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What is happening on today’s systems 

Top 3 systems (from June 2012 Top500) have 700,000 – 
1.5 M cores 

–  Putting together systems with lower power cores to exploit 
parallelism within application 

–  Lower the power = less capable – up to the software to run 
efficiently  

–  GPUs, BG systems, MIC, & ARM   

–  More complex programming models 

–  At 1.5 M cores – reliability and power become major issues 
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Moving towards exascale 

•  What is exascale projected to look like 
–  1000 times more compute capability than current 

systems 

–  1000 X cores = 1000 X reliability issues / faults  
(Mean time to failure inversely proportional to # of components) 

–  1000 X cores = 1000 X power = ~gigawatt! 

THIS IS THE POWER WALL 

Need new technology to overcome power wall and 
get to Exascale 
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Possible exascale technologies 

•  New exascale technology could mean: 
–  100-1000 X more cores 

–  Simpler logic on cores to reduce power draw 

–  Different memory hierarchy 

–  Different functional units 

–  Ability to shut off units or cores to save power 

Requires a lot from application developer 
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What will developers need 
(how can tool developers help) 

•  Understand requirements of work and map this 
efficiently to simpler cores –modeling can help 

•  Understand how computations use hardware 
components and optimize to compute in power 
budget. 

•  Runtime systems which adapt and avoid hardware 
errors/failures – preemptive strategies 
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Towards exascale tool requirements 

Runtime system - allows application to 
interact with hardware and adapt 

 
•  Need to know how and when an application is using 

the hardware components  
–  Enable application-aware reliability decisions 
–  Enable application-aware energy optimizations 
–  Use power and  performance models to make 

multi-objective optimization :  
Power-Performance-Reliability 
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The PMaC’s Green Queue Framework 
(performance-power requirements) 

Goal: Develop automated framework that uses 
power and performance models to make 

application-aware energy optimizations during 
execution (now:DVFS future: power gating) 

DVFS: Reduce the speed (clock frequency) of CPU in 
exchange for reduced power consumption 

 

–  Different computations have different power 
requirements. 

–  For computations where the CPU is waiting for 
resources the frequency can be reduced to lower 
power with minimal performance impact. 
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Identify the power and performance affects 
of different computational work  

Energy savings via reduce processor frequency 
– minimal performance impact 
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Application-aware Energy Efficient HPC 

HPC Application  
Characterize the computational 
(& communication) behavior of 

application 

HPC System  
Characterize the computational 

(& communication) patterns 
affect the overall power draw 

Design software- and hardware-aware green optimization 
techniques to reduce HPC’s energy footprint 
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Fine-grain Application-aware vs. Coarse-
grain Application-blind DVFS 

Application-aware fine-grained DVFS shows 
significantly less impact in performance  
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Fine-grain Application-aware vs.  Coarse-
grain Application-blind DVFS 

Application-aware fine-grained DVFS shows 
significantly less impact in performance  

2.4% vs. 21% 
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PMaC’s Green Queue Framework 
(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 
•  Characterizes system’s power draw behavior by running 

various computational work and uses to  train models  
•  Characterizes computational work of HPC application  
•  Creates customize fine-grained DVFS policies for application 

HPC Application  
Characterize the computational 
(&communication) behavior of 

application 

HPC System  
Characterize the computational (& 

communication) patterns affect the overall 
power draw 

Design software- and hardware-aware green optimization techniques to reduce 
HPC’s energy footprint 

–  Inter-node: exploits load imbalances in HPC applications 

–  Intra-node: exploits application phases where CPU is 
stalled waiting for resources 
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Application Characterization 

Application characterization –  fine-grained information 
about the communication & computation behavior of 

the application 
–  Low-level details that capture how application uses 

various hardware components 

–  Data movement on and off the processor and node 

–  Data locality and computational dependencies 
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Example of Application Characterization 

•  Application characterization can be dependent on the 
system it is running on as well as the input set 

Loop #1 

Func. foo 

Loop #3 

Loop #2 

Application 
Strided access from L1 cache w/  
more FPops than data movement 

Random access from main memory 
w/  dependencies in FPops 

Strided access from main memory w/  
more data movement than FPops 

Strided access from main memory w/  
more data movement than FPops 

Characterization 
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Collecting Application Characterization Data 

•  Computation characterization – based on PEBIL 
(PMaC’s Efficient Binary Instrumentor for Linux) 
–  Static Analysis  

•  Memory, FP operation counts 
•  Operation parallelism 
•  Program structure (e.g., function and loop boundaries) 

–  Dynamic (runtime) analysis 
•  Data locality 
•  Working set size 
•  Execution counts 

•  MPI communication characterization– based on 
PSiNSTracer 
–  Behavior about communication  
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System Characterization 

System characterization: 

•  Determine the most energy efficient frequency for range 
of computational work. 

•  Computational work focusing on-node. 

•  Computational work behavior that spans all HPC 
applications 
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Performance and Power Benchmarking framework 

PMaC’s Performance Power benchmark (P3) 

•  Generates computational test loops to measure 
performance and power for computational space of 
HPC application. 

