.
_,__ ol W]

Productivity with current HPC programming

models

Matthias S. Muller, RWTH Aachen University
VI-HPS 10th Anniversary Workshop

June 23, 2017 Seeheim

IT Center

Motivation and Disclaimer

 Parallel programming is hard

* We need to be scientific about solving these problems

« We would all like parallel programming to be eaiser and more fun, but to
accomplish that, we need to focus on the real problems

Comparing two programming models:
First — are you comparing programming models, programming systems, or
implementations of programming systems?

- » Answer — Almost always implementations

- «» Implication — No paper should be accepted that claims to compare X to Y when all it does
is compare an implementation of X on Z to an implementation of Y on Z

Source: Bill Gropp “Thinking about parallelism and programming” SC2016

2 Productivity of programming models , Matthias Muller Rm

10th anniversary VI-HPS Workshop
June 23, 2017 IT Center

Disclaimer Il and more information

« See chapter 10 of Sandra Wienke’s thesis:
“Methodology of Development Effort
Estimation in HPC”
Productivity and Software Development ° However:
Effort Estimation - Solid statistics to make valid statements

in High-Performance Computing) :
about real programming model is not
available

Der Fakultdt fiir Mathematik, Informatik und Naturwissenschaften der RWTH
Aachen University vorgelegte Dissertation zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften von

Sandra Juliane Wienke, Master of Science

aus Berlin-Wedding

3 Productivity of programming models , Matthias Muller Rm

10th anniversary VI-HPS Workshop
June 23, 2017 IT Center

productivity of programming models

H IT Center

IT Center

DN 4 i © TN

o ey

Size of the standard

Evolution of MPI and OpenMP Standard

Size of Standard Specification
1000

800

600 ¢

Pages

400 °
200

0
1990 1995 2000 2005 2010 2015 2020

Year of publication

®VPI @®OpenMP

6 Productivity of programming models , Matthias Mller Rm

10th anniversary VI-HPS Workshop
June 23, 2017 IT Center

OpenMP vs MPI

1:0

T Center

IT Center

ivity

Product

Case Study: NINA'1

 Software” for the solution of Neuromagnetic
INverse IArge-scale problems

* Implementation
Basis: serial C code

OpenMP-tuned: blocked matrix-vector multiplication,

2 4 6 8 10 12 14 16 18

vectorization, alignment on pages, data affinity A 1
OpenMP_target: OpenMP_tuned (adapted to KNC) + “M. Biicker, R. Beucker, and A. Rupp. Parallel Minimum

p-Norm Solution of the Neuromagnetic Inverse Problem
for Realistic Signals Using Exact Hessian-Vector
Products. SIAM Journal on Scientific Computing, 30(6):
2905-2921, 2008.

target directives for offloading

OpenACC: up to 16 streams for parallel async.
execution of kernels, pinned memory
CUDA: up to 16 streams, dynamic parallelism and

completely asynchronous execution to minimize
interaction with host, highly optimized reduction, pinned

memaor
y " Wienke, Sandra, Dieter an Mey, and Matthias S. Miller. "Accelerators for Technical Computing:
Is It Worth the Pain? A TCO Perspective." Supercomputing, 2013, 330-42.
9 Productivity of programming models , Matthias Muller Rm

10th anniversary VI-HPS Workshop
June 23, 2017 IT Center

NINA — TCOl]

* One-time costs C,,

- Per node
= HW purchase: Bull list prices from 2013 (!)
= Building/infrastructure: as annual costs since it is amortized over 25 years
= OS/env. installation: -

- Per node type
= OS/env. installation: -
= Programming effort: Full-time employee costs 272.86 € a day

* Annual costs C,,
- Per node
= HW maintenance: 8.2% of HW purchase costs
= Building/infrastructure: 200,000€ per year, divided by 1.6MW, multiplied by max. power
consumption of each node
= OS/env. maintenance: 4 admins, 75% maintenance cluster (~2300 nodes): 180,000€ /
2300 = 78€ per node and year
= Power consumption: PUE 1.5, regional electricity costs 0.15 €/k
- Per node type
= OS/env. maintenance: -
= Software/compiler: -
= Application maintenance: - (small kernels)

10 Productivity of programming models , Matthias Muller Rm

10th anniversary VI-HPS Workshop
June 23, 2017 IT Center

NINA - Effort & Performance

50 45
Z 40
E 29 32
g 307 23
=
= 20 1
P
=
s 10
=
O T T T
OpenMP-OpenACC CUDA OpenMP-
tuned (K20) (K20) target
(SNB) (KNC)
8
7 6 6
= 61 5
=, 4
£ 4]
3 21
O T T T

OpenMP- OpenACC CUDA OpenMP-
tuned (K20) (K20) target
(SNB) (KNC)

