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Workshop proposal deadline June 30, 2017
July 28, 2017

Paper submission deadline
fE M in &

SUBMISSION DEADLINES

August 21, 2017: Minisymposium Proposal Submissions
September 18, 2017: Contributed Lecture, Poster and
Minisymposium Presentation Abstracts



https://www.siam.org/meetings/pp18/submissions.php
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TSUBAMEZ2.0 Nov.

NE cenest Production Supe | In the World”
« GPU-centric (> 4000) high performance & low power EESF;‘:CTS)
* High bandwidth memory, optical network, SSD storage... 34 Nehalem "Fat Memory" Nodes

Rack i ) pr—
TSUBAME 2.0 (8 Node Chassis) . ' 7
New Development \ ﬂl
i 2DLACH
Node Chassis n i i
Compute Node (4 Compute Nodes) T U P gigd e

(2 CPUs,3 GPUS) TSUBEWIE? 5
5.7 2D DS

Chip
(CPU ,GPU)

2.4 PFLOPS

IA.
} r\Qm e ST 80 TB
A \\\ ' 16 TELOPS 6.7 TFLOPS 53.6 TFLOPS iégg'l'GBFl)gi/lem BW
: i . R 55 GB/103 GB 220 GB/412 GB 1.7 TB/3.2TB 220Tbps NW
CPU(Westmere EP) GPUs(Tesla M2050) ~400GB/s Mem B >1.6TB/s Mem BW >12TB/s Mem BW Bisecion BW
76.8 GFLOPS 515 GFLOPS 80Gbps NW BW 35KW Max 1.4AMW Max

z2rm 3 GB  40nm ~1KW max Integrated by NEC Corporation




HPC and BD/Al Convergence Example [ Yutaka Akiyama, Tokyo Tech]

/{ Genomics ]\ Protein-Protein Drug Discovery
U is

Interactions
HOSTZ ' Fragment-based
GHOSTZ — =~ Exhaustive PPI

Fo— Prediction System Virtual Screening

Dggsd =2 THLSHDGLHFPREH

Query is,} —
THLAHDGLMPSH & J}; D5, =1
Clusber mémberds, )

MEGADOCK 4.0

Ty Spress
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N : S 3 * Ohue et al., Bioinformatics (2014)
. ; o 1n 0 50k 100k 150k 200k , .
P N 1008 e oo e * Yanagisawa et al., GIW (2016)

e Suzuki et al., Bioinformatics (2015)
e Suzuki et al., PLOS ONE (2016)

Learning-to-Rank VS
Snain | e | e

w i | Hadely DB

Oral/Gut Metagenomics
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EBD vs. EBD : Large Scale Homology Search for Metagenomics

- Revealing uncultured microbiomes and finding novel genes in various environments

increasing

increasing

O(m) Reference
Database

A | . CCACATAAACT.[ EBD

Human

body JATeeTccaTerT.. | O(N)

Next generation sequencer

Meas.

e
_ Waigd | dota
Various environments

_______________________________________

o orreiat/on, """

____________________________________________

Metagenomic analysis of periodontitis patients

LD

“with Tokyo Dental College, Prof. Kazuyuki Ishihara t’fa) g

il g
ki

 Comparative metagenomic analysis bewtween
healthy persons and patients s )
oy

= .=

Metabolic Pathway

Taxonomic composition




Development of Ultra-fast Homology Search Tools
x100,000 ~ x1,000,000 c.f. high-end BLAST WS (both FLOPS and BYTES)

GHOSTZ @ GHOSTZ-GPU GHOST-MP

Suzuki, et al. Bioinformatics, 2015. ; Suzuki, et al. PLOS ONE, 2016. Kakuta, et al. (submitted)

Subsequence sequence cIustering 5 Multithread on GPU MPI + OpenMP hybrld pallelization

THILANDGT.NPSN

GIH‘P

computatlonal time for
10,000 sequences (sec.)
. (3.9 GB DB, 1CPU core)

100000
10000

107 GHOST-MP —

80 | —~ |
70 | - |
i ot ]

_ - 3

40 i 10"';=,--=~f"’f faster ,.J-‘"""--i-”
20 S — |

Speed-up ratio for 1 core

1000 f
100 | 0 | . __r,,,-—*"'
10 0 5 .d-
S = = & . ~ mpi-BLAST
1 + + + 10
(&) |®) O
BLAST GHOSTZ ! N N

10t in? 10’ 107
Mumber of Cores

X 240 faster than X 70 faster than 1 core Retaining strong scaling
conventional algorithm : using 12 cores + 3 GPUs up to 100,000 cores



Plasma Protein Binding (PPB) Prediction by Machine Learning
Application for peptide drug discovery

" Souions

5“"“"{1':"'1‘;““"“ Peptide drug A D
Molecular oo p— 000 Compute Feature Values
weight . ! ’
mber o o (more than 500 features)
EF-L?::';EE;CW A O @ Logs
PPI inhibition X @) ®) Log P \
Bia-stability O A @ v [M:/ bt , PPB Value
. . olWei
= Candidate peptides are tend to be degraded , g /
and excreted faster than small molecule drugs SASA Combining feature values for
= Strong needs to design bio-stable peptides for polarity building a predictive model
drug candidates
2.5
, R?=0.0 ;3 2 —
g Previous PPB prediction| [£™ . T R®=0.905
Sl &, e .| software for small < e A constructed model can
g - : " | molecule can not %o.s ‘{;,,.; explain peptide PPB well
Q . . -
& predict peptide PPB a3
3 -2.5
Exp:arimen"tal value 2 Expéirimentoal valué




Molecular Dynamics Simulation for Membrane Permeability
Application for peptide drug discovery

1) Single residue mutation can drastically

change membrane permeability  «
Sequence: D-Pro, D-Leu, D-Leu, L-Leu, D-Leu, ' e
Membrane permeability : 7.9 X 10 6cm/s

' X 0.006

Sequence: D-Pro, D-Leu, D-Leu, D-Leu, D-Leu, L-Tyr 5
Membrane permeability :0.045 X 10 -°cm/s

Ex ) Membrane thickness : 40 A
Peptide membrane permeability : 7.9 X 10® cm/s

Typical peptide membrane permeation takes
40 A /7.9%10°cm/s = 0.5 millisecond

1) Apply enhanced sampling Supervised MD (SuMD)

. Checkpoint n
Metadynamics (MTD)
{ o A f=mx
. Adem g < \i_'u -
5 Atck
- 4
qc) Control Cycle j restart fron; checkpoint
(] es IF No
w —_—
E No Y
es

L | a

continue unbiased MD simulation

Checkpoint n+1

Figure 1. Scheme of the ligand=receptor distance vector (dom, )
I I | in the supervised molecular

}
¥ ¥
dynamics (SuMD) technique.

2) GPU acceleration and massively parallel
computation.

MD engine

GROMACS on GPU
DESMOND

|

* Millisecond order phenomenon can be simulated.
* Hundreds of peptides can be calculated
simultaneously on TSUBAME.




RWBC-OIL 2-3: Tokyo Tech IT-Drug Discovery Factory

Simulation & Big Data & AI at Top HPC Scale
(Tonomachi, Kawasaki-city: planned 2017, PI Yutaka Akiyama)

Tokyo Tech’s research seeds
N\

(®Drug Target selection system

Minister of Health, Labour and Welfare Award o
the 11th annual Merit Awards for Industry- g

\Academla—GovernmentCoIIaboratlon A HT[:ly

( @Glide-based Virtual Screening

TSUBAME’s GPU-environment allows
World’s top-tier Virtual Screening

V4

R !EHE townd
LI 4 P LR S Ll

{

Drug Discovery platform powered by
Supercomputing and Machine Learning

Application projects

r

| ol
RITRDLY r (F N
- . J A e ac Ve &
Wk " !
% wum:n%— || r '
‘ e, S—Falfils

. 1
( ®Novel Algorithms for fast virtual )
screening against huge databases

Fragment-based efficient algorithm ¢
designed for 100-millions cmpds data

- N e } f
BT g > L—
. Spress@ * s
"7 e Yanagisawa et al., GIW (2016))

Yoshmo et al., PLOS ONE (2015)
e Chiba et al., Sci Rep (2015) J

N i¥

New Drug Discovery platform especially for
specialty peptide and nucl. acids.

I
{,.eg{%?v 1* 2o
PeptiDream (ot el
CatalystInc,  [Eismmstoms
{ Plasma b|nd|ng . ﬂz;;?“ T A5 R
(ML-based) i ( )
5 ey eale Fawedody (OTRERER A
Membrane penetration Sz
(Mol. Dynamics simulation)
~ : fi & BT
- R T

kI

SKYFRNNT-

Kawasakdl |Nnovation Galwsray ot SKYFRONT

Multi-Petaflops Compute
Peta~Exabytes Data
Processing Continuously

Cutting Edge, Large-
Scale HPC & BD/AI
Infrastructure
Absolutely Necessary

Investments from JP Govt., Tokyo Tech. (TSUBAME SC)
Muninciple Govt (Kawasaki), JP & US Pharma



EBD App2: Miyoshi Group (Weather Forecast Application)

| Big Data Assimilation
= for severe weather forecast

giEsm Only in 10 minutes!
Goal : Pinpoint (100-m resol.) forecast of severe local weather by

updating 30-min forecast every 30 sec!
Revolutionary super-rapid 30-sec. cycle

o { Obs data © Obs dala
! processing | |~2GDB . processing | |~2GB
:,"U-sec. 20-sec.
DA [380GH Ensemble |2.5T DA [380GB| Ensemble |2.5T DA
(4.5PFLOP) fdrecasting (4.5PFLOP) fdrecasting (4.5PFLOP)
3Gl (216PFLOP) (2:6PFLOP)

SU-Enin. forecasting (1.6PFLOP) 3{]—iuin. forccasting (1.6PFLOP)
| -r IIIIIIIIIIIIIIIIIIIIII ﬂ lllllllllll ; |

