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Tera(=1012)Bytes
Peta(=1015)Bytes

Exa(=1018)Bytes

Zeta(=1021)BytesBig Data Exploding with IoT



55
32nm 40nm

>400GB/s Mem BW
80Gbps NW BW
~1KW max

>1.6TB/s Mem BW >12TB/s Mem BW
35KW Max

4224 GPUs
>600TB/s Mem BW
220Tbps NW 
Bisecion BW
1.4MW Max

TSUBAME2.0 Nov. 1, 2010
“The Greenest Production Supercomputer in the World”

• GPU-centric (> 4000) high performance & low power
• Small footprint (~200m2 or 2000 sq.ft), low TCO
• High bandwidth memory, optical network, SSD storage…

TSUBAME 2.0
New Development

2013 GPU 
Upgrade

TSUBAME2.5
5.7 Petaflops



HPC and BD/AI Convergence Example [ Yutaka Akiyama, Tokyo Tech]

Oral/Gut Metagenomics

Ultra-fast Seq. Analysis Exhaustive PPI 
Prediction System

Pathway Predictions

Fragment-based
Virtual Screening

Learning-to-Rank VS

Genomics Protein-Protein
Interactions

Drug Discovery

• Ohue et al., Bioinformatics (2014)

• Suzuki et al., Bioinformatics (2015)
• Suzuki et al., PLOS ONE  (2016)

• Matsuzaki et al., Protein Pept Lett (2014) • Suzuki et al., AROB2017 (2017)

• Yanagisawa et al., GIW (2016)

• Yamasawa et al., IIBMP (2016)
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EBD vs. EBD : Large Scale Homology Search for Metagenomics

increasing

Taxonomic composition

Next generation sequencer

- Revealing uncultured microbiomes and finding novel genes in various environments
- Applied for human health in recent years 

O(n)

Meas.
data

O(m)  Reference
Database

O(m n) calculation

Correlation,
Similarity search

EBD

・with Tokyo Dental College, Prof. Kazuyuki Ishihara

・Comparative metagenomic analysis bewtween
healthy persons and patients

Various environments

Human 
body

Sea

Soil

EBD

High risk microorganisms are detected. 

Metabolic Pathway

Metagenomic analysis of periodontitis patients

increasing



Development of Ultra-fast Homology Search Tools
x100,000 ~ x1,000,000 c.f. high-end BLAST WS (both FLOPS and BYTES)
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10,000 sequences (sec.)
(3.9 GB DB、1CPU core)

Suzuki, et al. Bioinformatics, 2015.

Subsequence sequence clustering 

GHOSTZ-GPU
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×70 faster than 1 core
using 12 cores + 3 GPUs

Suzuki, et al. PLOS ONE, 2016.

Multithread on GPU MPI + OpenMP hybrid pallelization

Retaining strong scaling 
up to 100,000 cores

GHOST-MP
Kakuta, et al. (submitted)

×240 faster than 
conventional algorithm

TSUBAME 2.5 Thin node GPU
TSUBAME 2.5

__ GHOST-MP

mpi-BLAST

×80〜×100 
faster



Plasma Protein Binding (PPB) Prediction by Machine Learning
Application for peptide drug discovery

Problems

・ Candidate peptides are tend to be degraded 
and excreted faster than small molecule drugs

・ Strong needs to design bio-stable peptides for 
drug candidates

Experimental value
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d 
va

lu
e Previous PPB prediction 

software for small 
molecule can not 
predict peptide PPB

Solutions

Compute Feature Values
（more than 500 features）

LogS
LogP

:
MolWeight

:
SASA

polarity

R2 = 0.905

Experimental value
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ed
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f

A constructed model can 
explain peptide PPB well  

PPB value

Combining feature values for 
building a predictive model



Molecular Dynamics Simulation for Membrane Permeability

Sequence：D-Pro, D-Leu, D-Leu, L-Leu, D-Leu, L-Tyr
Membrane permeability ：7.9 × 10 -6cm/s

1) Single residue mutation can drastically 
change membrane permeability

2) Standard MD simulation can not follow 
membrane permeation. 

Membrane permeation is millisecond order phenomenon. 

Ex ) Membrane thickness : 40 Å
Peptide membrane permeability : 7.9×10-6 cm/s

Typical peptide membrane permeation takes       
40 Å / 7.9×10-6 cm/s = 0.5 millisecond

Problems

1) Apply enhanced sampling Supervised MD (SuMD)

Metadynamics (MTD)

CV

Fr
ee

 e
ne

rg
y

2) GPU acceleration and massively parallel 
computation.  

Solutions

・ Millisecond order phenomenon can be simulated.
・ Hundreds of peptides can be calculated 

simultaneously on TSUBAME.

