
PMaC	

Performance Modeling and Characterization

Moving towards exascale
via optimization for

application- and hardware-
aware execution

Laura Carrington

University of California, San Diego
San Diego Supercomputer Center

Performance Modeling and Characterization Lab (PMaC)
Workshop on Extreme-scale Performance Tools

Nov. 16th 2012

PMaC	

Performance Modeling and Characterization

What is happening on today’s systems

Top 3 systems (from June 2012 Top500) have 700,000 –
1.5 M cores

–  Putting together systems with lower power cores to exploit
parallelism within application

–  Lower the power = less capable – up to the software to run
efficiently

–  GPUs, BG systems, MIC, & ARM

–  More complex programming models

–  At 1.5 M cores – reliability and power become major issues

PMaC	

Performance Modeling and Characterization

Moving towards exascale

•  What is exascale projected to look like
–  1000 times more compute capability than current

systems

–  1000 X cores = 1000 X reliability issues / faults
(Mean time to failure inversely proportional to # of components)

–  1000 X cores = 1000 X power = ~gigawatt!

THIS IS THE POWER WALL

Need new technology to overcome power wall and
get to Exascale

PMaC	

Performance Modeling and Characterization

Possible exascale technologies

•  New exascale technology could mean:
–  100-1000 X more cores

–  Simpler logic on cores to reduce power draw

–  Different memory hierarchy

–  Different functional units

–  Ability to shut off units or cores to save power

Requires a lot from application developer

PMaC	

Performance Modeling and Characterization

What will developers need
(how can tool developers help)

•  Understand requirements of work and map this
efficiently to simpler cores –modeling can help

•  Understand how computations use hardware
components and optimize to compute in power
budget.

•  Runtime systems which adapt and avoid hardware
errors/failures – preemptive strategies

PMaC	

Performance Modeling and Characterization

Towards exascale tool requirements

Runtime system - allows application to
interact with hardware and adapt

•  Need to know how and when an application is using

the hardware components
–  Enable application-aware reliability decisions
–  Enable application-aware energy optimizations
–  Use power and performance models to make

multi-objective optimization :
Power-Performance-Reliability

PMaC	

Performance Modeling and Characterization

The PMaC’s Green Queue Framework
(performance-power requirements)

Goal: Develop automated framework that uses
power and performance models to make

application-aware energy optimizations during
execution (now:DVFS future: power gating)

DVFS: Reduce the speed (clock frequency) of CPU in
exchange for reduced power consumption

–  Different computations have different power
requirements.

–  For computations where the CPU is waiting for
resources the frequency can be reduced to lower
power with minimal performance impact.

PMaC	

Performance Modeling and Characterization

Identify the power and performance affects
of different computational work

Energy savings via reduce processor frequency
– minimal performance impact

PMaC	

Performance Modeling and Characterization

Application-aware Energy Efficient HPC

HPC Application
Characterize the computational
(& communication) behavior of

application

HPC System
Characterize the computational

(& communication) patterns
affect the overall power draw

Design software- and hardware-aware green optimization
techniques to reduce HPC’s energy footprint

PMaC	

Performance Modeling and Characterization

Fine-grain Application-aware vs. Coarse-
grain Application-blind DVFS

Application-aware fine-grained DVFS shows
significantly less impact in performance

PMaC	

Performance Modeling and Characterization

Fine-grain Application-aware vs. Coarse-
grain Application-blind DVFS

Application-aware fine-grained DVFS shows
significantly less impact in performance

2.4% vs. 21%

PMaC	

Performance Modeling and Characterization

PMaC’s Green Queue Framework
(fine-grained application-aware DVFS strategies)

PMaC’s Green Queue automated framework:
•  Characterizes system’s power draw behavior by running

various computational work and uses to train models
•  Characterizes computational work of HPC application
•  Creates customize fine-grained DVFS policies for application