-10 0 20 30 40 ]:H]JE (sec.)
120 times more rapld than hourly update cycles




Tremendous Recent Rise in Interest by the Japanese
Government on Big Data, DL, Al, and loT

 Three national centers on Big Data and Al launched

by three competing Ministries for FY 2016 (Apr 2015-)

— METI — AIRC (Artificial Intelligence Research Center): AIST (AIST
internal budget + > $200 million FY 2017), April 2015
e Broad Al/BD/IoT, industry focus

— MEXT — AIP (Artificial Intelligence Platform): Riken and other
institutions (S~50 mil), April 2016

* A separate Post-K related Al funding as well.
* Narrowly focused on DNN

— MOST = Universal Communication Lab: NICT ($S50~55 mil)

* Brain —related Al

— S1 billion commitment on inter-ministry Al research over
10 years

Vice Minsiter
Tsuchiya@MEXT
Annoucing AIP
estabishment



Director:
Jun-ichi Tsujii

Matsuoka : Joint
appointment as

“Designated” Fellow

since July 2017

2015- AI Research Center (AIRC), AIST @"
Now > 400+ FTEs ATRC

P——— Security . Health Care Innovative Manuf_acturmg - Big S-C|enc<-es
. etwork Services o Industrial robots Bio-Medical Sciences
Companies i Elderly Care Retailing . ot
— Communication Automobile Material Sciences

Standard Tasks

echnology transfer

Technology transferAPplication Domair
ing Enterprises

JOiI"It I‘eseal‘ch [ MMmMon Al DiaTrorr dl1Ud

»

Planning/Business Team

Planning/Business Team

) C(

NLP, NLU Behavior Prediction
Text mining ining & Modelingl Recommend

S

Image Recognition
3D Object recognition

Planning
Control

Brain Inspired Al Data-Knowledge integration Al

( Model of
Hippocampus

Model of
Basal ganglia Ontology

Knowledge ~ LOBic & Probabilistic Bayesian net ...
= S Modeling

Core Center of Al for Industry-Academia Co-operation

Model of
Cerebral cortex




@ National Institute for Joint Lab established Feb. -
i s Advanced Industrial Science Tokyo Institute of

ast”  nd Technology (AIST) 2017 to pursue BD/AI joint Technology / GSIC
MITITEUEN .
PR b i ATpon research using large-scale Toﬁgg(ﬁmiﬁ
& 55 e 2 s HPC BD/Al infrastructure
N Tt/
' Ministry of Economy, Trade and Industry A

Resources and Acceleration of
Al / Big Data, systems research Tsubame 3.0/2.5

Big Data /Al
’ resources

Ministry of Economics
Trade and Industry (METI)

AIST Artificial
Intelligence ad
Research Center "":

I I RWBC-OIL
AIST-Tokyo Tech

Real World Big-Data Computation

ITGCS

® Joint Open Innovation Laboratory
(AIRC) NVRC  Researchon (RWBC-OIL) Departments
Application Area Al/BigData Director: Satoshi Matsuoka
and . Basic Research
Natural Langauge applications Industrial in Big Data / Al
Processing Collaboration in data, algorithms and -

: ’ Other Big Data / Al
Robotics applications methodologies = ./ :
Security g research organizations

e \ - Industry and proposals

JST BigData CREST

Al Brid'A;c;Ii3n(§c;I Cloud YAHOO.’ I-r IAB DENSO' o JST Al CREST

JAPAN Ftc
Infrastructure DENSO IT LABORATORY, INC. ’



Characteristics of Big Data and Al Comwlting

As BD / Al As BD

Graph Analytics e.g. Social Networks Dense LA: DNN

Sort, Hash, e.g. DB, log analysis
Symbolic Processing: Jraditional Al

™

Inference, Training, Generation
Opposite ends of HPC
computing spectrum,

@
»
e | O
but HPC simulation

As HPC Task apps can also be As HPC Task

categorized likewise Dense Matrices, Reduced Precision

Dense and well organized neworks
and Data

"

Integer Ops & Sparse Matrices
Data Movement, Large Memory
Sparse and Random Data, Low Locality

N

_ . Acceleration via
Acceleration, Scaling Supercomputers Acceleration, Scaling

adapted to Al/BD



Sparse BYTES: The Graph500 — 2015~2016 — world #1 x 4
K Computer #1 Tokyo Tech[Matsuoka EBD CREST] Univ.
Kyushu [Fujisawa Graph CREST], Riken AICS, Fu Ojltsu

nodes

73% total exec 660 000 CPU Core
~ 1500 = Communi--—  time wait in 1.3 Petabyte mem g N 3
2 = Computati-}  communication 20GB/s Tofu NW ., ¥user
5 1000 /—
E coo 1 33621 GTEPR
= +7 10.51?Ef1ﬁ)p500)
7} Ay L T W
")
T

64 nodes 65536 nodes
(Scale 30) (Scale 40) v performance c.f.

LLNL-IBM Sequoia inPack

BYTES Rich - TaihuLight
IEET T SRR, machine + Superior 16 millon CPUS 1 ijion cpys

1.6 Petabyte mem

November 2013 4 5524.12 Top-down oi BYTES algoithm 1.3 _Petabyte mem
June 2014 1 17977.05 Efficient hybrid )

November 2014 2 19585.2 Efficient hybrid e 17.1 00} (ZladPERO 1 '

June, Nov 2015 Hybrid + Node

June Nov 2016 - 38621.4 Compression BYTES nOt FLOPS’




K-computer No.1 on Graph500: 4th Consecutive Time

* What is Graph500 Benchmark?

45000
— 40000
i
i 35000
~ 30000
(5}
£ 25000
§ 20000
& 15000
a.
10000
5000

graph data.

- K computer (Japan)

Sequoia (U.S.A.)

Sunway TaihulLight (China)

.

Jun 2013 Nov
2013

Jun 2012 Nov
2012

Jun 2014 Nov
2014

Jul 2015

» u
Nov Jun 2016
2015

e Supercomputer benchmark for data intensive applications.
e Rank supercomputers by the performance of Breadth-First Search for very huge

This is achieved by a combination
of high machine performance and
our software optimization.

e Efficient Sparse Matrix Representation with
Bitmap

* Vertex Reordering for Bitmap Optimization
e Optimizing Inter-Node Communications
e Load Balancing

etc.

* Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi Matsuoka, "Efficient Breadth-First Search on
Massively Parallel and Distributed Memory Machines", in proceedings of 2016 IEEE International Conference on Big Data (IEEE
BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



TSUBAME-KFC/DL: TSUBAME3 Prototype [ICPADS2014]

Oil Immersive Cooling+ Hot Water Cooling + High Density Packaging + Fine-
Gramed Power Monitoring and Control, upgrade to /DL Oct. 2015

- o *‘\:} ~ High Temperature Cooling Cooling Tower
_—H ' Oil Loop 35~45°C Water 25~35°C
= ¥ = Water Loop 25~35°C = To Ambient Air

c.f. TSUBAI\/IEZ 7 17°C) Y

- '.—. --= :.J,.nu.
[ — Rl
-, - v
. 3__i :
v = ENECIL.IN §
/ — s
a5 i

u
L i TE
T e

- ') |
L=
e &

Container Facility — § S aEggis 28
20 feet container (16m?) — | Sl AL
Fully Unmanned Operation




(Big Data) BYTES capabilities, in
capacity, unilaterally important
modern HPC machines in their

* Need BOTH bandwidth and capacity
(BYTES) in a HPC-BD/AI machine:

e Obvious for lefthand sparse ,bandwidth-
dominated apps

e But also for righthand DNN: Strong scaling, 3

large networks and datasets, in particula

scans, seismic simu. vs. analysis...)

(Source: http://www.dgi.com/images/cvmain_overview/CV4DOverview Model 001.jpg)

(Source: https://www.spineuniverse.com/image-

librarv/anterior-2d-ct-ccan-nroocrecc<ive-kvbhoccoliocic)

bandwidth and
out often missing from

for future 3D dataset analysis such as CT-

oursuit of FLOPS...

Our measurement on

B Other breakdown of one iteration
m H2D =

W Communication of CaffeNet training on

m D2H i

B ForwardBackward TSUBAME KFC/ DL

(Mini-batch size of 256)

Proper arch. to

I

= support large

'% Computation on GPUs memory cap.

?% occupies only 3.9% (Jnd BW network

"y latency and BW
O iImportant

1 2 4 8 16
Number of nodes


http://www.dgi.com/images/cvmain_overview/CV4DOverview_Model_001.jpg)
http://www.spineuniverse.com/image-

2017 Q2 TSUBAME3.O Leading Machine Towards Exa & Big Data

1.“Everybody’s Supercomputer” - High Performance (12~24 DP Petaflops, 125~325TB/s Mem,
55~185Tbit/s NW), innovative high cost/performance packaging & design, in mere 180m?Z...

