESYNC                    | 0               | 0          | 0          |
|                            | BGP_COL_ARO_UNEXPECTED_HEADER_ERROR   | 0               | 0          | 0          |
|                            | BCP_COL_AKO_VCO_CUT_THROUGH           | 0               | 3120       | 1569       |
|                            | BCP_COL_ARO_VCO_DATA_PACKETS_RECEIVED | 0               | 24         | 15         |
|                            | BGP_COL_AR0_VC0_EMPTY_PACKET          | 10499762        | 1060687    | 0 10530378 |



## **File Formats for Extreme Scale**

- Investigating an indexed profile file format
- Efficient startup of analysis tool
- Summary data presented at the beginning of file
- Hierarchical storage and presentation of profile data
- Score-P measurement library addresses scalability issues for tracing using OTF2



## **Support Acknowledgments**

UNIVERSITY OF OREGON

#### US Department of Energy (DOE)

- Office of Science contracts
- SciDAC, LBL contracts
- LLNL-LANL-SNL ASC/NNSA contract
- Battelle, PNNL contract
- ANL, ORNL contract

#### Department of Defense (DoD)

HPCMO

#### National Science Foundation (NSF)

• Glassbox, SI-2

#### Partners:

University of Oregon

ParaTools, Inc.

University of Tennessee, Knoxville

T.U. Dresden, GWT

Juelich Supercomputing Center Intel Exascale Labs, UVSQ, France



## **For more information**

#### **TAU Website:**

http://tau.uoregon.edu

- Software
- Release notes
- Documentation

