
Single-node optimization:
still important

Bettina Krammer
Université de Versailles St-Quentin-en-Yvelines

Exascale Computing Research Center
bettina.krammer@uvsq.fr

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 2

Quick Tour in 15 Minutes

• This presentation is not a tutorial on single-node optimization
techniques, tools nor performance modelling
– would need a lot more time for that
– G. Wellein, G. Hager, J. Treibig, Node-Level Performance Engineering,

Course, LRC, Munich, 6-7 Dec 2012

• Many HPC applications achieve <10% of peak performance
– High-level optimizations: algorithms, parallel implementation, …

• Application specialists (domain experts – not computer scientists)
• Long-term vision: software often in use for decades

– Low-level optimizations: close to hardware, micro-architectural
details, …

• Performance engineers (computer scientists)
• Short-term vision: hardware changes frequently
• Importance of single-node optimization: developers still missing out on many

opportunities there

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 3

1. Load balancing and avoiding excessive communicati on
should be addressed first
– Across nodes
– Inside node: trend towards hybrid programming

• Static partitioning: MPI + OpenMP threads
• Dynamic load-balancing with hybrid MPI + task-based models
• Potentially CPU + accelerator (GPU, MIC,…)

2. Single-node execution comes next
– Exploit underlying hardware and software stack optimally

• Memory & cache hierarchy, NUMA, …
• Arithmetic units, vector units, …
• Compiler, node-level parallel programming and runtime,…

– Reduce resource consumption (memory, cache, working set,…)
– Performance model can guide the way to optimal node performance

3. Finally, optimizations for massive parallelism
– Communication/computation overlap
– MPI fine-tuning
– …

TAUTAU

ScalascaScalasca

VampirVampir

ParaverParaver

PeriscopePeriscope

……

Score-PScore-P

TAU

Scalasca

Vampir

Paraver

Periscope

…

Score-P

Optimization: Scalability + Performance

Likwid

MAQAO

PAPI

VTune/Amplifier XE

Threadspotter

…

Callgrind
Kcachegrind

Likwid

With the aid of
(integrated)
single-and

multi-node tools

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 4

Optimization: Scalability + Performance
1. Load balancing and avoiding excessive communicati on

should be addressed first
– Across nodes
– Inside node: trend towards hybrid programming

• Static partitioning: MPI + OpenMP threads
• Dynamic load-balancing with hybrid MPI + task-based models
• Potentially CPU + accelerator (GPU, MIC,…)

2. Single-node execution comes next
– Exploit underlying hardware and software stack optimally

• Memory & cache hierarchy, NUMA, …
• Arithmetic units, vector units, …
• Compiler, node-level parallel programming and runtime,…

– Reduce resource consumption (memory footprint, …)
– Performance model can guide the way to optimal node performance

3. Finally, optimizations for massive parallelism
– Communication/computation overlap
– MPI fine-tuning
– …

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 5

Hybrid MPI + X

• Commonly used: Hybrid MPI + OpenMP threads
• Current and future work: hybrid MPI + task-based models for

dynamic load-balancing inside node
– First step: elastic forces kernel from specfem3d implemented with cilk

vs OpenMP (no MPI yet)
– Ongoing and future work: hybrid MPI + cilk vs hybrid MPI + OpenMP

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 6

OpenMP vs Cilk

OpenMP with mesh coloring

order of elements update

D&CColoring Cilk with Divide & Conquer

Spawn

Left task

(recursive)

Right task

(recursive)

Sync

Mesh task

Separator

task

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 7

Overall Performance

0

1

2

3

4

serial replicated coloring d&c

DRAM Traffic in GB

write

read

0

8

16

24

32

0 8 16 24 32

Number of cores

Speedup

compared to sequential execution

coloring (static)

coloring (dynamic)

d&c (par. sep.)

ideal

Cilk D&C parallel kernel is 1.2x faster than the dynamic OpenMP coloring

kernel, with a 1.9x DRAM traffic reduction; better data locality with cilk.

Future work: hybrid MPI + cilk

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 8

Hitting the Memory Wall

• Know the phases of your code when it is
compute- or memory-bound

– Different optimization strategies for each case

• Memory bandwidth limiting factor for many HPC
applications

• Memory latency: alleviated by cache hierarchy
• Temporal/spatial locality – huge impact on perf. !