2.“Extreme Green” — ~10GFlops/W power-efficient architecture, system-wide power control,
advanced cooling, future energy reservoir load leveling & energy recovery

3.“Big Data Convergence” — BYTES-Centric Architecture,

Extreme high BW & capacity, deep memory 2013 p—
hierarchy, extreme 1/0 acceleration, Big Data SW Stack TSUBAME2.5 R
for machine learning, graph processing, ... upgrade ‘

°./PF DFP 2017 TSUBAME3.0+2.5

4.“Cloud SC” - c.iynamic deplpymer!t, con.tainer-based /17.1PF SFP ~18PF(DFP) 4~5PB/s Mem BW
node co-location & dynamic configuratio . 20% power 10GFlops/W power efficiency
elasticity, assimilation of public clouds... reduction

Big Data & Clpud:,_l,:,Convergence

5.“Transparency” - full monitoring &
user visibility of machme
& job state, | NS
accountability
via reproducibility

2010 TSUBAME2.0
2.4 Petaflops #4 World
“Greenest Production SC”

2006 TSUBAMEL.0 A D= |Large Scale Slmulatlon
80 Teraflops, #1 Asia #7 World |+ e 2013 TSUBAME-KFC Big Data Analytics
“Everybody’s Supercomputer” 2011 ACM Gordon Bell Prize #1 Green 500 Industrial Aﬁps



http://www.new.facebook.com/album.php?profile&id=20531316728
http://www.new.facebook.com/album.php?profile&id=20531316728

Overview of TSUBAME3.0 (#1 June 2017 Green 500)
BY TES-centric Architecture, Scalability to all 2160 GPUSs,
all nodes, the entire memory hierarchy

: k- Full Operations
Aug. 2017

Full Bisection Bandwidgh

Intel Omni-Path Interconnect. 4 ports/node
Full Bisection / 432 Terabits/s bidirectional
BW of entire Internet backbone traffic

LT VL L

FLERL R EL LY
AN WG TEREEE

\\
(Lustre FS 15.9PB+Home 45TB) Q\\ - P
—f “\ ’“ 24 . ’, Sgi o i\\‘_‘ , 58

i / 4 ' ] ' Ar ] -

=1 = y = p=t = =1 — s =4 =)

= — X -] = =l .= ) o 3 _' | 1=l }."fj = i .:-..'.ﬁ..:..
: ‘: () &3 4 = Q = ! s 0 = ] ==

540 Compute Nodes SGI ICE XA + New Blade
Intel Xeon CPU x 2+NVIDIA Pascal GPUx4 (NV-Link)
256GB memory 2TB Intel NVMe SSD

47.2 Al-Petaflops, 12.1 Petaflops

DOMH EXAScaler

DDON GRIDSCHMT




Early TSUBAME3 Architecture for Proposal
Ultra High BW, Deep Mem Hierarchy, Low Latency NW

NV-Link 80GB/s

'.
'.
H
....
.....
.
.
0..

.
.".
Y
L e
Tag,

Broadwell
Xeon-EP
14~ cores

Mellanox Mellanox Mellanox 3 Mellanox

EDR HCA No existing EDR HCA EDR HCA k : i EDR HCA
Or OmniPath Or OmniPath Or OmniPath Or OmniPath
100Gbps  PFO duct B Terabytes 100Gbps

Gigabytes/s

M. HH. lﬂ__l ~400+400Gbps/node

BCLEDELHL 7 _
””” s ~~]Petabit/s total

(TR T T racks

«—2 microsec end-to-end



TSUBAME3: A Massively BYTES Centric Architecture for Converged BD/Al and HPC

Intra-node GPU via NVLink Terabit class network/node Intra-node GPU via NVLink
220740GB/s 800Gbps (400+400)

UEIEEIL . .4 3 o 4 AFEIIE
ny “Big" Data in th
g_r?aRéB | ystem can be movec
150G8/s to anywhere via
RDMA speeds
minimum
Intel Optane 12.5GBytes/s
zéfJanifj?B/ > 16GB/s PCle also with S.tream 16GB/s PCle
Fully Switched Processing Fully Switched
NVMe Flash Scalable to all 2160
2TB 3GB/s ! GPUs, not just 8

~4 Terabytes/node Hierarchical Memory for Big Data / Al (c.f. K-compuer 16GB/node) 2

=» Over 2 Petabytes in TSUBAME3, Can be moved at 54 Terabyte/s or 1.7 Zetabytes / year



TSUBAME3: A Massively BYTES Centric Archltecture for Converged BD/Al and HPC

Intra-node GPU via NVLink Intra-node GPU via NVLink
| 20"‘4OGB/S 5 20~40GB/s

HBM2
64GB
2.5TB/s el

ny ”B:g Data in th

55;;8 stem caer moved
120aB/s | to-anywhere via

RDMA speeds
oo minimum
ntel Optane 12.5GBytes/s
(1;;I5;-anifi()3 B/ also with Stream | oot

L Processing Fully Switched

NVMe Flast 3 IScalable to all 2160
2TB 3GB/s S te GPUs, not just 8

~4 Terabytes/node Hierarchica/ Memory for Big Data / Al (c.f. K-compuer 16GB/node) 2

=» Over 2 Petabytes in TSUBAME3, Can be moved at 54 Terabyte/s or 1.7 Zetabytes / year



TSUBAMES.0 Co-Designed SGI ICE-XA Blade (new
- No exterior cable mess (power, NW, water
- Plan {0 bcome a future HPE product

= ==y -
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W e
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TSUBAME3.0 Compute Node SGI ICE-XA, a New GPU Compute Blade Co-
Designed by SGI and Tokyo Tech GSIC

SGI ICE XA Infrastructure

Intel Omnipath Spine Switch, Full Bisection Fat Tre Network

/s

idirectional for HP

4 r

INN

(
I
|
1
|
=1
.
|
|
I
|
1
|
I
|

g S

X60 Pairs

(Total 120 Switches)§

EEN
N
N

EEREE
=

e

1

|
TN

ICE XA Omni-Path
Switch Blade

ICE XA Omni-Path
Switch Blade

48-Port Intel Omni-Path
Switch ASIC

4 PCle 4 PCle
opltt Qp'tt
CPUl X9 CPUl
Compute Blade
________________ 400Ghps_/_node for
HPC and DNN

48-Port Intel Omni-Path
Switch ASIC

xxxxxxx

------------------------------------------------------------------------

x60 sets
(540 nodes)

e e e . o e e e e o = e -

16 PCI 16 PCI
SSD M& l X Pe=p pLX [4=—=3 OPA HFI
v
DIMM_Je— 16 PCI 16 PCle
[ DIMM_J+—— _
DIMM | P
DIMM_[< ' GPU O GPU 1
DIMM_J¢—
QPI€ § NVLinki I
DIMM_J¢—
DI 4 L GPU 2 GPU3
DIMM _J+——
DIMM x16 PCle x16 PCle
A
_f => PLX SECIS. OpA HEI
4 PCIej
x16 PCle > OPA HFI

I Ultra high performance & bandwidth “Fat Node”

High Performance: 4 SXM2(NVLink) NVIDIA Pascal
P100 GPU + 2 Intel Xeon 84 AI-TFLops
High Network Bandwidth — Intel Omnipath 100GBps
X 4 = 400Gbps (100Gbps per GPU)
High I/O Bandwidth - Intel 2 TeraByte NVMe
e >1PB & 1.5~2TB/s system total
* Future Octane 3D-Xpoint memory
Petabyte or more directly accessible
Ultra High Density, Hot Water Cooled Blades
e 36 blades/ rack = 144 GPU + 72 CPU, 50-60KW,
x10 thermals c.f. IDC



Node Performance Comparison T2/2.5/3

CPU Cores x Freq (GHz) 35.16 35.16 72.8 2.07
CPU Memory Capacity (GB) 54 54 256 A.74
CPU Memory Bandwidth (GB/s) 64 64 153.6 2.40
GPU CUDA Cores 1,344 3,004 14,336 1.78
GPU FP64 Peak (TFLOPS) 1.58 3.93 21.2 13.4 & 5.39
GPU FP32 Peak (TFLOPS) 3.09 11.85 42.4 13.7 & 3.58
GPU FP16 (TFLOPS) 3.09 11.85 84.8 27.4 & 7.16
GPU Memory Capacity (GB) 9 18 64 7.1 & 3.56
GPU Memory Bandwidth (GB/s) 450 750 2928 6.5 & 3.90
SSD Capacity (GB) 120 120 2000 16.67
SSD READ (MB/s) 550 550 2700 4.91
SSD WRITE (MB/s) 500 500 1800 3.60

Interconnect Bandwidth (Gbps) 80 80 400 5.00
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TSUBAM

- 3.0 Datacenter

15 SGI ICE-XA Racks
2 Network Racks
3 DDN Storage Racks

20 Total Racks

Compute racks cooled with
32 degrees warm water,
Yearound ambient cooling

Av. PUE =1.033



Japanese Open Supercomputing Sites Aug. 2017 (

Peak System Double FP | Nov. 2016
Rank Rpeak Top500

10

U-Tokyo/Tsukuba U
JCAHP

Tokyo Institute of
Technology GSIC

Riken AICS

Tokyo Institute of
Technology GSIC

Kyoto University

Japan Aerospace
eXploration Agency

Information Tech.
Center, Nagoya U

National Inst. for
Fusion Science(NIFS)

Japan Atomic Energy
Agency (JAEA)

AIST Al Research
Center (AIRC)

Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C
1.4GHz, Intel Omni-Path

TSUBAME 3.0 - HPE/SGI ICE-XA custom NVIDIA Pascal P100 + Intel

Xeon, Intel OmniPath

K computer, SPARC64 VllIfx 2.0GHz, Tofu interconnect
Fujitsu

TSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C
2.93GHz, Infiniband QDR, NVIDIA K20x NEC/HPE

Camphor 2 — Cray XC40 Intel Xeon Phi 68C 1.4Ghz

SORA-MA - Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C 1.98GHz,
Tofu interconnect 2

Fujitsu PRIMEHPC FX100, SPARC64 Xlfx 32C 2.2GHz, Tofu
interconnect 2

Plasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C
1.98GHz, Tofu interconnect 2

SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR

AAIC (AIST Al Cloud) — NEC/SMC Cluster, NVIDIA Pascal P100 + Intel
Xeon, Infiniband EDR

24.9

12.1

11.3

5.71

5.48
3.48

3.24

2.62

2.41

2.2

NA

40

33
30

35

48

54

NA



GFLOPS

DFP 64bit SFP 32bit 16bit

Simulation
4

Computer Graphics

Gaming l

Big Data

e P100-fp1l6 e====P100 ===K40

16000
14000
12000
10000
8000
6000
4000

2000

0 I T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Dimension (m=n=k)

NVIDIA Pascal |
P100 DGEMM Riken K
Performane

Tokyo Tech GSIC leads Japan in aggregated
Al-capable FLOPS TSUBAME3+2.5+KFC, in
all Supercomuters and CloudsNV

Site Comparisons of AI-FP Perfs

T-KFC
65.8 Petaflops i
Tokyo Tech

e s |

~6700 GPUs + ~4000 CPUs

U-Tokyo Oakforest-PACS (JCAH PC).‘
T Reedbush(U&H)