Sequence：D-Pro, D-Leu, D-Leu, D-Leu, D-Leu, L-Tyr
Membrane permeability ：0.045 × 10 -6cm/s

×0.006

GROMACS
DESMOND

MD engine

on GPU

Application for peptide drug discovery



RWBC-OIL 2-3: Tokyo Tech IT-Drug Discovery Factory
Simulation & Big Data & AI at Top HPC Scale
（Tonomachi, Kawasaki-city: planned 2017, PI Yutaka Akiyama）

Tokyo Tech’s research seeds
①Drug Target selection system

②Glide-based Virtual Screening 

③Novel Algorithms for fast virtual
screening against huge databases

New Drug Discovery platform especially for
specialty peptide and nucl. acids.

Plasma binding
（ML-based）

Membrane penetration
（Mol. Dynamics simulation）

N

O

N

Minister of Health, Labour and Welfare Award of 
the 11th annual Merit Awards for Industry-
Academia-Government Collaboration

TSUBAME’s GPU-environment allows
World’s top-tier Virtual Screening

• Yoshino et al., PLOS ONE (2015)
• Chiba et al., Sci Rep (2015)

Fragment-based efficient algorithm 
designed for 100-millions cmpds data

• Yanagisawa et al., GIW (2016)

Application projects

Drug Discovery platform powered by 
Supercomputing and Machine Learning

Investments from JP Govt., Tokyo Tech. (TSUBAME SC)
Muninciple Govt (Kawasaki), JP & US Pharma

Multi-Petaflops Compute
Peta~Exabytes Data
Processing Continuously

Cutting Edge, Large-
Scale HPC & BD/AI 
Infrastructure 
Absolutely Necessary



EBD App2: Miyoshi Group (Weather Forecast Application)

Big Data Assimilation 
for severe weather forecast 

120 times more rapid than hourly update cycles

Revolutionary super-rapid 30-sec. cycle

Goal ： Pinpoint (100-m resol.) forecast of severe local weather by
updating 30-min forecast every 30 sec!

Only in 10 minutes!



1
3

Tremendous Recent Rise in Interest by the Japanese 
Government on Big Data, DL, AI, and IoT

• Three national centers on Big Data and AI launched 
by three competing Ministries for FY 2016 (Apr 2015-)
– METI – AIRC (Artificial Intelligence Research Center): AIST (AIST 

internal budget + > $200 million FY 2017), April 2015
• Broad AI/BD/IoT, industry focus

– MEXT – AIP (Artificial Intelligence Platform): Riken and other 
institutions ($~50 mil), April 2016

• A separate Post-K related AI funding as well.
• Narrowly focused on DNN

– MOST – Universal Communication Lab: NICT  ($50~55 mil)
• Brain –related AI

– $1 billion commitment on inter-ministry AI research over 
10 years

Vice Minsiter
Tsuchiya@MEXT
Annoucing AIP 
estabishment



Core Center of AI for Industry-Academia Co-operation

Application Domains

NLP, NLU 
Text  mining

Behavior 
Mining & Modeling

Manufacturing
Industrial robots

Automobile

Innovative 
Retailing

Health Care
Elderly Care 

Deployment of AI in real businesses and society 

Data-Knowledge integration AIBrain Inspired AI

Ontology
Knowledge

Model of
Hippocampus

Model of
Basal ganglia

Logic & Probabilistic
Modeling

Bayesian net ･･･

･･･

Security
Network Services
Communication

Big Sciences
Bio-Medical Sciences

Material Sciences

Model of
Cerebral cortex

Technology transfer
Starting Enterprises

Start-Ups
Institutions
Companies

Technology transfer
Joint research Common AI Platform

Common Modules
Common Data/Models

Planning
Control

Prediction
Recommend

Image Recognition
3D Object recognition

Planning/Business Team

･･･

Effective Cycles among Research and Deployment of AI 

Standard Tasks
Standard Data

AI Research Framework

Planning/Business Team

2015- AI Research Center (AIRC), AIST
Now > 400+ FTEs

Matsuoka : Joint 
appointment as 
“Designated” Fellow 
since July 2017

Director: 
Jun-ichi Tsujii



Industry

ITCS 
Departments

Other Big Data / AI 
research organizations 
and proposals
JST BigData CREST
JST AI CREST
Etc.