HPC Application
Characterize the computational
(&communication) behavior of

application

HPC System
Characterize the computational (&

communication) patterns affect the overall
power draw

Design software- and hardware-aware green optimization techniques to reduce
HPC’s energy footprint

–  Inter-node: exploits load imbalances in HPC applications

–  Intra-node: exploits application phases where CPU is
stalled waiting for resources

PMaC	

Performance Modeling and Characterization

Application Characterization

Application characterization – fine-grained information
about the communication & computation behavior of

the application
–  Low-level details that capture how application uses

various hardware components

–  Data movement on and off the processor and node

–  Data locality and computational dependencies

PMaC	

Performance Modeling and Characterization

Example of Application Characterization

•  Application characterization can be dependent on the
system it is running on as well as the input set

Loop #1

Func. foo

Loop #3

Loop #2

Application
Strided access from L1 cache w/
more FPops than data movement

Random access from main memory
w/ dependencies in FPops

Strided access from main memory w/
more data movement than FPops

Strided access from main memory w/
more data movement than FPops

Characterization

PMaC	

Performance Modeling and Characterization

Collecting Application Characterization Data

•  Computation characterization – based on PEBIL
(PMaC’s Efficient Binary Instrumentor for Linux)
–  Static Analysis

•  Memory, FP operation counts
•  Operation parallelism
•  Program structure (e.g., function and loop boundaries)

–  Dynamic (runtime) analysis
•  Data locality
•  Working set size
•  Execution counts

•  MPI communication characterization– based on
PSiNSTracer
–  Behavior about communication

PMaC	

Performance Modeling and Characterization

System Characterization

System characterization:

•  Determine the most energy efficient frequency for range
of computational work.

•  Computational work focusing on-node.

•  Computational work behavior that spans all HPC
applications

PMaC	

Performance Modeling and Characterization

Performance and Power Benchmarking framework

PMaC’s Performance Power benchmark (P3)

•  Generates computational test loops to measure
performance and power for computational space of
HPC application.

•  Test loops measured at different frequencies

•  Test loops designed to vary different characteristics
of the loop (e.g. working set size or data locality)
Testing space can grow to over 100K tests - weeks to run

Performance and Power models
can save time

Power draw = func(computational behavior)

PMaC	

Performance Modeling and Characterization

Why Power Models?

•  Reduce the number of pcubed benchmark tests
that we need to run: >100K à 3K
–  Reduces runtime from weeks to hours

•  Use sampling of test runs to model remaining
computation space.

Power draw = func(computational behavior)

PMaC	

Performance Modeling and Characterization

Developing Power Models
Power models – relate the relevant properties of a

computation to the system’s power response.
–  Use power and performance measurements for set of

benchmarks tests
–  Use corresponding characterization data (data locality,

data footprint, etc.) for the benchmarks
–  Machine learning (Gradient Boosting Method) for

constructing the power models
Power Model Accuracy

Model accuracy for
power estimation: 2.2%
absolute mean error

PMaC	

Performance Modeling and Characterization

Uses for Power Models

Map the application characterization data to
system characterization

Loop #1

Func. foo

Loop #3

Loop #2

Application
Strided access from L1 cache w/
more FPops than data movement

Random access from main memory
w/ dependencies in FPops

Strided access from main memory w/
more data movement than FPops

Strided access from main memory w/
more data movement than FPops

Characterization

PMaC	

Performance Modeling and Characterization

Uses for Power Models

Map the application characterization data to
system characterization

Loop #1-2.4GHz

Func. Foo-1.6GHz

Loop #3-1.6GHz

Loop #2-2.2GHz

Application

PMaC	

Performance Modeling and Characterization

PMaC’s Green Queue Framework
(fine-grained application-aware DVFS strategies)

PMaC’s Green Queue automated framework:
•  Characterize systems power draw behavior when running

various computational work using models
•  Characterizes computational work of HPC application
•  Creates customize fine-grained DVFS policies for application