O 10 20 30 40 50 60 70
PFLOPS



JST-CREST “Extreme Big Data” Project (2013-2018)
From FLOPS Cen’rmc‘ro BYTES Cen’rrlc HPC

00 S 4
Given a to -CIG SS i o g,’,];?hls'c;:?; ssocglj Massive Sensors and
p LGI"QC SCG'C o Infrastructures Data ASSImIIGTIOn in

SuperCOmpUter, Me’ragecn:mlcbses Wea‘rher' Prediction Ssues regarding
how fast can we EBD System Sof Tware Gresmege | Architecture,
accelerate next o RE L0 incl. EBD Object System j algorithms, system
generation big Graph Store - — software in co-design
data c.f.

f _ Performance Model?
conventional

Convergent Achltecture (Phases 1~4) Use of accelerators
Clouds? Large Capac:ty NVM, High-Bisection NW  e.q. GPUs?
Cloud IDC — Supercomputers

Very low BW & Efficiency R L —ﬂ Compute&Batch-Oriented

Highly available, resilient o More fragile




Distributed Large-Scale Dynamic Graph Data Store
Keita Iwabuchit- 2, Scott Sallinen®, Roger Pearce?,
Brian Van Essen?, Maya Gokhale?, Satoshi Matsuoka?
1. Tokyo Institute of Technology (Tokyo Tech) L hg\gg%gﬁé—gggpoor;e
2. Lawrence Livermore National Laboratory (LLNL)
J 3. University of British Columbia & R

l'ﬂl(YlJ f'l =CH—

Dynamic Graphs (temporal graph) Sparse Large Scale-free

e the structure of a graph e social network, genome
changes dynamically over time analysis, WWW, etc.

e many real-world graphs are * e.g., Facebook manages
classified into dynamic graph 1.39 billion active users

as of 2014, with more
than 400 billion edgesjit 3

* Most studies for large graphs have not focused on a dynamic
graph data structure, but rather a static one, such as Graph 500

« Even with the large memory capacities of HPC systems, many
graph applications require additional out-of-core memory

(this part is still at an early stage)



Distributed Large—Scale Dynamic Graph Data Store (work with LLNL, [SC16 etc.])

Based on K-Computer results, adaping to (1) deep
memory hierarchy, (2) rapid dynamic graph changes

Dynamic Graph Construction (on—memory & NVM)

Comp- Comp- Comp-
K Computer Node Node Node
Iarge Dynamic Graph Application
memory ’ .
b t ' Large-scale Dynamic Graph Data Store !
ut very A i P e DN _{j :
expensive $m map | @';;w_a ________ $ o
DRAM only
Node Level Dynamic Graph Data Store
Follows an adjacency-list format and leverages an
open address hashing to construct its tables
Develop v s
algorithms 1 w1 w2 Edgedst
and SW Vertex tabrl—.
exploiting
large Vertex D
hierarchical . iEdge weight )
memory Y

Extend for multi—-processes using an async
MPI communication framework

C.f. STINGER (single—node, on memory)

STINGER

e A state—of—the—art dynamic graph processing
framework developed at Georgia Tech

Baseline model

J A naive implementation using Boost library (C++) and

the MPI communication framework

B Baseline DegAwareRHH

o

- 200

g

o

a 0 — — —
%2 6 12 24

Parallels

Multi-node Experiment

o DegAwareRHH '
2 billion

insertions

Inserted Billion Edges/sec

Number of Nodes (24 processes per node)

212x

¥

Dynamic graph store
w/ world’s top graph
update performance
and scalability

K. Iwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and S. Matsuoka, Towards a distributed large-scale dynamic graph data store. In 2016
IEEE Interna- tional Parallel and Distributed Processing Symposium Workshops (IPDPSW)



Large—scale Graph Colouring (vertex coloring)

SC'16

e (Color each vertices with the minimal #colours so that no two adjacent

vertices have the same colour
e Compare our dynamic graph colouring algorithm on
1. two static algorithms including GraphLab

against:

2. an another graph store implementation with same dynamic algorithm (Dynamic—MAP)

1024
512
Y
o 256
1%
f \
oo 128
o \
-
Tl
~ 64
(1]
S
g 32
o
|—
16
8 ) 1 1 1 1 )
1 2 4 8 16 32 64
Nodes
eli==GraphLab sses=Hash l=@=Dynamic-DARHH |==é=Dynamic-MAP
Static colouring Our DegAwareRHH Baseline

Scott Sallinen, Keita Iwabuchi, Roger Pearce, Maya Gokhale, Matei Ripeanu, “Graph Coloring as a Challenge Problem for Dynamic

Graph Processing on Distributed Systems”, SC’ 16

38



ScaleGraph Large-scale Graph Processing Framework
enhanced w/ User-Friendly Python / Spark Interface

e ScaleGraph [Suzumura]

e X10-based open source Highly Scalable Large Scale Graph Analytics Library
beyond the scale of billions of vertices and edges on Distributed Systems
e XPregel: Pregel-based bulk synchronous parallel graph processing framework
e Built-in graph algorithms (Centrality, Connected Component, Clustering, etc.)

e NEW Development: Python Interface

e Allow users to use ScaleGraph with Spark* by easy python interface

Software stack

User Program

Graph Algorithm

XPregel Sparse Matrix
X10 (Graph Processing System’ BLAS

File IO

$ Third Pareitibrary ScoleGraph eIl

Base
Library
MPI

X10 & C++ (ARPACK, METIS)

Team

Cluster

User
Python
Script

ScaleGraph

*Apache Spark: http://spark.apache.org/



Incremental Graph Community Detection

e Background

e Community detection for large-scale time-evolving and dynamic
graphs has been one of important research problems in graph

computing.
e |tis time-wasting to compute communities entire graphs every time
from scratch.

e Proposal

e An incremental community detection algorithm based on core
procedures in a state-of-the-art community detection algorithm
named DEMON.

e Ego Minus Ego, Label Propagation and Merge

Added vertex
Update Tl
o graph ::
t= S
Te T
original graph G Updated graph G’

EgoMinusEgo(v,, G @ &l

@D““—h‘ eeeee
SN .
P A -

Added vertex "'@

EgoMinusEgo(v, G’)

Hiroki Kanezashi and Toyotaro Suzumura, An Incremental Local-First Community Detection
Method for Dynamic Graphs, Third International Workshop on High Performance Big Graph
Data Management, Analysis, and Mining (BigGraphs 2016), to appear

Congress Data

140
120
2 100
£
= 80 101.0x
=
% 60 f
g aster
L
20
o —_—
e=0.25 £=0.50 e=0.75 €=0.25 £=0.50 £=0.75
Original Incremen tal
mAdd 130.426 130.839 130.548 0.049 0.017 0.02
HWBase 1.33 1.32 1.328 1.29 1.293 1.286
IMDb Data
600
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-
@ 400 101.5x
=
E
300
5 faster
&
2 200
o
100
o —
£=0.25 £=0.50 e=0.75 e=0.25 e=0.50 £=0.75
Original Incremen tal
mAdd 479.48 502.298 494.659 0.938 0.03 0.031
mBase 4.978 @ 4.913 5.047 4.9 4.968 4.89
Amazon Data
4500
4000
— 3500
?EI 3000 69.2x
i= 2500
i=
© 2000 faster
3
g 1500
“ 1000
500

0
£=0.25 &=0.50 £=0.75  £=0.25 £=0.50 £=0.75

Original Incremen tal
mAdd 3666.41 3900.43 3731.25 9.4371 0.1962 0.2047
HBase 35.499 37.276 36.871 44.057 36.367 42.175




GPU-based Distributed Sorting =0 o Femes
[Shamoto, IEEE BigData 2014, IEEE Trans. Big Data 2015]

e Sorting: Kernel algorithm for various EBD processing

e Fast sorting methods -
— Distributed Sorting: Sorting for distributed system i

* Splitter-based parallel sort
e Radix sort
* Merge sort

— Sorting on heterogeneous architectures

e Many sorting algorithms are accelerated by many cores and high memory bandwidth.

e Sorting for large-scale heterogeneous systems remains unclear

e We develop and evaluate bandwidth and latency reducing GPU-based HykSort on
TSUBAME2.5 via latency hiding

— Now preparing to release the sorting library




GPU implementation of splitter-
based sorting (HykSort)

e Weak scaling performance (Grand
Challenge on TSUBAME?2.5)

— 1~1024 nodes (2 ~ 2048 GPUs)
— 2 processes per node
— Each node has 2GB 64bit integer

e C.f. Yahoo/Hadoop Terasort:
0.02[TB/s]
— Including 1/O

Performance prediction

d(billions)

HykSort 1thread A
# HykSort 6threads
30- # HykSort GPU + 6threads
x1.4

)

S

S%0. x3.61 |

ke

S

3

B

>

S10-

x389
o- 1
0 500 1000 1500 2000
# of proccesses (2 proccesses per node)
HykSort 6threads
A E'()/:TSOH GPU + 6threads e PCle_#: #GB/s bandwidth
#® PCle_10 .
-+ PCle_100 of interconnect between
% PCle_200
PGle 50 CPU and GPU

Prediction of our implementation

x2.2 speedup compared to
CPU-based
implementation when the
# of PCl bandwidth
increase to 50GB/s

8.8% reduction of overall
runtime when the
accelerators work 4 times
faster than K20x



Xtr2sort: Out-of-core Sorting Acceleration
using GPU and Flash NVM (et sigbata20ts)

How to combine deepening memory layers for future
HPC/Big Data workloads, targeting Post Moore Era?