Hardware

SNB 2-socket Intel Sandy Bridge
@ 2.7 GHz, 16 cores

K20 SNB + 1 NVIDIA Kepler K20x
KNC SNB + 1 Intel Xeon Phi 5110p

productivity=outputs /inputs =

11 Productivity of programming models , Matthias Mller
10th anniversary VI-HPS Workshop
June 23, 2017

IT Center

NINA — Productivity

50 45
2 40
g Y 23
=
= 20
P
=
s 10
v’
0 T T T
OpenMP-OpenACC CUDA OpenMP-
tuned (K20) (K20) target
(SNB) (KNC)
8
7 6 6
= 6 5
=, 4
*g 4
g 2
O T T T

OpenMP- OpenACC CUDA OpenMP-

productivity

100
80
60r
401
| — OpenMP-tuned (SNB)
207 OpenACC (K20)
i —CUDA (K20)
“ OpenMP-target (KNC)
00 20 40 60 80 100

investment [K€]

productivity=outputs /inputs =

tuned (K20) (K20) target
(SNB) (KNC)
12 Productivity of i dels , Matthias Ml
12 o aoianny PG Wamaney, 1o Miler RWTH

June 23, 2017

IT Center

OpenMP vs MPI

2.0

T Center

IT Center

DN 4 i © TN

o ey

Suitability for Exascale

Suitability of Programming Models for Exascale

Exascale Concepts for Programming Models
Session at ISC 2016, June 19, 2016, Frankfurt

ExaGASPI
04:00 pm - 04:20 pm
Mirko Rahn, Fraunhofer ITWM

MPI+X for Exascale
04:20 pm - 04:40 pm

Bill Gropp, University of Illinois at Urbana-Champaign

OpenMP - Taking Good Care of the Node in Exascale?
04:40 pm - 05:00 pm
Christian Terboven, RWTH Aachen University

15 Productivity of programming models , Matthias Mller
10th anniversary VI-HPS Workshop
June 23, 2017

IT Center

OpenMP vs MPI

3:1

T Center

IT Center

Complexity of Programming Model

HPL on SGI ICE using SGI MPT

Vampir="imeline
39.000 s 39.500 s
user
user
user

40.000 s
Process 0 _MPI_Send
Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8 [IEL]3
Process 9 [}
Process 10 I3
Process 11 [EC]3
Process 12 {53
Process 13 [EC3
Process 14 [EC]3
Process 1553
Process 16 J[EC3
Process 17 [EC3
Process 18 [l
Process 19 [EC3
Process 20 JEC3
Process 21 {53
Process 22 [[E]3
Process 23 [EC3
Process 24 [E]3
Process 25 513
Process 26 I3
Process 27 [EL]3
Process 28 [E]3
Process 29 [EC]3
Process 30 [E]3
Process 31 53
Process 32 [IE3
Process 33 L]}
Process 34
Process 35 [IEC]3
Process 36 [EL]3
Process 37 {53
Process 38 IEC]3
Process 39 1E]3
Process 40 53
Process 41 I3
Process 42 1E]3
Process 43 53
Process 44 IEC]3
Process 45 LT3
Process 46 [E]3
Process 47 [EC]3
Process 48 [E]3

user
user
|
user
user
user
user
user

il X Vampir - Identified Activity

il Location : Process 23
QOperation 1 MPI_Send (135)
Activity 1 MPI (3)
Interval 139.3965-39.759 5
Duration 10362 5
Next Activity 140146 5 - 40.160 5
Previous Activity : 39.396 s - 39.396 5

ser
MPI_Send
A end

MD| Send
user

liiser

MPI_Recv user

-

TECHNISCHE
UNIVERSITAT

18

Transfer Rate
only 1.63 MB/s!

ee=m——oes Tracking down

=== Performance
=== Problems to
=== individual Events

40.500 s
[l Application
I VP

dentified Messas = 5
: Process 23
: Process 39
11001
1000000010
139.3965-39.759 5
10362 5
1B05.0K
1 1.63 Mfs

ZIH

DRESDEN

LARS: Data Presentation

Center for Infarmation Services &
High Performance Computing

OpenMP complexity

Fork-join model

master parallel parallel
thread region 1 region 2
l / task a \ task e task f
task b N task g task h
fork join
task c task i
task d
19 Analyzing Memory Accesses for Performance and Correctness of Parallel Programs Rm

Tim Cramer IT Center

OpenMP vs MPI

4 : 1

T Center

20 Years of OpenMP® History

In spring, 7
vendors and the
DOE agree on
the spelling of
parallel loops
and form the
OpenMP ARB.
By October,
version 1.0 of
the OpenMP
specification for
Fortran is
released.

1.0

1997

1998

8 8
H N

Minor

modifications.

1.1

1999

8
L

11

11

cOMPunity, the
group of
OpenMP users,
is formed and
organizes
workshops on
OpenMP in
North America,
Europe, and
Asia.