•  Test loops measured at different frequencies 

•  Test loops designed to vary different characteristics 
of the loop (e.g. working set size or data locality) 
Testing space can grow to over 100K tests - weeks to run 

Performance and Power models 
can save time 

Power draw = func(computational behavior) 
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Why Power Models? 

•  Reduce the number of pcubed benchmark tests 
that we need to run: >100K à 3K 
–  Reduces runtime from weeks to hours  

•  Use sampling of test runs to model remaining 
computation space. 

Power draw = func(computational behavior) 
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Developing Power Models 
Power models – relate the relevant properties of a 

computation to the system’s power response.  
–  Use power and performance measurements for set of 

benchmarks tests 
–  Use corresponding characterization data (data locality, 

data footprint, etc.)  for the benchmarks 
–  Machine learning (Gradient Boosting Method) for 

constructing the power models 
Power Model Accuracy 

Model accuracy for 
power estimation: 2.2% 
absolute mean error 
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Uses for Power Models 

Map the application characterization data to 
system characterization 

Loop #1 

Func. foo 

Loop #3 

Loop #2 

Application 
Strided access from L1 cache w/  
more FPops than data movement 

Random access from main memory 
w/  dependencies in FPops 

Strided access from main memory w/  
more data movement than FPops 

Strided access from main memory w/  
more data movement than FPops 

Characterization 



PMaC	


Performance Modeling and Characterization 

Uses for Power Models 

Map the application characterization data to 
system characterization 

Loop #1-2.4GHz 

Func. Foo-1.6GHz 

Loop #3-1.6GHz 

Loop #2-2.2GHz 

Application 
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PMaC’s Green Queue Framework 
(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 
•  Characterize systems power draw behavior when running 

various computational work using models  
•  Characterizes computational work of HPC application  
•  Creates customize fine-grained DVFS policies for application 

HPC Application  
Characterize the computational 
(&communication) behavior of 

application 

HPC System  
Characterize the computational (& 

communication) patterns affect the overall 
power draw 

Design software- and hardware-aware green optimization techniques to reduce 
HPC’s energy footprint 

–  Inter-node: exploits load imbalances in HPC applications 

–  Intra-node: exploits application phases where CPU is 
stalled waiting for resources 
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Inter-node Technique 
(Focusing on load imbalance in application due to work distribution) 

•  MPI load imbalance: a subset of MPI processes have 
less work to do and wait for others thereby wasting 
energy 
–  Could arise due to inherent nature of the problem/dataset 

•  Large body of research on remedying load imbalance 
and on exploiting the same to save energy 

•  Green Queue’s approach is simple but we apply it at 
scale  
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Inter-node Technique 

•  Green Queue captures and quantifies load 
imbalance by profiling all MPI communications 
and core-level computations 

•  Measure the “idleness” for each core by taking a 
simple ratio of its computation time to the 
computation time of the busiest core 
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Intra-node Technique 
(Focusing on work done on processor in between communication events) 

•  Memory subsystem’s performance is often the 
bottleneck for node-level performance 
–  CPU may stall while the hardware satisfies memory 

requests from off-chip (e.g., L3 cache or main memory) 
–  Lower the clock frequency during the phases where 

these stalls are significant 

•  Phase is a path through the program’s control flow 
graph which exhibits uniform runtime behavior while 
on that path 

•  Green Queue uses the structure of the 
application to identify all phases 
–  Phase detection mechanism crosses loop and function 

boundaries 
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Results – Experimental Setup 

•  Gordon, an Intel Sandybridge based supercomputer 
–  Dual socket nodes. 8-core processor on each socket. Each 

socket independently can be set to run on one of the 15 
available clock frequencies 

–  Nodes configured as a 3D torus. QDR Infiniband network 

•  Experiments run using a single rack of Gordon (1024 
cores)  
–  Not a limitation of this work 

•  Rack-level power measurement obtained from PDUs 

•  Large scale applications and benchmarks – MILC, 
SWEEP3D, GTC, LBMHD, LAMMPS, POP, WRF, 
HYCOM, CG, FT, MG 
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Results – Overall & Discussion 

 
 

 

•  Ongoing work 
–  Merge inter and intra node techniques  
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Contributions & Conclusions 

•  Phase detection based on the structure of the program 

•  Optimal frequency assignment for all phases in an application 

•  Framework deployed at scale on current generation 
supercomputer 

For details on PMaC Lab’s recent energy efficiency work, please visit: 
http://www.sdsc.edu/pmac/ 
 
Or e-mail: lcarring@sdsc.edu 
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Looking Ahead 

•  Green Queue start for application- and hardware- 
aware runtime system (power-performance) 

•  Extensions to reliability required for exascale 

•  Need APIs to access the more hardware 
information like errors, power, etc.  

•  Runtime system –Support for fine-grained software-driven 
management– give more control to the software 
–  DVFS 
–  Power gating-power planes 
–  more control of hardware 
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Questions ? 