« Sample-sort-based Out-of-core Sorting Approach for Deep Memory

Hierarchy Systems w/ GPU and Flash NVM

— 1/O chunking to fit device memory capacity of GPU
— Pipeline-based Latency hiding to overlap data transfers between NVM, CPU, and

GPU using asynchronous data transfers,
e.g., cudaMemCpyAsync(), libaio

BYTESHLMDHPC )L
TJUX I GPUDI >
I{I-I]E—'I%—E\J_ I\t\ Z: chunks+6 | RD | R2H | H2D | Ex DZH‘H2W|WR|

chunk3+5 RD R2H | H2D EX D2H | H2W WR‘

BT AT (CE DA ot o = s

RD R2H | H2D EX D2H | H2W | WR

=tz
= E \ chunk&+2 RD R2H | H2D EX D2H | H2W | WR
chunkd7

RD R2H | H2D EX D2H | H2ZW | WR

chunk&J RD | R2ZH | H2D EX D2H | H2W | WR

¢ chunks i N
time

GPU

-

(r”—)

—

-— -

2)
—v— out-of-core-gpu
- ¢ - out-of-core-cpu(72)+psync
—e— out-of-core-cpu(72)+libaio
e - xtr2sort+psync
e

GPU + CPU + NVM

—

—

‘-———

CPU + NVM



Out-of-core GPU-MapReduce for
Large-scale Graph Processing [IEEE Cluster 2014]

Emergence of large-scale graphs B > wemepy (H20,02H) € processing for each chunk
- SNS, road network, smart grid, etc. [ Operaion oGPy = — = — — = = — — — :

- Millions to trillions of vertices/edges 'C M P AN ialatin — — =
— Need for fast graph processing on Sl Ziaiak 2t RN '
supercomputers i

OperationoN GPU b wpplg == = = == == = |

Problem: GPU memory capacity limits :-C Red

scalable large-scale graph processing | '-———-- il Aniaiile 4
Weak scaling on TSUBAME?2.5
Proposal: Out-of-core GPU memory s 3000 M= 1cpu (523 per node) g
Q —8—1GPU (523 per node)
management on MapReduce L2500 " 1528 per nodel 2 .10x

- Stream-based GPU MapReduce go 2000 | ~#-269Us (524 per node) (3 GPU vs 2CPU)

- Out-of-core GPU sorting w —8—3GPUs (524 per node)
2 1500
Experimental Results: 2 1000 /4//
performance improvement over CPUs &
- Map: 1.41x, Reduce: 1.49x, Sort: 4.95x £ 500
&

speedup 0 | | |
- Overlapping communication effectively 0 500 1000 1500

Number of Compute Nodes



Hierarchical, UseR-level and ON-demand File system(HuronFS)
(IEEE ICPADS 2016) w/LLNL

Compute Compute Compute Compute <
node 1 node2 | "TCCTCTCTCC node N node X
static hash +
N = — -

i —

----- -----

0
’ Parallel File System ‘ C HuronFS D)

S’arallel File systeni

HuronFS: dedicated dynamic instances to provide “burst buffer” for caching data

/0O requests from Compute Nodes are forwarded to HuronFS

 The whole system consists of several SHFS (Sub HuronFS)
e Workload are distributed among all the SHFS using hash of file path

Each SHFS consists of a Master and several IOnodes
e Masters: controlling all IOnodes in the same SHFS and handling all I/O requests
* |Onodes: storing actual data and transferring data with Compute Nodes

e Supporting TCP/IP, Infiniband (CCl framework)
e Supporting Fuse, LD _PRELOAD



HuronFS Basic 10 Performance

Latency (us)

800

600

400

200

1200
W fuse overhead
M process 1000
m epoll overhead
comm 800

o
o
o

Throughput (MiB/s)
(@)}
o
o

200

0
IPOIB CcCl
Latency
4000
Inifinband 4X FDR 56 3500
Gb/sec 2 3000
mellanox £ 2500
3 2000
CPU Intel(R) Xeon(R) ® 1500
CPU E5-2650v3 _E 1000
@ 2.30GHz 500
Mem 251G °

H |PolB

| CCI

write read
Throughput from single client

m write IPDIB read IPOIB

®mwrite CCI  mread CCl | |
- “ B II |
1 2 4

# of nodes (8 processes per node)

Throughput from single IOnode



Plans

e Continuing researching on auto buffer allocation

e Utilizing computation power on IOnodes
e Data preprocessing
e Format conversion

Data preprocessing,
format conversion, etc..

— o
o

Processing

In Memory
on IOnodes

Network Network




GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data

» Background

Snore sound (SnS) data carry very important information for diagnosis and
evaluation of Primary Snoring and Obstructive Sleep Apnea (OSA). With
the increasing number of collected SnS data from subjects, how to handle
such large amount of data is a big challenge. In this study, we utilize the
Graphics Processing Unit (GPU) to process a large amount of SnS data
collected from two hospitals in China and Germany to accelerate the
features extraction of biomedical signal.

» Acoustic features of SnS data

we extract 11 acoustic features from a large amount of SnS data, which can be
visualized to help doctors and specialists to diagnose, research, and remedy
the diseases efficiently.

Snore sound data information

Subjects | Total Time Data Size DEF:] Sampling Rate
(hours) (€13)) format

187.75 31.10 16 kHz, Mono
(Chlna +
Germany)

— GPL s CP) e—cced D

Running Tire [Seconds)
=y
Spead Up

L aadd

1

ata Size (Mumber Of Subj

Results of GPU and CPU based systems for processing SnS data

* Result

We set 1 CPU (with Python2.7, numpy 1.10.4 and scipy 0.17 packages) for
processing 1 subject’s data as our baseline. Result show that the GPU based
system is almost 4.6 X faster than the CPU implementation. However, the
speed-up decreases when increasing the data size. We think that this result
should be caused by the fact that, the transmission of data is not hidden by other
computations, as will be a real-world application.

* Jian Guo, Kun Qian, Huijie Xu, Christoph Janott, Bjorn Schuller, Satoshi Matsuoka, “GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data” , In proceedings of 5th IEEE Global Conference on

Consumer Electronics (GCCE 2016), October 11-14, 2016.



TSUBAMEZI.O Container-Based Fine-grainea
Spatial Resource Allocations of Fat Nodes

1

Resource Isolation via UGE _ _
Containers (future Docker etc.) Univa Grid

NIC2
NIC3 Mem

GPU2

MEM1

NIC1 m Allocated Resource

CPU 8 Cores, 64GB Mem

5 CPU 4 Cores, NIC2&3, GPU2&3, 48G

—5;— Container contiguration
and deployment tied to

-ngine



Bac kg roun d A kind of resource

assignment fragmentation

Multi-GPU batch-queue systetrfis have many
idle GPUs despite hay#@ jobs waiting, due

to the scattered idle-GPU problem [1].
?7?
. Job 1
Idle #Node: 1
#GPU: 2
| GPU || GPU ||GPU | ||| GPU || GPU [TSGPU

Scenario: Job 1 requests two GPUs on one node but
each node has only one unoccupied GPU left.
Result: Job 1 cannot run and two GPUs are left idle.

[1] P. Markthub et al. “Using rCUDA to Reduce GPU Resource-Assignment Fragmentation Caused by Job
Scheduler,” PDCAT2014
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Idle-GPU Problem in Multi-GPU Batch-Queue
Systems

TSUBAMEZ2.5’s G Queue (GPU Queue)

sgumber of nodes that had idle GPUs from 2013-Apr-11 to 2014-Apr-09

=2 idle GPU- 1 "’ W I

400- B 1 idle GPU

m 0 idle GPU ]

— # waiting jobs

g1
Ezuu The system had idle
GPUs even though
100 there were jobs

waiting!!!

4 e
W T ot T g T a8 T geR T ot T ot T get T e T eP T et T e 51



Previous Solution & Problems

Job 1
#Node: 1
#GPU: 2

Node A \/’

& A
Node B L

| GPU || GPU || GPU

| GPU || GPU || GPU | GProxy
1

+

1

Increased communication overhead

Previous Solution [1]:

» Enable the system to serve more
jobs by creating a GPU proxy
that links with a remote GPU.

e Proven to reduce job waiting
times as much as 25%.

//I_Hm.k I !

System can satisfy more jobs

Problems:
» Remote GPU execution overhead
* Network congestion

The execution times of GPU
communication intensive applications
(e.g. LAMMPS, SRAD) may increase

more than 5 times!!!

[1] P. Markthub et al. “Using rCUDA to Reduce GPU Resource-Assignment Fragmentation Caused by Job

Scheduler,” PDCAT2014

52



New Solution Overview

i Jobo | Job1
| #Node: 2 | #Node: 1 Job 1
i #GPU:2 | #GPU: 2
- hoose A #Node: 1
s sl ~ N
Node A Node B'~ (| #GPU 2
"GpU I, GPU ! GPU |||, GPU || GPU || GPU || GProxy
1SV S | GPU 1| GPU 1 "

| T;I'&e@w'eﬁlt ] 5 :l
Node A Node B
GPU || GPU || GPU GPU | GPU @ GPU M

Network

Migrate execution on a remote GPU to a local GPU when it
becomes available can solve the performance problems

Propose: Low-overhead remote GPU execution middleware

1. mrCUDA: an extension of rCUDA [1] to enable remote-to-local
GPU migration.

2. MRQ: a heuristic extension of job scheduling algorithms to make
the best out of mrCUDA.

[1] F. Silla, “Is remote GPU virtualization useful?” http://rcuda.net/pub/rCUDA barna 15.pdf, September 2015.
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54

erU DA Node 0 Node 1
!-\-[-Jplication g%r;t;?‘g :Grluo‘ ‘Gprm‘
- cudaMemcpy(...)
Objective: Enable seamless and “{# cudaKerelCal(. %
on-demand remote-to-local GPU | ... mrcuoatib |
migration on rCUDA A
e rCUDA handles remote GPU ' module [\B mhelper |
execution, while mrCUDA handles ___________ = mhefpe'
GPU migra’[ion. rCUDA lib libcudart |
e GPU migration starts after mrCUDA G.fuo B || rcupa daemon
receives a migration command via its —— j
special UNIX socket. *A B: Selectors

Migration Algorithm —a modified version of Replay Method [1]:

 Intercept all CUDA invocations.

» Before migration: Pass all intercepted calls to rCUDA while recording some
CUDA calls (e.g. cudaMalloc). To recreate remote GPU’s states on local GPU

 During migration: Replay the recorded calls in order and memsync GPU data.