Tsubame 3.0/2.5
Big Data /AI 
resources

Industrial 
Collaboration in data, 
applications

Resources and Acceleration of
AI / Big Data, systems research

Basic Research 
in Big Data / AI 
algorithms and 
methodologies

Joint 
Research on 
AI / Big Data 
and 
applications

Application Area
Natural Langauge
Processing
Robotics
Security

National Institute for 
Advanced Industrial Science 
and Technology (AIST)

Ministry of Economics 
Trade and Industry (METI)

Director: Satoshi Matsuoka

Tokyo Institute of 
Technology / GSIC

Joint Lab established Feb. 
2017 to pursue BD/AI joint 
research using large-scale 
HPC BD/AI infrastructure 

AIST Artificial 
Intelligence 

Research Center 
(AIRC)

ABCI 
AI Bridging Cloud 

Infrastructure



Characteristics of Big Data and AI Computing
As BD / AI

Graph Analytics e.g. Social Networks 
Sort, Hash, e.g. DB, log analysis 

Symbolic Processing: Traditional AI

As HPC Task
Integer Ops & Sparse Matrices 

Data Movement, Large Memory
Sparse and Random Data, Low Locality

As BD / AI
Dense LA: DNN

Inference, Training, Generation

As HPC Task
Dense Matrices, Reduced Precision 
Dense and well organized neworks

and Data

Acceleration, Scaling

Opposite ends of HPC
computing spectrum, 
but HPC simulation 

apps can also be
categorized likewise

Acceleration, Scaling
Acceleration via 
Supercomputers 
adapted to AI/BD



Sparse BYTES: The Graph500 – 2015~2016 – world #1 x 4
K Computer #1 Tokyo Tech[Matsuoka EBD CREST] Univ. 

Kyushu [Fujisawa Graph CREST], Riken AICS, Fujitsu

List Rank GTEPS Implementation

November 2013 4 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid

November 2014 2 19585.2 Efficient hybrid
June, Nov 2015
June Nov 2016 1 38621.4 Hybrid + Node 

Compression

BYTES Rich 
Machine + Superior 

BYTES algoithm

88,000 nodes, 
660,000 CPU Cores
1.3 Petabyte mem
20GB/s Tofu NW

≫

LLNL-IBM Sequoia
1.6 million CPUs
1.6 Petabyte mem

0

500

1000

1500

64 nodes
(Scale 30)

65536 nodes
(Scale 40)

El
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d 
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Communi…
Computati…

73% total exec 
time wait in

communication

TaihuLight
10 million CPUs
1.3 Petabyte mem

Effective x13 
performance c.f. 
Linpack

#1 38621.4 GTEPS
(#7 10.51PF Top500)

#2 23755.7 GTEPS
(#1 93.01PF Top500)

#3 23751 GTEPS
(#4 17.17PF Top500)

BYTES, not FLOPS!



K-computer No.1 on Graph500: 4th Consecutive Time
• What is Graph500 Benchmark?

• Supercomputer benchmark for data intensive applications.
• Rank supercomputers by the performance of Breadth-First Search for very huge 

graph data.
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K computer (Japan)

Sequoia (U.S.A.)

Sunway TaihuLight (China)

No.1

This is achieved by a combination 
of high machine performance and 

our software optimization.

• Efficient Sparse Matrix Representation with 
Bitmap

• Vertex Reordering for Bitmap Optimization
• Optimizing Inter-Node Communications
• Load Balancing

etc.
• Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi Matsuoka, "Efficient Breadth-First Search on 

Massively Parallel and Distributed Memory Machines", in proceedings of 2016 IEEE International Conference on Big Data (IEEE 
BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



TSUBAME-KFC/DL: TSUBAME3 Prototype [ICPADS2014]

High Temperature Cooling
Oil Loop 35~45℃

⇒ Water Loop 25~35℃
(c.f. TSUBAME2: 7~17℃)

Cooling Tower：
Water 25~35℃

⇒ To Ambient Air

Oil Immersive Cooling＋ Hot Water Cooling + High Density Packaging + Fine-
Grained Power Monitoring and Control, upgrade to /DL Oct. 2015

Container Facility
20 feet container (16m2)

Fully Unmanned Operation

Single Rack High Density Oil 
Immersion

168 NVIDIA K80 GPUs + Xeon
413+TFlops (DFP)
1.5PFlops (SFP)

~60KW/rack

2013年11月/2014年6月
Word #1 Green500



(Big Data) BYTES capabilities, in bandwidth and
capacity, unilaterally important but often missing from 
modern HPC machines in their pursuit of FLOPS…

• Need BOTH bandwidth and capacity
(BYTES) in a HPC-BD/AI machine:

• Obvious for lefthand sparse ,bandwidth-
dominated apps

• But also for righthand DNN: Strong scaling, 
large networks and datasets, in particular 
for future 3D dataset analysis such as CT-
scans, seismic simu. vs. analysis…)

(Source: http://www.dgi.com/images/cvmain_overview/CV4DOverview_Model_001.jpg)

(Source: https://www.spineuniverse.com/image-
library/anterior-3d-ct-scan-progressive-kyphoscoliosis)