– May require data or loop restructuring
– Prefetching, cache blocking, …
– Avoid strided or irregular access

• Use contiguous buffers
• Domain decomposition: cut multi-dimensional

arrays along the slowest axes (depending on
programming language – C/C++ or Fortran)

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 9

Data Locality and Process/Thread Affinity

• Beware the NUMA effects
– Access to remote memory is possible but more

costly than to local memory
– First touch policy (Linux): memory pages mapped

into local memory of core first touching variable
(write - not allocate!) if enough memory available

• Example: MPI code on Curie supercomputer
(RTM seismic application mini-app) on up to
5000 cores
– Default BullMPI: load balanced, no problem
– But observed huge difference in compute time

per core with other MPIs (Open MPI, Mpich, Intel
MPI): up to 1.4 x

– Reason: array allocated and initialized before
MPI_Init, resulting in half of the processes
accessing non-local memory

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 10

Data Locality and Process/Thread Affinity

• Ensuring data locality is beneficial in any
programming model
– MPI, OpenMP, CnC, …
– E.g. hybrid MPI+OpenMP: at least one MPI

process per NUMA domain

• Pinning processes/threads to cores should be
enforced by user or runtime
– Runtime configuration parameters (depending on

MPI, OpenMP,… implementation)
– Special tools, e.g. Likwid-pin
– OS dependent commands
– Runtimes aren’t clever enough yet

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 11

Loop transformations

• Unrolling, interchange, fusion, fission, …
• Impact of compiler

– Optimization flags (e.g. -O3, -fast) deliver good results in many
cases but can sometimes be outperformed

– Huge search domain for finding optimum compiler flags
combination

• Machine learning
• Very important: vectorization

– Compilers may fail: user intervention needed
(pragmas, SSE/AVX, code restructuring, …)

– Can speed-up loop by factor of 2-4 x

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 12

Example: QMC=Chem

• Quantum Monte Carlo (QMC) simulation for
complex molecular processes, taking place
e.g. at Alzheimer’s disease

• Low memory footprint but compute-intensive
• Communication only during initialization and

finalization, otherwise independent processes
• Fault-tolerant
• Almost ideal scaling with number of cores
� Single-core performance determines overall performance
• Bottlenecks identified:
• A matrix inversion, via the Intel MKL library (O(N³))
• Matrix-matrix products using a sparse-dense implementation (O(N²))

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 13

Dense x Sparse Matrix multiplication
Static Analysis

!DIR$ VECTOR ALWAYS
!DIR$ VECTOR ALIGNED
do j=1,LDC
C1(j,i)=C1(j,i)+(A(j,k_vec(1)) *d11 &

+ A(j,k_vec(2)) *d21 &
+ A(j,k_vec(3)) *d31 &
+ A(j,k_vec(4)) *d41)

C2(j,i)=C2(j,i)+(A(j,k_vec(1)) *d12 &
+ A(j,k_vec(2)) *d22 &
+ A(j,k_vec(3)) *d32 &
+ A(j,k_vec(4)) *d42)

enddo

MAQAO Static analysis before (top) and after (bottom)
optimization

• Examine two hottest loops with MAQAO � obtain theoretically perfect efficiency
• FLOP/cycle: from 12.8 to 16 (AVX, 32 bits elements, perfect ADD / MUL balance)
• Loop count (LDC) always a multiple of 8: replace loop count with its hard coded

value to allow the compiler to factor loads
• Grand Challenge run on Curie end of 2011:

• ~960 TeraFlops (mixed precision SP and DP, 200 GigaFlops per node, 4800
nodes à 16 Xeon E5 cores = 76 800 cores)

• ~38% peak core performance

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 14

Know what’s optimal
• White box / black box approaches for performance modelling, e.g.

– Roofline model: S.W.Williams, A.Waterman, D. A. Patterson. Roofline: An
insightful visual performance model for floating-point programs and multicore
architectures. Tech. Rep. UCB/EECS-2008-134, EECS Department, University of
California, Berkeley, 2008.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html

– ECM (Execution – Cache – Memory) model: J. Treibig, G. Hager:
Introducing a Performance Model for Bandwidth-Limited Loop Kernels. In Proc. of
Workshop “Memory issues on Multi- and Manycore Platforms” at PPAM 2009,
Wroclaw, Poland, September 13-16, 2009. DOI: 10.1007/978-3-642-14390-8_64

– Capacity model: Dave Kuck, Computational Capacity-Based Codesign of
Computer Systems, in High-Performance Scientific Computing, Berry, Gallivan,
Gallopoulos, Grama, Philippe, Saad, Saied (eds.), Springer 2012.
http://dx.doi.org/10.1007/978-1-4471-2437-5_2

• Tools support, e.g.
– MAQAO : performance prediction for loops (vectorization, unrolling

factor,…), assuming all operands are in L1
– Threadspotter : cache usage, predictions for different architectures

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 15

Know what’s optimal

White box approach
• Analyze requirements of algorithm (data volume, arithmetic

instructions) and of actual implementation (data access in
caches/memory, communication volume, FLOPS,…)
– Optimize implementation if needed