« After migration: Pass all intercepted calls to libcudart without recording.

[1] A. Nukada et al. “NVCR: A transparent checkpoint-restart library for NVIDIA CUDA,” IPDPWS2011



Case Study: Migrating remote CUDA
Execution of LAMMPS

450

[ Exec Time

||l Record Overhead . e
400 Il Replay Overhead } negllglble

B Mem-Sync Overhead
350¢ ~

o
400l ViSible but smaIIJ

Linearly increase due to
250

- rCUDA’s overhead
200| { r before migration

Time (s)

150t

m After the migration,
1 mrCUDA completely cuts
7 off rCUDA’s overhead
in.friction in.melt in.'flol\rf’v.ﬁois “ iﬁn.ljh in.flow.couette

*2 nodes, Tesla K20c, InfiniBand 4xFDR *x%: migrate after finish x% of total iterations ”



GPU Occupancy Patterns

Systems can server
more jobs

concurrently with
MRQ.

MRQ uses the same
scheduling policy as
FCFS.

Jobs do not
experience
significant execution
time expansion,
mainly thanks to
GPU migration.

GOl | i w11 BB 5B B 00 B Iﬁﬂilll Bl nmEe g

Bl s IIIHIJI B £ !ﬁlalaalll.lllﬁ | EEE
G7 T ] _ B ::j. T
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Colors: remote GPUs
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Open Source Release of EBD System
Software (install on T3/Amazon/ABCI)

 mrCUDA e ScaleGraph Python
e rCUDA extension enabling remote— e Python Extension for ScaleGraph
to—local GPU migration X10—-based Distributed Graph Library
e https://github.com/EBD- e https://github.com/EBD-
CREST/mrCUDA CREST/scalegraphpython
e GPU 3.0 e Eclipse Public License v1.0
e Co—Funded by NVIDIA e GPUSort
e Huron FS (w/LLNL) e« GPU-based Large—scale Sort
e 1/0 Burst Buffer for Inter Cloud e https://github.com/EBD-
Environment CREST/gpusort
e https://github.com/EBD- e MIT License
CREST/cbb : . .
e Others, including dynamic graph

 Apache License 2.0

e Co—funded by Amazon store


https://github.com/EBD-CREST/mrCUDA
https://github.com/EBD-CREST/cbb
https://github.com/EBD-CREST/scalegraphpython
https://github.com/EBD-CREST/gpusort

_ Resource Reqwrements for Deep Learning
[Source: Preferred Network Japan Inc.]

To complete the learning phase in one day

. P:Pet
- Bio / Healthcare E:Eiaa
Image/Video ¢ F:Flops
Recognition [ £ = : @

@~ &@?— It's the FLOPS
10P (Image) ~ 10E (Vldeo) Flops 100P ~ 1E Flops (ln reduced
$BF—4 : BB 1000007525348 — A&z 04 ) LFRATTHILOMEDSNPS ..
¥+ — RT64 A [Google 2015] 10073 A T100PFlops, 1{EAT1EFlops preC| S|0n)
Image Recognition Auto Driving Robots / Drones

and BW!
o ©
EAT A
- v
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JST-REST “Development and Integration of Artificial
igence Technologies for Innovation Acceleration”
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Tokyo Tech
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Masssorage

Fast and cost-effective deep learning algorithm
platform for video processing in social infrastructure

% |

Principal Investigator: Koichi Shinoda

i

Collaborators: Satoshi Matsuoka

Tsuyoshi Murata
Rio Yokota

Tokyo Institute of Technology
(Members RWBC-OIL 1-1 and 2-1




Background

e \Video processing in smart society
for safety and security

* Intelligent transport systems
Drive recorder video

* Security systems
Surveillance camera video

e Deep learning

* Much higher performance than
before

e |T giants with large computational
resources has formed a monopoly

Problems :
e Real-time accurate recognition of small objects and their movement
e Edge-computing without heavy traffic on Internet

e Flexible framework for training which can adapt rapidly to the
environmental changes
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4 Layers of Parallelism in DNN Training

e Hyper Parameter Search
e Searching optimal network

configurations and parameters . IO IOHOIO
e Often use evolutionary algorithms — :i:,é:.j%:ﬁ:. ,%X,é:.j%:ﬁ:.
— OIS IS BN
e Data Parallelism g~ e\ le= 0= 0l "0 =X '8
_ _ SIS gl gt Sl glisivgisig
e Split and parallelize the batch data Egiigi=igi=igl %g‘. %gb
: ] S BRI
e Synchronous, asynchronous, hybrid, ... o = OF—0 O

* Model Parallelism

* Split and parallelize the layer calculations :A:é*: 'e g:g»:{t;:g»: 53:;:*8453:;:*:
in forward/backward propagation g === g g s TaglsTagdi=ssags
SRS IS RS RS RS TR
. Bgl=x 0= le=x 9=l 0l e
* |LP and other low level Parallelism IR DR D < D < B <
. . . A T e T o g o YA
* Parallelize the convolution operations etc. —' o:;: ‘:‘;:,oa;: “’: o{wz ‘zwz
(in reality matrix multiply) -




Parallelizing Deep Neural Network Training

Data Parallel SGD(Stochastic Gradient Descent)

Node

GPU

GPU

Node

GPU

~100M

GPU

Minibatch

=8
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Example Al Research: Predicting Statistics of Asynchronous SGD Parameters

for a Large-Scale Distributed Deep Learning System on GPU Supercomputers
Background Proposal

e In large-scale Asynchronous Stochastic Gradient Descent ¢ We propose a empirical performance model for an ASGD

(ASGD), mini-batch size and gradient staleness tend to be deep learning system SPRINT which considers probability
large and unpredictable, which increase the error of trained  {istribution of mini-batch size and staleness

P DENSO TTLAB
N A Mini-batch size Staleness
Objective function E DENSO IT LABORATORY, INC. ] 4 nOdeS NSubbak:h:‘l . Nsubbatch:1
Mini-batch size g °© Predicted
Staleness=0 TSUBAME @ ] )‘ ﬂlG nodes Measured
Tokyo Institute of Technology 8 | : !
o T | | | | ] | ] ]
W® , 100 200 300 400 500 600 0 2 4 6 8 10
Twice asynchronous Nsupbatch — 11 7 Neubbatch — 11
updates within z i Predicted
gradient computation 8§ 5
WD) e 8 7
100 200 300 400 50
i Staleness=2 Nuinibatch Measu red Nstaleness
DNN parameters space} (Nguppatc: # Of samples per one GPU iteration)

* Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers”, in proceedings of
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016



SWoPP2016 16/08/08

Performance Prediction of Future HW for CNN

O Predicts the best performance with two future architectural extensions

O FP16: precision reduction to double the peak floating point performance
O EDR IB: 4xEDR InfiniBand (100Gbps) upgrade from FDR (56Gbps)

— Not only flops, but also NW injection bandwidth is important for scalability

TSUBAME-KFC/DL ILSVRC2012 dataset deep learning
Prediction of best parameters (average minibatch size 1381+25%)

_ N_Subbatch | EpochTime | Average Minibatch Size
(Current HW) 1779 165.1

FP16 7 22 1462 170.1
EDR IB 12 11 1245 166.6
FP16 + EDR IB 8 15 1128 171.5
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The current status of Al & Big Data in Japan e

We need the triage of advanced algorithms/infrastructure/data but we lack

@’

the cutting edge infrastructure dedicated to Al & Big Data (c.f. HPC) AiRC
Al Venture Startups
Joint ~aa AIST Qf’ b < ‘] > R&D ML Big Companies Al/BD
RWBC | */isse B somes AL B> :
Open Innov. __ AIST-AIRC | ATRC P Nrefe re Alg orithms .R&D (aiso Science)
Lab (OIL) || RRAIEAF tworks ) SW TLAB e Seeking Innovative
(Director: Matsuoka) B p ENSG IT LAB:,RATORY NG _ H i
o t : t A’/BD Centers & ‘ qb HEIF WAL Appllcatlon of Al &
Riken NLI/ = nicT- Labs in National X DeNA Data
aien AP @ UCR/ UCRI |l.abs& Universities

@ Use of Massive Scale Data now

Massive Rise in Computing Wasted

SAZ}RA Temet Requirements (1 AI PF/person'-’) DENSO Petabytes of Drive FAsORshankvsy.

D0 - i 3

F|((J F(:% f'c orm T Recordmg Video FAN Uc
amazor Windows Azure FA&Robots

2 om

-emmza & BEEHRA

l I webservices

In HPC, Cloud continues to
be insufficient for cutting
edge research =>

dedicated SCs dominate & AI&Data
racing to Exascale Infrastructures Training

©

Web access and SoftBank ~ NTT

" merchandice

Massive “Big” Data in . loT Communication,
& “Big%Data

location & other data



AIST g*“ : H‘*ﬁ,
{ |
| ]

- Eﬁ\ 4

METI AIST-AIRC ABCI

as the worlds first large—scale OPEN Al Infrastructure
 ABCI: Al Bridging Cloud Infrastructure

e Top—Level SC compute & data capability for DNN (1307200 Al-Petaflops)
e Open Public & Dedicated infrastructure for Al & Big Data Algorithms,

AIRC

Software and Applications

(« 130~200 Al-Petaflops )
e < 3MW Power

e <1.1Avg. PUE

ST « Operational 2017Q4
a4 AIST \_ —2018Q1 -

TTUTE OF
AIVARID NS TRAL SCHNCE ARG TIECHH L OO AT)

Univ. Tokyo Kashiwa Campus

IVERMTY OKYD
amionaL instirute oF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) -



The “Chicken or Egg Problem” of
Al-HPC Infrastructures

e “On Premise” machines in clients => “Can’ t invest in big in Al
machines unless we forecast good ROI. We don’ t have the
experience in running on big machines.”

e Public Clouds other than the giants => “Can’ t invest big in Al
machines unless we forecast good ROI. We are cutthroat.”

e Large scale supercomputer centers => “Can’ t invest big in Al
machines unless we forecast good ROI. Can’t sacrifice our existing
clients and our machines are full”

 Thus the giants dominate, Al technologies, big data, and people stay
behind the corporate firewalls---



But Commercial Companies esp. the “Al
Giants”are Leading Al R&D, are they not?