Our measurement on 
breakdown of one iteration 

of CaffeNet training on 
TSUBAME-KFC/DL

(Mini-batch size of 256)

Number of nodes

Computation on GPUs 
occupies only 3.9%

Proper arch. to 
support large
memory cap. 

and BW, network
latency and BW 

important

http://www.dgi.com/images/cvmain_overview/CV4DOverview_Model_001.jpg)
http://www.spineuniverse.com/image-


TSUBAME3.0

2006 TSUBAME1.0
80 Teraflops, #1 Asia #7 World
“Everybody’s Supercomputer”

2010 TSUBAME2.0
2.4 Petaflops #4 World

“Greenest Production SC”

2013
TSUBAME2.5 

upgrade
5.7PF DFP 

/17.1PF SFP
20% power 
reduction

2013 TSUBAME-KFC
#1 Green 500

2017 TSUBAME3.0+2.5
~18PF(DFP) 4~5PB/s Mem BW

10GFlops/W power efficiency
Big Data & Cloud Convergence

Large Scale Simulation
Big Data Analytics

Industrial Apps2011 ACM Gordon Bell Prize

2017 Q2 TSUBAME3.0 Leading Machine Towards Exa & Big Data
1.“Everybody’s Supercomputer” - High Performance (12~24 DP Petaflops, 125~325TB/s Mem, 

55~185Tbit/s NW), innovative high cost/performance packaging & design, in mere 180m2…
2.“Extreme Green” – ~10GFlops/W power-efficient architecture, system-wide power control, 

advanced cooling, future energy reservoir load leveling & energy recovery
3.“Big Data Convergence” – BYTES-Centric Architecture,

Extreme high BW & capacity, deep memory
hierarchy, extreme I/O acceleration, Big Data SW Stack 
for machine learning, graph processing, …

4.“Cloud SC” – dynamic deployment, container-based
node co-location & dynamic configuration, resource 
elasticity, assimilation of public clouds…

5.“Transparency” - full monitoring & 
user visibility of machine
& job state, 
accountability 
via reproducibility

21

http://www.new.facebook.com/album.php?profile&id=20531316728
http://www.new.facebook.com/album.php?profile&id=20531316728


Overview of TSUBAME3.0 (#1 June 2017 Green 500)
BYTES-centric Architecture, Scalability to all 2160 GPUs, 

all nodes, the entire memory hierarchy

Full Bisection Bandwidgh
Intel Omni-Path Interconnect. 4 ports/node
Full Bisection / 432 Terabits/s bidirectional
~x2 BW of entire Internet backbone traffic

DDN Storage
(Lustre FS 15.9PB+Home 45TB)

540 Compute Nodes SGI ICE XA + New Blade
Intel Xeon CPU x 2+NVIDIA Pascal GPUx4 (NV-Link)

256GB memory 2TB Intel NVMe SSD
47.2 AI-Petaflops, 12.1 Petaflops

Full Operations 
Aug. 2017



Early TSUBAME3 Architecture for Proposal
Ultra High BW, Deep Mem Hierarchy, Low Latency NW

Broadwell
Xeon-EP

14~ cores

Pascal GPU
32GB
1TB/s

PCI-E 3.0
PLX

PCI-e 
x 16

16GB/s

DDR4 x 4
64^128GB
100GB/s

Mellanox
EDR HCA

Or  OmniPath

100Gbps

PCI-E 3.0
PLX

16

100Gbps

NV-Link 80GB/s

Broadwell
Xeon-EP

14~ cores

Pascal GPU
32GB
1TB/s

Pascal GPU
32GB
1TB/s

PCI-E 3.0
PLX

PCI-e 
x 16

16GB/s

DDR4 x 4
64~128GB
100GB/s

100Gbps

PCI-E 3.0
PLX

16

100Gbps

On-board 
Flash

Terabytes
Gigabytes/s

4 

QPI
2.0

Mellanox
EDR HCA

Or  OmniPath

Mellanox
EDR HCA

Or  OmniPath

Mellanox
EDR HCA

Or  OmniPath

NV-Link 80GB/s

16GB/s

16GB/s

HBM

HBM

HBM

HBM

D

x10

x30~
100

Pascal GPU
32GB
1TB/s

400+400Gbps/node
~1Petabit/s total
2 microsec end-to-end

~30 
racks

No existing 
product



TSUBAME3: A Massively BYTES Centric Architecture for Converged BD/AI and HPC

24

Intra-node GPU via NVLink
20~40GB/s

Intra-node GPU via NVLink
20~40GB/s

Inter-node GPU via OmniPath
12.5GB/s fully switched

HBM2 
64GB
2.5TB/s

DDR4
256GB 
150GB/s

Intel Optane
1.5TB 12GB/s
(planned)