HPC Application
Characterize the computational
(&communication) behavior of

application

HPC System
Characterize the computational (&

communication) patterns affect the overall
power draw

Design software- and hardware-aware green optimization techniques to reduce
HPC’s energy footprint

–  Inter-node: exploits load imbalances in HPC applications

–  Intra-node: exploits application phases where CPU is
stalled waiting for resources

PMaC	

Performance Modeling and Characterization

Inter-node Technique
(Focusing on load imbalance in application due to work distribution)

•  MPI load imbalance: a subset of MPI processes have
less work to do and wait for others thereby wasting
energy
–  Could arise due to inherent nature of the problem/dataset

•  Large body of research on remedying load imbalance
and on exploiting the same to save energy

•  Green Queue’s approach is simple but we apply it at
scale

PMaC	

Performance Modeling and Characterization

Inter-node Technique

•  Green Queue captures and quantifies load
imbalance by profiling all MPI communications
and core-level computations

•  Measure the “idleness” for each core by taking a
simple ratio of its computation time to the
computation time of the busiest core

Ti
m

e
(s

ec
on

ds
)

MPI Rank

PMaC	

Performance Modeling and Characterization

Intra-node Technique
(Focusing on work done on processor in between communication events)

•  Memory subsystem’s performance is often the
bottleneck for node-level performance
–  CPU may stall while the hardware satisfies memory

requests from off-chip (e.g., L3 cache or main memory)
–  Lower the clock frequency during the phases where

these stalls are significant

•  Phase is a path through the program’s control flow
graph which exhibits uniform runtime behavior while
on that path

•  Green Queue uses the structure of the
application to identify all phases
–  Phase detection mechanism crosses loop and function

boundaries

PMaC	

Performance Modeling and Characterization

Results – Experimental Setup

•  Gordon, an Intel Sandybridge based supercomputer
–  Dual socket nodes. 8-core processor on each socket. Each

socket independently can be set to run on one of the 15
available clock frequencies

–  Nodes configured as a 3D torus. QDR Infiniband network

•  Experiments run using a single rack of Gordon (1024
cores)
–  Not a limitation of this work

•  Rack-level power measurement obtained from PDUs

•  Large scale applications and benchmarks – MILC,
SWEEP3D, GTC, LBMHD, LAMMPS, POP, WRF,
HYCOM, CG, FT, MG

PMaC	

Performance Modeling and Characterization

Results – Overall & Discussion

•  Ongoing work
–  Merge inter and intra node techniques

(6.5%)

(4.8%)

(19%)

(21%) (5.3%)

(32%) (6.5%)

(Energy Savings %)

Time (seconds)

P
ow

er
 (k

W
)

1024 cores Gordon

PMaC	

Performance Modeling and Characterization

Contributions & Conclusions

•  Phase detection based on the structure of the program

•  Optimal frequency assignment for all phases in an application

•  Framework deployed at scale on current generation
supercomputer

For details on PMaC Lab’s recent energy efficiency work, please visit:
http://www.sdsc.edu/pmac/

Or e-mail: lcarring@sdsc.edu

Tiwari A, Laurenzano M, Peraza J, Carrington L, Snavely A: Green Queue:
Customized Large-scale Clock Frequency Scaling. CGC 2012 2012.

Peraza J, Tiwari A, Laurenzano M, Carrington L, Snavely A: PMaC's Green
Queue: A Framework for Selecting Energy Optimal DVFS Configurations in
Large Scale MPI Applications. Concurrency and Computation: Practice and
Experience 2012.

PMaC	

Performance Modeling and Characterization

Looking Ahead

•  Green Queue start for application- and hardware-
aware runtime system (power-performance)

•  Extensions to reliability required for exascale

•  Need APIs to access the more hardware
information like errors, power, etc.

•  Runtime system –Support for fine-grained software-driven
management– give more control to the software
–  DVFS
–  Power gating-power planes
–  more control of hardware

PMaC	

Performance Modeling and Characterization

Questions ?