* Yes, but that is because their shot—term goals could harvest the
low hanging fruits in DNN rejuvenated Al

e But AI/BD research is just beginning—— if we leave it to the
Interests of commercial companies, we cannot tackle difficult

problems with no proven ROI
* Very unhealthy for research

e This is different from more mature
fields, such as pharmaceuticals or
aerospace, where there is balanced
Investments and innovations in both :
academia/government and the industry e,

o The Information Research Topics About Qur Subscribers LogIn Q

Si
Trending Stories The Reality Behind Magic Leap
Google Scaled Back Self-Driving Car Ambitions

EXCLUSIVE  pusiished ab

Google Scaled Back Self-Driving Car
Ambitions

project. Instead, the self-driving car pioneer has settled on a more practical effort to

partner with automakers to make a vehicle that dhives itself but has traditional features

for human drivers.

Meanwhile, Lany Page is planning to move its self-driving unit out of Google X, its



ABCI Prototype: AIST Al Cloud (AAIC)
March 2017 (#3 June 2017 Green 500)

e 400x NVIDIA Tesla P100s and Infiniband EDR accelerate various Al workloads
including ML (Machine Learning) and DL (Deep Learning).

« Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache
Spark w/ its ecosystem.

SINETS _
Internet Firewall :
Connection » FortiGate 3815D x2 :

 FortiAnalyzer 1000E x2 )

10-100GbE

GbE or 10GbE

Service and Manage&ent Network

AI Computation System 4g8TP§SI\§I33' GPUs Large Capacity Storage System
. emory
Computation Nodes (w/GPU) x50 DDN SFA14K
« Intel Xeon E5 v4 x2 56TB SSD

 File server (w/10GbEx2,
IB EDRx4) x4

Interactive Nodes « 8TB 7.2Krpm NL-SAS : :
2 DD %730 >4PiB effective

[ Mgmt & Service ] - GRIDScaler (GPFS) RW100GB/s
Nodes x16 \ D

» NVIDIA Tesla P100 (NVLink) x8

Computation Nodes (w/o GPU) x68
» Intel Xeon E5 v4 x2
.+ 256GiB Memory, 480GB SSD

IB EDR (100Gbps)

Computation Network Bi-direction 200Gbps

Mellanox CS7520 Director Switch Full bi-section bandwidth
» EDR (100Gbps) x216

IB EDR (100Gbps)




The “Real” ABCI - 2018Q1

Extreme computing power

- w/ >130 AI-PFlops for AI/ML especially DNN
— x1 million speedup over high-end PC: 1 Day training for 3000-Year DNN
training job
- TSUBAME-KFC (1.4 AI-Pflops) x 90 users (T2 avg)
Big Data and HPC converged modern design
— For advanced data analytics (Big Data) and scientific simulation (HPC), etc.

— Leverage Tokyo Tech’s “TSUBAME3” design, but differences/enhancements
being AI/BD centric

Ultra high BW & Low latency memory, network, and storage
— For accelerating various Al/BD workloads
— Data-centric architecture, optimizes data movement

Big Data/AI and HPC SW Stack Convergence

— Incl. results from JST-CREST EBD

— Wide contributions from the PC Cluster community desirable.
Ultra-Green (PUE<1.1), High Thermal (60KW) Rack

— Custom, warehouse-like IDC building and internal pods
— Final “commoditization” of HPC technologies into Clouds

nanonaL nstrute of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



AIST
®
G&J

ABCI Cloud Infrastructure

e Ultra-dense IDC design from ground-up

- Custom inexpensive lightweight “warehouse” building w/ substantial ABCI Al-IDC CG Image
earthquake tolerance

- x20 thermal density of standard IDC el
e Extreme green e |
- Ambient warm liquid cooling, large Li-ion battery storage and hlgh-

efficiency power supplies, etc.

- Commoditizing supercomputer cooling tec
Clouds (60KW/rack)

e Cloud ecosystem
- Wide-ranging Big Data and HPC standard software stacks
e Advanced cloud-based operation

- Incl. dynamic deployment, container-based virtualized provisioning,
multitenant partitioning, and automatic failure recovery, etc.

- Joining HPC and Cloud Software stack for real
e Final piece in the commaoditization of HPC (into IDC)

wstirute o ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 72
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ABCI Cloud Data Center
“Commoditizing 60KW/rack Supercomputer”:

hd

18 Racks
. ) Future e T B
Passive Cooling Tower e +  StorageRack i
Free cooling Space

Cooling Capacity: MW

Y I

W:18m x D:24m x H:8m

Single Floor, inexpensive build
Hard concrete floor 2 tonnes/m2
weight tolerance for racks and
cooling pods
Number of Racks

e |nitial: 90

« Max: 144
Power Capacity

e 3.25 MW (MAX)

Cooling Unit Space Server Room * Cooling CapaCity

_ HH“ QH @ e 3.2 MW (Minimum in
Summer)

Active Chillers Compue Rack

Cooling Capacity: 200kW [ I e e S S IJ
P by : 7
FTTETTTT 72 Racks TR -

lﬁff A CompueRack K S
( Lithium battery e
1MWh, IMVA |
= M
[ ]

2 Layout Plan




Water Clrcult
Capping Wl

Fan coll Unit
+

Implementing 60KW cooling in Cloud IDC — Cooling Pods

Busbar Fan Coll Linit
0 0 Cable Duct

Cooling Block Diagram (Hot Rack)

+ Ligfting Capping Wl

* Server Rack
19 Inch or 23 Inch 48U Radk

. 43U W70 % D 1200
Hot Aisle *

Bervar Racky

JxLeU—+AFT

Commoditizing Supercomputing
Cooling Density and Efficiency

Warm water cooling — 32C

Liquid cooling & air cooling in same rack
60KW Cooling Capacity, 50KW
Liquid+10KW Air

Very low PUE

Structural integrity by rack + skeleton
frame built on high flat floor load

Hot Water
Cold Water Circuit: 40°C
Circuit: 32°C Fan Coil Unit
Cooling '
F Capacity 10kW ﬁ
Air: 35°C CDU Air: 40°C
Cooling
Capacity10kW
| Water___| Hot Aisle
Front ::> ﬁ |:> Capping
side /gomputing _ _
Water Block }/  Server Cooling Capacity
(CPU or/and / « Fan Coil Unit 10KW/Rack
Accelerator, etc. « Water Block: 50KW/Rack
Cold Aisle: 35°C o Zas | Hot Aisle: 40°C

Flat concrete slab — 2 tonnes/m2 weight tolerance




AIST
G O

ABCI Procurement Benchmarks i\i'Rc

e Big Data Benchmarks e AI/ML Benchmarks

— (SPEC CPU Rate) - Low precision GEMM

e CNN Kernel, defines “Al-Flops”

- Graph 500 _ Single Node CNN

— MinuteSort e AlexNet => RESNET?

- Node Local Storage I/0 " |ItL'S\|\/|R(é|20(1:%\| Eataset

3 — Multi-Node

Parallel FS I/O o Caffe+MPI ?could allow other
MPI-enabled frameworks)

— Large Memory CNN
e Convnet on Chainer

No traditional HPC - RNN/LSTM |
. ) e OpenNMT  RNN (collaboration
Simulation Benchmarks w/NICT UCL)

Except SPECCPU

r ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



Basic Requirements for Al Cloud System

BD/AI User Applications

Machine Graph Deep Web
Learning Computing Learning Services
Libraries Libraries Frameworks

Python, Jupyter Notebook, R etc. + IDL

Numerical Libraries BD Algorithm Fortran - C - C++
BLAS/Matlab Kernels (sort etc.) Native Codes

MPI - OpenMP/ACC - CUDA/OpenCL \

Parallel Debuggers and Profilers ‘

Application

v Easy use of various ML/DL/Graph frameworks from
Python, Jupyter Notebook, R, etc. —
v' Web-based applications and services provision

System Software

v HPC-oriented techniques for numerical libraries, BD
Algorithm kernels, etc.

v Supporting long running jobs / workflow for DL

v Accelerated I/0 and secure data access to large data

PFS DFS RDB  CloudDB/NoSQL  SQL sets
PostgreSQL Hbase/MondoDB/Redis Hive/Pi . . .
GPFS o : ° v' User-customized environment based on Linux
Batch Job Workflow Resource containers for easy deployment and reproducibility
Schedulers Systems Brokers
Linux Containers - Cloud Services OS
Linux OS
— - 86 (Xeon, Pk Hardware
. : e - Accelerators e.g. i . )
( _High Capaclty 1 v Modern supercomputing facilities based on commaodity
ow Latency NW oracle -

components



Fujitsu Deep Learmng Processor (DLU™)  rjisy

DL ™

(Deep Learning Unit)

supercomputer K technologies

DLU™ features

M Architecture designed for Deep Learning

M High performance HBM2 memory

M Low power design

=> Goal: 10x Performance/Watt compared to others

De ;'!.eaming Unit

.Massively parallel : Apply supercomputer interconnect technology “Exascale” Al
=> Ability to handle large scale neural networks possible in
—>TOFU Network derivative for massive scaling

1H2019

Designed fOLScaLabLe_LaamLag,iechmcalbLsupeaaLto_GQlee_Iﬂlz—

All Rights Reserved, Copyright 2017 FUJITSU LIMITED



Cutting Edge Research AI Infrastructures in Japan

Accelerating BD/AI with HPC
(and my effort to design & build them)

Under

Acceptance
Mar. 2017

8.2 Al-PF

In Production AIST Al Cloud
o x5.8  (AIST-AIRC/NEC)

N

Oct. 2015
TSUBAME-KFC/DL
(Tokyo Tech./NEC)
1.4 Al-PF(Petaflops)