NVMe Flash
2TB 3GB/s

16GB/s PCIe
Fully Switched

16GB/s PCIe
Fully Switched

~4 Terabytes/node Hierarchical Memory for Big Data / AI (c.f. K-compuer 16GB/node)
 Over 2 Petabytes in TSUBAME3, Can be moved at 54 Terabyte/s or 1.7 Zetabytes / year

Terabit class network/node
800Gbps (400+400)

full bisection

Any “Big” Data in the 
system can be moved 

to anywhere via 
RDMA speeds 

minimum 
12.5GBytes/s

also with Stream 
Processing

Scalable to all 2160 
GPUs, not just 8



TSUBAME3: A Massively BYTES Centric Architecture for Converged BD/AI and HPC
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Intra-node GPU via NVLink
20~40GB/s

Intra-node GPU via NVLink
20~40GB/s

Inter-node GPU via OmniPath
12.5GB/s fully switched

HBM2 
64GB
2.5TB/s

DDR4
256GB 
150GB/s

Intel Optane
1.5TB 12GB/s
(planned)

NVMe Flash
2TB 3GB/s

16GB/s PCIe
Fully Switched

16GB/s PCIe
Fully Switched

~4 Terabytes/node Hierarchical Memory for Big Data / AI (c.f. K-compuer 16GB/node)
 Over 2 Petabytes in TSUBAME3, Can be moved at 54 Terabyte/s or 1.7 Zetabytes / year

Any “Big” Data in the 
system can be moved 

to anywhere via 
RDMA speeds 

minimum 
12.5GBytes/s

also with Stream 
Processing

Scalable to all 2160 
GPUs, not just 8



TSUBAME3.0 Co-Designed SGI ICE-XA Blade (new)
- No exterior cable mess (power, NW, water)
- Plan to become a future HPE product
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TSUBAME3.0 Compute Node SGI ICE-XA, a New GPU Compute Blade Co-
Designed by SGI and Tokyo Tech GSIC

x9

SGI ICE XA Infrastructure
Intel Omnipath Spine Switch, Full Bisection Fat Tre Network

432 Terabit/s Bidirectional for HPC and DNN

Compute Blade Compute Blade

x60 sets
(540 nodes)

X60 Pairs
(Total 120 Switches)

18 Ports

18 Ports

18 Ports

18 Ports

Ultra high performance & bandwidth “Fat Node”
• High Performance: 4 SXM2(NVLink) NVIDIA Pascal 

P100 GPU + 2 Intel Xeon 84 AI-TFLops
• High Network Bandwidth – Intel Omnipath 100GBps 

x 4 = 400Gbps (100Gbps per GPU)
• High I/O Bandwidth - Intel 2 TeraByte NVMe

• > 1PB & 1.5~2TB/s system total
• Future Octane 3D-Xpoint memory 

Petabyte or more directly accessible
• Ultra High Density, Hot Water Cooled Blades

• 36 blades / rack = 144 GPU + 72 CPU, 50-60KW, 
x10 thermals c.f. IDC
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GPU 0
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DIMM
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x16 PCIe x16 PCIe

x16 PCIe x16 PCIe

x16 PCIe

x4 PCIe

DMI

Optane
NVM x4 PCIe

Optane
NVM

400Gbps / node for 
HPC and DNN
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Node Performance Comparison T2/2.5/3
Metric TSUBAME2.0

(2010)
TSUBAME2.5

(2013)
TSUBAME3.0

(2017)
Factor

CPU Cores x Freq (GHz) 35.16 35.16 72.8 2.07
CPU Memory Capacity (GB) 54 54 256 4.74
CPU Memory Bandwidth (GB/s) 64 64 153.6 2.40
GPU CUDA Cores 1,344 8,064 14,336 1.78
GPU FP64 Peak (TFLOPS) 1.58 3.93 21.2 13.4 & 5.39
GPU FP32 Peak (TFLOPS) 3.09 11.85 42.4 13.7 & 3.58
GPU FP16 (TFLOPS) 3.09 11.85 84.8 27.4 & 7.16
GPU Memory Capacity (GB) 9 18 64 7.1 & 3.56
GPU Memory Bandwidth (GB/s) 450 750 2928 6.5 & 3.90
SSD Capacity (GB) 120 120 2000 16.67
SSD READ (MB/s) 550 550 2700 4.91
SSD WRITE (MB/s) 500 500 1800 3.60
Interconnect Bandwidth (Gbps) 80 80 400 5.00