2.0

11 11

13

13

Unified Fortran
and C/C++:
Bigger than both
individual
specifications
combined.
The first
International
Workshop on
OpenMP is held.
It becomes a

major forum for
users to interact
with vendor.

13 15

Incorporates
task parallelism.
A hard problem

as OpenMP

struggles to
maintain its
thread-based
nature, while
accommodating
the dynamic
nature of
tasking.

3.0

15 17

17

Support min/
max reductions
in C/C++.

3.1

QOpenMP

Supports
offloading
execution to
accelerator and

coprocessor
devices, SIMD
parallelism, and
more. Expands
OpenMP
beyond
traditional

boundaries.

4.0

OpenMP
supports
taskloops, task
priorities,
doacross loops,
and hints for
locks. Offloading
now supports
asynchronous
execution and
dependencies to
host execution.

2005 m 2007 2008 2009 2010 2011 m 2013 2014 m m 2017

29 29
26 25 26
. : II II II II II

® Permanent ARB

B Auxiliary ARB

Thread-local Epoch Generation (1/2)

Push Down Automaton (PDA)

Transition depends on input symbol and stack

PDA (stack) is required to describe the semantic of OpenMP

In addition: output alphabet (Mealy)

O-tuple: M=(0,2, O, T, 6,4, ¢0, Z, F), with

O={qgim .qlp, qlhl B qlh2, K qlh3, qls} set of states

Z' set of OMPT events (input alphabet).
O={elm elp, eln, e} output alphabet (e.g. master epech,
parallel epoch)

I'={M,P, ¢} stack alphabet.

0= X I xI'->P (@ %X T') transition

A=0 x J XI'->0Q output function.

740 =gim initial state

Z=M initial stack symbol ist

F={qgim} set of accepting states.

finite top
control |0
— SF
L state :
da
input tape

stack
Quelle: Wikipedia

22

Analyzing Memory Accesses for Performance and Correctness of Parallel Programs

Tim Cramer

IT Center

Thread-local Epoch Generation (2/2)

)Y \ {U;)_l);atlz_lr })

* / %

Op_es
P/e

€n

dn3

* First row: Input symbol

Input Symbol | OMPT Event

Os start

Tth_{b,e} thread_{begin,end}

Ty {be} parallel _{begin,end}
Tta_{be} implicit_task_{begin,end}
T1_{be} loop_{begin,end}

Tp_{be} barrier_{begin, end}

Jp_lr; 2 \ {(7[)_0/ O'p_l)/ an_t’};
*/ Px * /%

Z \ {Ufll_t’r U;l_(’/ Jp_l)};
* / %

Op_es
P/e

€n

Up_b;
x/ Px

(’}7

(’})

« Second Row: Stack operation pop(a) / push(b

 Third row(falls vorhanden): output symbiol.

23 Analyzing Memory Accesses for Performance and Correctness of Parallel Programs

Tim Cramer

IT Center

PDA calculation

Example with nested parallelism:

fpragma omp parallel
{

fpragma omp parallel for

for(...)

{
foo(..);

thread begin

parallel begin
im. tasi< begin

parallel begin

lim. task begin
loop begin
loop end
barrier begin

barrier end

:_ im. task end

parallel end
barrier begin

barrier end
im. task end

parall:el end

thread end

P
thread begin

o start ___

R

thread begin

im. task begin

parallel begin

..... epoch ¢,
im. task begin | :1m task begin
| 1 |
loop begin !} loop begin
loop end loop end

barrier begin

barrier end

barrier begin

|

1
1
1
1
1
! |
1
1
1
I barrier end

im. task end

parallel end

|

barrier begin

barrier end

im. task end

idle begin

idle end

thread end

idle end

thread end

—
——
——
_—

thread begin

idle l’Jegin > epoch ey

|

idle end

im. task begin

loop begin

loop end

barrier begin

barrier end

> epoch ey

im. task end

et e - - - - -

b oo o o o o o o ——

idle begin

|

idle end

|

thread end)

> epoch ey,

24

Tim Cramer

Analyzing Memory Accesses for Performance and Correctness of Parallel Programs

IT Center

PDA Computation (2/2) (master thread only)