R&D Investments into world leading
Al/BD HW & SW & Algorithms and their
co-design for cutting edge Infrastructure
absolutely necessary (just as is with
Japan Post-K and US ECP in HPC)

i Takyao Teck
I
I
: 1H 20197
Being | : “ExaAl”
Manufactured Mar. 2018 x3.0%7.7 I ~1Al-ExaFlop
Aug. 2017 x2.874.2  apcl (AIST-AIRC) | Undergoing
TSUBAMES3.0 (Tokyo Tech./HPE) 5130 al-pF ! Engineering
47.2 Al-PF (65.8 Al-PF ' Stud
X2.8 \w/Tsubame2.5) =T : y
I
IDC under ; 05
constructiong#* 3 5| aes ©
00 " :s’{\\\\)
&\)(\666 I
W :

THE NATIONAL
ARTIFICIAL INTELLIGENCE
RESEARCH AND DEVELOPMENT
STRATEGIC PLAN
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Co-Design of BD/ML/AI with HPC using BD/ML/AI

- for survival of HPC Acceleration and Scaling of
Accelerating BD/ML/AI Vi? HPC and | Farge Scal{e S;rphs
% Conventional HPC Apps Technologies and Bl
f” it Infrastructures :

/Big Data AI-\ Big Data and

. utual and Semi-
Obtimizi Oriented Automated Co- ML/AI Apps Image and Video
ptimizing System E | on of S B
Software and Ops Supercomput cceleration o and = S1m

Methodologies

Acceleration

Future Big Data-AI Scaling, and
Supercomputer Design Control of HPC via 8,
Ao HE. 1 BD/ML/Al and
ABCI: World’s first and future SC designs

largest open 100 Peta Al-
Flops Al Supercomputer,
Fall 2017, for co-design




Sonar collects data from the HPC Center and applications,

allowing users to access it with secure permissions
(Slide courtesy Todd Gamblin @ LLNL)

Job allocations

Runtimes
Phases/llterations
Memon vy Allocations
Temperat:
Humidit Data accesse d
Power Access rat
Bandwidth gz!;:::wgsﬁ! Data mot
Data Traffic

FLOPs

Instructions

Cache Misses

J u pyter size/contents
e routing
tion rates
ScrubJay L.
HPC Center Data | Application Data
Spark J
. J
( N
Cassandra

Sonar Data Cluster
Provides storage and compute for performance analysis.
2 clusters: CZ, RZ (SCF TBD)

Sonar enables all LC users to research into the root causes of performance variation

Lawrence Livermore National Laboratory Sonar Prediction Apollo ScrubJay

LLNL-PRES-730739

NS5

National Nucioar Socurity

81



We combine neural networks with queue

simulation to predict resource utilization
(Slide courtesy Todd Gamblin @ LLNL)

Convolutional Neural Networks Job Runtime Queue Simulation

| N
D | =
1 |

Now MNow + 1 Hour

Job Script

#1/binfbash
#PBS -q pbatch
#PBS -1 nodes=8

#run_mpirun()

#

mpirun -np & main
#

User Estimate CNN prediction

CNN prediction: @

— Takes only job scripts and queue data as input _
— Leverage unstructured information (coding style, job scripts) I/O Bandwidth
— No preprocessing of job scripts required; fully automated

Queue simulation:

— Use predicted runtimes to simulate future job schedule Observed
= We can predict many I/O bursts.
— Some bursts can’t be predicted b/c jobs enter the queue and
run immediately
— There may be periodicity or other patterns to these bursts Predicted

(30 min horizon)

We are investigating additional modeling techniques
to predict bursts that cannot be simulated

These results will provide input for resource-aware scheduling on the Flux project

)

Lawrence Livermore National Laborator Sonar Prediction Apollo ScrubJa \/ V)
LLNL-PRES-730739 e p VA Nm &. v&‘*ﬂ




Power optimization using Deep Q-Network
- Background

Power optimization by frequency control in existing research

Kento Teranishi

Frequency

K
Performance counter P = f(xp xz,_") >
Temperature
Frequency,... T,.=g(x,x,,...)

» Detailed analysis is necessary
» Low versatility [ Use Deep Learning for analysis. J

- Objective

Implement the computer

control system using Deep Q-Network. Counter
Power

/Deep Q-Network (DQN) I Frequency

Temperature
etc.

Deep reinforcement learning
Calculate action value function Q from neural network
Used for game playing Al, robot car, AlphaGO.

N /

Frequency
control



We are implementing the US AlI&B
...in Japan, at AIRC w/ABCI

e Strategy 5: Develop shared public datasets and

nvironments for Al training an ing. Th
environments for Al training and testing. The THE NATIONAL

depth, quality, and accuracy of training datasets ARTIFICIAL INTELLIGENCE
and resources significantly affect Al performance. RESEARCH AND DEVELOPMENT

Researchers need to develop high quality
datasets and environments and enable

responsible access to high-quality datasets as well National Science and Technology Council
as to testing and training resources.

Networking and Information Technology
Research and Development Subcommittee

e Strategy 6: Measure and evaluate Al technologies
through standards and benchmarks. Essential to
advancements in Al are standards, benchmarks,
testbeds, and community engagement that guide
and evaluate progress in Al. Additional research is
needed to develop a broad spectrum of
evaluative techniques.

October 2016




What is worse: Moore’s Law will end in the 2020’s

 Much of underlying IT performance growth due to Moore’s law

e “LS|: x2 transistors in 1~1.5 years”
e Causing qualitative “leaps” in IT and societal innovations
* The main reason we have supercomputers and Google...

*But this is slowing down & ending, by mid 2020s...!!!

* End of Lithography shrinks The curse qfconstant
 End of Dennard sca.lmg transistor power shall Gordon Moore
* End of Fab Economics soon b g om 115

*How do we sustain “performance growth’(f ﬁ%yond the “end of

Moore”?

* Not just one-time speed bumps
 Will affect all aspects of IT, including BD/AI/ML/IoT, not just HPC
* End of IT as we know it



20 year Eras towards of End of Moore’s Law

20-year fe 1980s~2004 )
Moore-Reanard :
35 YEARS OF MICROPROCESSOR TREND DATA .-===27 Dennard scaling,
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- ILP-Vector Pert+ = single
3 ©3-95nN ' ’ ’ ’ "3’, ransistors . . = I
10 35qmda;§25 o towanty  Killer-Micro Era thread+ = transistor
10° L C?::ant‘ A >_& freg+ = power+ _<
105 _ ___________ Trans|storpower . ..: '. : . 20 year 2004~2015 featu re
16t L N 4 : " Peomame  Post-Dennard scaling, perf+ =
A f”e':'”” Many-Core Era |  transistor+ = core#t+,
3 N m A W e Wt ® _* o :.. .requ.ency
We T g B constant power
10° N LT - e * 2015~2025 all
0t /T Numberor \_ above gets harder
! [ ~ -
oL 20-year 2025t p;)st Moore,
; j j ; j j j j i 3 constan
1975 1980 1985 1990 1995 2000 2005 2010 2015 Next-Gen

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Need to realize the next 20-year era of supercomputing

Post-Moore era

feature&power =
flat performance



The “curse of constant transistor power”
- lgnorance of this is like ignoring global warming -

e Systems people have been telling the algorithm people that
“FLOPS will be free, bandwidth is important, so devise
algorithms under that assumption”

* This will certainly be true until exascale in 2020...

e But when Moore’s Law ends in 2025-2030, constant transistor
power (esp. for logic) = FLOPS will no longer be free!

e So algorithms that simply increase arithmetic intensity will no
longer scale beyond that point

* Like countering global warming — need disruptive change in
computing — in HW-SW-Alg-Apps etc. for the next 20 year era




Performance growth via data-centric computing:
“From FLOPS to BYTES”

 |dentify the new parameter(s) for scaling over time

e Because data-related parameters (e.g. capacity and bandwidth) will still
likely continue to grow towards 2040s

e Can grow transistor#f for compute, but CANNOT use them AT THE SAME
TIME(Dark Silicon) => multiple computing units specialized to type of data

e Continued capacity growth: 3D stacking (esp. direct silicon layering) and
low power NVM (e.g. ReRAM)

e Continued BW growth: Data movement energy will be capped constant by
dense 3D design and advanced optics from silicon photonics technologies

e Almost back to the old “vector” days(?), but no free lunch — latency still
problem, locality still important, need general algorithmic acceleration
thru data capacity and bandwidth, not FLOPS




Many Core Era

Post Moore Era

Flops-Centric Algorithms and Apps

Flops-Centric System Software

Homogeneous General Purpose Nodes

Compu Localized Dat
Node
Compu ute
Nod No
>

Loosely Coupled with Electronic Interconnect

Compute
odes

Transistor Lithography Scaling

(CMOS Logic Circuits, DRAM/SRAM)

Hardware/Software System APIs e ’
I
Flops-Centric Massively Parallel Architecture

Bytes-Centric Algorithms and Apps

Bytes-Centric System Software

Hardware/Software System APIs
Data-Centric Heterogeneous Architecture

Reconfigurable
Massive BW Dataflow Optical
3-D Package DNN& Computing
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Non-Volatile Quantum
Memory Low Precision

Error-Prone
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Ultra Tightly Coupled w/Aggressive
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(Nanophotonics, Non-Volatile Devices etc.)




Multi-Phyics

Massive Medical

Simulation Manufacturing Imagin Fusion/Plasma EMF Analysis Post-Moore
£ine Performamce
Auto Tuning Models
I ( Couplers ‘
POSt-|\/|00re IS NOT d Post-Moore Computational P T 12

Science Libraries
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Algorithms
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Post-Moore Programming Model
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Data-Movement
Runtime

“Rebooting Computing”
in terms of devices,
architectures, software.New memory Devices

: PC-RAM
Algorlthrns, and SR AN
applications necessary STT-MRAM

3D architecture
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Memory
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Hierarchical Data
Abstractions

Data & Custom Compute Centric Platform Accelerator
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Silicon Photonics WDM Interconnect
Photonic Switching Brain-inspired Computing Post-Moore
Photonic Interposes Quantum Computing Performance
Photonic Compute Devices Low Precision & Neural Networks/ Parameters
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