100Gbps x 4 
= 400Gbps

Liquid Cooled NVMe

PCIe NVMe
Drive Bay x 4

Liquid Cooled
“Hot Pluggable” ICE-

XA Blade

Smaller than 1U server, 
no cables or pipes

   
Xeon x 2

PCIe Switch
> 20 TeraFlops

DFP
256GByte Memory



144 GPUs & 72 
CPUs/rack

Integrated 
100/200Gbps 

Fabric Backplane





TSUBAME3.0 Datacenter

15 SGI ICE-XA Racks
2 Network Racks
3 DDN Storage Racks
20 Total Racks

Compute racks cooled with 
32 degrees warm water, 
Yearound ambient cooling
Av. PUE = 1.033



Japanese Open Supercomputing Sites Aug. 2017 (pink=HPCI Sites)
Peak 
Rank

Institution System Double FP 
Rpeak

Nov. 2016 
Top500

1 U-Tokyo/Tsukuba U
JCAHP

Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 
1.4GHz, Intel Omni-Path

24.9 6

2 Tokyo Institute of 
Technology GSIC

TSUBAME 3.0 - HPE/SGI ICE-XA custom NVIDIA Pascal P100 + Intel 
Xeon, Intel OmniPath

12.1 NA

3 Riken AICS K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect 
Fujitsu

11.3 7

4 Tokyo Institute of 
Technology GSIC

TSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C 
2.93GHz, Infiniband QDR, NVIDIA K20x NEC/HPE

5.71 40

5 Kyoto University Camphor 2 – Cray XC40 Intel Xeon Phi 68C 1.4Ghz 5.48 33
6 Japan Aerospace 

eXploration Agency
SORA-MA - Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C 1.98GHz, 
Tofu interconnect 2 

3.48 30

7 Information Tech.
Center, Nagoya U

Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C 2.2GHz, Tofu 
interconnect 2 

3.24 35

8 National Inst. for 
Fusion Science(NIFS)

Plasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C 
1.98GHz, Tofu interconnect 2 

2.62 48

9 Japan Atomic Energy 
Agency (JAEA)

SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR 2.41 54

10 AIST AI Research 
Center (AIRC)

AAIC (AIST AI Cloud) – NEC/SMC Cluster, NVIDIA Pascal P100 + Intel 
Xeon, Infiniband EDR

2.2 NA
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JST-CREST “Extreme Big Data” Project (2013-2018)

Supercomputers
Compute&Batch-Oriented

More fragile

Cloud IDC
Very low BW & Efficiency
Highly available, resilient

Convergent Architecture (Phases 1~4) 
Large Capacity NVM, High-Bisection NW

PCB

TSV Interposer

High Powered 
Main CPU

Low 
Power 
CPU

DRAM
DRAM
DRAM
NVM/Fla
sh

NVM/Fla
sh

NVM/Fla
sh

Low 
Power 
CPU

DRAM
DRAM
DRAM
NVM/Flas
h

NVM/Flas
h

NVM/Flas
h

2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM & 
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System

Large Scale 
Metagenomics

Massive Sensors and 
Data Assimilation in 
Weather Prediction

Ultra Large Scale 
Graphs and Social 
Infrastructures

Exascale Big Data HPC 

Co-Design

From FLOPS Centric to BYTES Centric HPC

Graph Store

EBD Bag
Co-Design

KV
S

KV
S

KV
S

EBD KVS

Cartesian Plane
Co-Design

Given a top-class 
supercomputer, 
how fast can we 
accelerate next 
generation big 
data c.f. 
conventional 
Clouds?

Issues regarding 
Architecture, 
algorithms, system 
software in co-design

Performance Model?
Use of accelerators 
e.g. GPUs?



Dynamic Graphs (temporal graph)
• the structure of a graph 

changes dynamically over time
• many real-world graphs are 

classified into dynamic graph

• Most studies for large graphs have not focused on a dynamic 
graph data structure, but rather a static one, such as Graph 500

• Even with the large memory capacities of HPC systems, many 
graph applications require additional out-of-core memory 
(this part is still at an early stage)

Sparse Large Scale-free
• social network,  genome 

analysis, WWW, etc.
• e.g., Facebook manages 

1.39 billion active users 
as of 2014, with more 
than 400 billion edges

Distributed Large-Scale Dynamic Graph Data Store 
Keita Iwabuchi1, 2, Scott Sallinen3, Roger Pearce2,

Brian Van Essen2, Maya Gokhale2, Satoshi Matsuoka1

1. Tokyo Institute of Technology (Tokyo Tech)
2. Lawrence Livermore National Laboratory (LLNL)

3. University of British Columbia

Source: Jakob Enemark and Kim Sneppen, “Gene duplication models for directed networks 
with limits on growth”, Journal of Statistical Mechanics: Theory and Experiment 2007



Distributed Large-Scale Dynamic Graph Data Store (work with LLNL, [SC16 etc.]) 