• Analyze hardware characteristics (caches/memory/interconnect
bandwidth and latency, arithmetic units, SIMD, …)
– Micro-benchmarks

• Derive performance model and compare against benchmarks
– total execution time T per time step composed of time for computation, for

communication, for I/O (big issue in some domains such as climate
modelling,…), for dealing with boundary conditions,…

• Refine model if needed

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 16

Summary
Optimization needs to address Scalability + Performance
1. Load balancing and severe communication issues
2. Single-node execution

– Huge performance gains possible

3. Fine-tuning for massive parallelism

Taking into account interaction of
• Application and algorithms
• Software stack (compiler, parallel programming models and

runtimes, OS,…)
• Underlying hardware (micro-architecture, node topology, system

topology,…)

• Performance modelling and performance analysis tools
– Help understand issues and bottlenecks
– Guide way to optimum performance

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 17

• Scalable and composable shared memory parallelism with tasks for
multicore and manycore, Marc Tchiboukdjian, Thomas Guillet. Teratec
Forum 2012, Atelier Exascale.

• Hybrid Programming with Task-based Models, Bettina Krammer, Rosa M.
Badia, Christian Terboven. BoF SC’12.

• Quantum Monte Carlo for large chemical systems: Implementing efficient
strategies for petascale platforms and beyond, Anthony Scemama, Michel
Caffarel, Emmanuel Oseret, William Jalby. CoRR abs/1209.6630 (2012)

• Evaluation of the Coarray Fortran Programming Model on the Example of a
Lattice Boltzmann Code. Klaus Sembritzki, Georg Hager, Bettina Krammer,
Jan Treibig, Gerhard Wellein. PGAS’12.

References

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 18

THANKS

QUESTIONS ??

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 19

Backup

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 20

• CFD method (simulating streaming and collision of particles)

• 19-point stencil, 1D/2D/3D domain decomposition, ghost cells

• Fortran + MPI compared against Coarray Fortran
– Cray XE6 (AMD 6172 2.2 Ghz)

– Intel Westmere cluster (X5650, 2.67 Ghz)

• Performance model:
total execution time T per time step is composed of

– Time for computation (���� memory stream benchmark)

– Time for communication (���� ringshift benchmark, inter/intra-node,
neighbors/network topology)

– Time for boundary conditions (� not taken into account, complexity only N^2)

• Performance metrics: Lattice cell updates per sec [LUPS/s]
P processors, N lattice cells in each dimension: (P * N3) / T

Example: Lattice Boltzmann solver (LBM)

D3Q19

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 21

LBM single-node performance model
Streams
/ Proc

Procs
/ Node

XE6, Mem.
BW [GB/s]

Intel, Mem.
BW [GB/s]

2 2 18.5 29.6

2 * 19 2 8.4 16.1

2 12 51.9 40.1

2 * 19 12 39.3 38.3

2 24 54.1 41.1

2 * 19 24 51.9 38.9

Domain size: 110 x 110 x 110 per
rank (400 MB per rank)

Measurements and model prediction
for LBM LUPS/s per node
• Time for computation based on

stream benchmark
• MPI intra-node communication

takes place but communication
time is subtracted from total time
for LUPS/s calculation

Cray Intel

• LBM memory bound
• Memory bandwidth per node:

– Stream benchmark mimicking 19-point stencil
– Saturated with 24 procs per node

• 24 physical cores/node on XE6
• 12 physical / 24 virtual cores/node on Intel

double precision :: a(n,19), b(n,19)
for i = 1.. n

for l = 1..19
a(i,l) = b(i,l)

end for
end for

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 22

Ringshift benchmark (Cray)
MPI, Cray CAF, Cray

• Similar performance for MPI and CaF
• Higher latency and bandwidth for CaF than for MPI
• Inter- and intra-node bandwidth and latency differs!

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 23

Ringshift benchmark (Intel)
MPI, Intel CAF, Intel

• CaF not competitive with MPI on Intel: orders of magnitude difference

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 24

LBM: Performance model

Time for one time step

Performance (lattice updates per sec):

Inter- and intra-node neighbors (24 procs per node)

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 25

LBM: Cray
MPI, Cray CAF, Cray

Strong scaling (350^3 lattice cells ~13 GB), 2D/3D domain decomposition
• CaF competitive with MPI
• 3D decomposition and 2D (cutting along the slowest axes) perform equally
• Performance model simple (memory and inter/intra-node ringshift benchmark) but reasonably close

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 26

LBM: Intel

Strong scaling, 2D/3D domain decomposition, on the Intel Westmere Cluster
• CaF disappointing

MPI, Intel CAF, Intel

Workshop on Extreme-Scale Performance Tools
Nov. 16, 2012, SC’12, Salt Lake City 27

LBM – Test systems