* Nested parallel example code: /r
#fpragma omp parallel (— I M/Fiu M

{ (zu\
fpragma omp parallel for S<—t_> @ o o) ‘ a},_l,,-I E\ A0 _es O ra_e}s
for(...) € s . o
{]\?// (gr/_o} Op_bs Z\ {‘Tta_w Op_es (7'},_1,},'
. € € %/ Px */ %
foo (..); ., e | e ¢
} -
} I start € (In II v II In3
v x/ %
P P P P P P P
M M M M M M M M M M M M M
ryM{M| M M M M M M M M M M M M M M M M
Qll gm | | Im qn2 dha qp dp qp qp 4dn3 dh1 qp dp qh3 4dh1 dm
A || ey p— g r—“-l r—l 11—] resa| e e e r—ﬁi
S| G | 1 T 1 I | I | ellfb 7 | G I 2 | S i K | P i
T'ITT'TW — TTT TT;m':,r'
| | | | | | | |
start thread parallelkn.taskparalleim. task loop loop barriebarrierim. taskparallelbarrierbarrier im. taskparallelthread
begin begin begin begin begin begin end begin end end end begin end end end end
25 Analyzing Memory Accesses for Performance and Correctness of Parallel Programs Rm

Tim Cramer IT Center

Complete PDA for OpenMP

start target

* Additional constructs: 1 . .
_ Taskm Tho \{Utt_esait_bsath_b}a
g * /%
— Target Offloading
X Oir o
: : +/€ Y
« More information: el [TV
. “ . Ttt_ b
Tim Cramer, “Analyzing /+
Memory Accesses for Al %5 o
Performance and Correctness Cras:
” /X %
of Pa_rallel Programs”, PhD. I @) () T [B\ e e
Thesis, Aachen 2017 <35\ {c,“_b,?ﬁ_e,am_b};
%
X/e
“p Op_e; Ota_ b, Z:\ {Uta_ew Op_ e, Uta_b}?
Y./G */.Y* */*
dh1
/
26 Analyzing Memory Accesses for Performance and Correctness of Parallel Programs Rm

Tim Cramer

IT Center

OpenMP vs MPI

A 3:1

T Center

Multiparadigm programming and OpenMP

~* USING OPENMP—THE NEXT STEP

fRwisi o)+

Paperback | $50.00 Short | £41.95 |
296 pp. | 8 x 9 in | 185 baw illus. |
October 2017 | ISBN: 9780262534789

eBook | $35.00 Short | October 2017 |
ISBN: 9780262344005

(i) About MIT Press eBooks

Also by these
Authors

Using OpenMP

Using OpenMP—The Next Step

Affinity, Accelerators, Tasking, and SIMD

By Ruud van der Pas, Eric Stotzer and Christian Terboven

Overview

This book offers an up-to-date, practical tutorial on advanced features in the widely used OpenMP
parallel programming model. Building on the previous volume, Using OpenMP: Portable Shared
Memory Parallel Programming (MIT Press), this book goes beyond the fundamentals to focus on what
has been changed and added to OpenMP since the 2.5 specifications. It emphasizes four major and
advanced areas: thread affinity (keeping threads close to their data), accelerators (special hardware to
speed up certain operations), tasking (to parallelize algorithms with a less regular execution flow), and
SIMD (hardware assisted operations on vectors).

As in the earlier volume, the focus is on practical usage, with major new features primarily introduced by
example. Examples are restricted to C and C++, but are straightforward enough to be understood by
Fortran programmers. After a brief recap of OpenMP 2.5, the book reviews enhancements introduced
since 2.5. It then discusses in detail tasking, a major functionality enhancement; Non-Uniform Memory
Access (NUMA) architectures, supported by OpenMP; SIMD, or Single Instruction Multiple Data;
heterogeneous systems, a new parallel programming model to offload computation to accelerators; and
the expected further development of OpenMP.

About the Authors
Ruud van der Pas is Distinguished Engineer in the SPARC Processor Organization at Oracle and
coauthor of Using Open MP: Portable Shared Memory Parallel Programming.

Eric Stotzer is a Distinguished Member Technical Staff at Texas Instruments.

Christian Terboven is the HPC Group Manager at RWTH Aachen University, Germany. He has been a
member of the OpenMP Language Committee since 2006 and serves as the Chair of the Affinity
subcommittee.

OpenMP now supports a lot of different
paradigms:

« Threading
« Tasking
« Offloading

This is good, but complicated
Possible rescue:

We have to teach multiparadigm
programming *

1 Bjarn Stroustrup: “Multiparadigm programming is a fancy way of saying ““programming using more than
one programming style, each to its best effect.” (Bjarn Stroustrup. FAQ)

28

Productivity of programming models , Matthias Muller
10th anniversary VI-HPS Workshop
June 23, 2017

IT Center

Conclusion and outlook

* Both OpenMP and MPI are on track for Exascale

* The size and complexity of both standards are troublesome

* Multiparadigm programming is important to maintain/achieve productivity

* Programmers productivity should get more attention when developing
programming models and standards

In direct comparison of the productivity of OpenMP vs. MPI:

OpenMP is the clear winner!!

.. and MPI is its best friend

29 Productivity of programming models , Matthias Muller
10th anniversary VI-HPS Workshop
June 23, 2017 IT Center

Vielen Dank
fur lhre Aufmerksamkeit

T Center