Node Level Dynamic Graph Data Store

Extend for multi-processes using an async
MPI communication framework

Follows an adjacency-list format and leverages an 
open address hashing to construct its tables

2 billion 
insertions/s
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Number of Nodes (24 processes per node)

Multi-node Experiment

STINGER
• A state-of-the-art dynamic graph processing 

framework developed at Georgia Tech
Baseline model
• A naïve implementation using Boost library (C++) and 

the MPI communication framework

Based on K-Computer results, adaping to (1) deep 
memory hierarchy, (2) rapid dynamic graph changes

K. Iwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and S. Matsuoka, Towards a distributed large-scale dynamic graph data store. In 2016 
IEEE Interna- tional Parallel and Distributed Processing Symposium Workshops (IPDPSW) 

C.f. STINGER (single-node, on memory)
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Parallels

Baseline DegAwareRHH 212x

Dynamic Graph Construction (on-memory & NVM)

K Computer 
large 
memory 
but very 
expensive 
DRAM only

Develop 
algorithms 
and SW 
exploiting 
large 
hierarchical 
memory

Dynamic graph store 
w/ world’s top graph 
update performance 
and scalability



Large-scale Graph Colouring (vertex coloring)
• Color each vertices with the minimal #colours so that no two adjacent

vertices have the same colour
• Compare our dynamic graph colouring algorithm on DegAwareRHH against:

1. two static algorithms including GraphLab
2. an another graph store implementation with same dynamic algorithm (Dynamic-MAP) 

Static colouring Our DegAwareRHH Baseline

Scott Sallinen, Keita Iwabuchi, Roger Pearce, Maya Gokhale, Matei Ripeanu, “Graph Coloring as a Challenge Problem for Dynamic 
Graph Processing on Distributed Systems”, SC’16

38

SC’16



ScaleGraph Large-scale Graph Processing Framework 
enhanced w/ User-Friendly Python / Spark Interface  
• ScaleGraph [Suzumura]

• X10-based open source Highly Scalable Large Scale Graph Analytics Library 
beyond the scale of  billions of vertices and edges on Distributed  Systems

• XPregel: Pregel-based bulk synchronous parallel graph processing framework
• Built-in graph algorithms (Centrality, Connected Component, Clustering, etc.)

• NEW Development: Python Interface 
• Allow users to use ScaleGraph with Spark* by easy python interface  

Software stack

XPregel
(Graph Processing System)

ScaleGraph
Base 

Library

MPI

Graph Algorithm

X10 Standard Lib

X10
Sparse Matrix

BLAS File IO

User Program

Third Party Library
(ARPACK, METIS)X10 & C++ Team

*Apache Spark: http://spark.apache.org/

User 
Python 
Script

Cluster

Spark
(RDD)

HDFS
ScaleGraph



Incremental Graph Community Detection
• Background

• Community detection for large-scale time-evolving and dynamic 
graphs has been one of important research problems in graph 
computing.

• It is time-wasting to compute communities entire graphs every time 
from scratch.

• Proposal
• An incremental community detection algorithm based on core 

procedures in a state-of-the-art community detection algorithm 
named DEMON.

• Ego Minus Ego, Label Propagation and Merge

Hiroki Kanezashi and Toyotaro Suzumura, An Incremental Local-First Community Detection 
Method for Dynamic Graphs, Third International Workshop on High Performance Big Graph 
Data Management, Analysis, and Mining (BigGraphs 2016), to appear

101.0x
faster

101.5x 
faster

69.2x
faster



GPU-based Distributed Sorting
[Shamoto, IEEE BigData 2014, IEEE Trans. Big Data 2015]
• Sorting: Kernel algorithm for various EBD processing
• Fast sorting methods

– Distributed Sorting: Sorting for distributed system
• Splitter-based parallel sort
• Radix sort
• Merge sort

– Sorting on heterogeneous architectures
• Many sorting algorithms are accelerated by many cores and high memory bandwidth.

• Sorting for large-scale heterogeneous systems remains unclear

• We develop and evaluate bandwidth and latency reducing GPU-based HykSort on 
TSUBAME2.5 via latency hiding
– Now preparing to release the sorting library

EBD Algorithm Kernels



x1.4

x3.61

x389

0.25
[TB/s]

Performance prediction

x2.2 speedup compared to 
CPU-based 

implementation when the 
# of PCI bandwidth 
increase to 50GB/s

8.8% reduction of overall 
runtime when the 

accelerators work 4 times 
faster than K20x

• PCIe_#: #GB/s bandwidth 
of interconnect between 
CPU and GPU

• Weak scaling performance (Grand 
Challenge on TSUBAME2.5)

– 1 ~ 1024 nodes (2 ~ 2048 GPUs)
– 2 processes per node
– Each node has 2GB 64bit integer

• C.f. Yahoo/Hadoop Terasort: 
0.02[TB/s]

– Including I/O

GPU implementation of splitter-
based sorting (HykSort)



Xtr2sort: Out-of-core Sorting Acceleration 
using GPU and Flash NVM [IEEE BigData2016]

• Sample-sort-based Out-of-core Sorting Approach for Deep Memory 
Hierarchy Systems w/ GPU and Flash NVM
– I/O chunking to fit device memory capacity of GPU 
– Pipeline-based Latency hiding to overlap data transfers between NVM, CPU, and 

GPU using asynchronous data transfers, 
e.g., cudaMemCpyAsync(), libaio

GPU

GPU + CPU + NVM

CPU + NVM

How to combine deepening memory layers for future 
HPC/Big Data workloads, targeting Post Moore Era? 

x4.39

BYTES中心のHPCアル
ゴリズム：GPUのバン
ド幅高速ソートと、不
揮発性メモリによる大
容量化の両立



Out-of-core GPU-MapReduce for 
Large-scale Graph Processing [IEEE Cluster 2014]

Red
uce

Map

Red
uce

Map

Red
uce

Shuf
fle

Shuf
fle

Sort

Scan

Initialization

Operation on GPU

Operation on GPU

GPU CPU Memcpy (H2D, D2H) Processing for each chunk

Map

Red
uce

Sort

Map

Problem: GPU memory capacity limits 
scalable large-scale graph processing

Emergence of large-scale graphs
- SNS, road network, smart grid, etc.
- Millions to  trillions of vertices/edges
→ Need for fast graph processing on 
supercomputers
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Number of Compute Nodes

1CPU (S23 per node)

1GPU (S23 per node)

2CPUs (S24 per node)

2GPUs (S24 per node)

3GPUs (S24 per node)

2.10x
(3 GPU vs 2CPU)

Weak scaling on TSUBAME2.5

Experimental Results: 
performance improvement over CPUs
- Map: 1.41x, Reduce: 1.49x, Sort: 4.95x

speedup
- Overlapping communication effectively

Proposal: Out-of-core GPU memory 
management on MapReduce
- Stream-based GPU MapReduce
- Out-of-core GPU sorting



Hierarchical, UseR-level and ON-demand File system(HuronFS)
(IEEE ICPADS 2016) w/LLNL

• HuronFS: dedicated dynamic instances to provide “burst buffer” for caching data
• I/O requests from Compute Nodes are forwarded to HuronFS
• The whole system consists of several SHFS (Sub HuronFS) 

• Workload are distributed among all the SHFS using hash of file path
• Each SHFS consists of a Master and several IOnodes

• Masters: controlling all IOnodes in the same SHFS and handling all I/O requests 
• IOnodes: storing actual data and transferring data with Compute Nodes

• Supporting TCP/IP, Infiniband (CCI framework)
• Supporting Fuse, LD_PRELOAD

Parallel File System

Compute 
node 1

Compute 
node 2

Compute 
node N

HuronFS
Master

0 IOnode

IOnode IOnode

IOnode IOnode

Parallel File system

SHFS 0

IOnode

IOnode IOnode
SHFS Y

HuronFS

Master
M-1 IOnode

IOnode IOnode

IOnode IOnode
SHFS M-1

Compute 
node X

Master
Y IOnode

IOnode

static hash



HuronFS Basic IO Performance
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Plans
• Continuing researching on auto buffer allocation
• Utilizing computation power on IOnodes

• Data preprocessing
• Format conversion

Jobn

IOnode

Data preprocessing, 
format conversion, etc..

Jobn+1

Jobn

IOnode

Jobn+1

format 
conversion

Network Network

Processing 
on IOnodes

In Memory



• Background
Snore sound (SnS) data carry very important information for diagnosis and 
evaluation of Primary Snoring and Obstructive Sleep Apnea (OSA). With 
the increasing number of collected SnS data from subjects, how to handle 
such large amount of data is a big challenge. In this study, we utilize the 
Graphics Processing Unit (GPU) to process a large amount of SnS data 
collected from two hospitals in China and Germany to accelerate the 
features extraction of biomedical signal.  

GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data

Subjects Total Time
(hours)

Data Size 
(GB)

Data 
format

Sampling Rate

57 
(China +
Germany) 

187.75 31.10 WAV 16 kHz, Mono

Snore sound data information

* Jian Guo, Kun Qian, Huijie Xu, Christoph Janott, Bjorn Schuller, Satoshi Matsuoka, “GPU-Based Fast Signal Processing for Large Amounts of Snore Sound Data”, In proceedings of 5th IEEE Global Conference on 
Consumer Electronics (GCCE 2016), October 11-14, 2016.

• Acoustic features of SnS data
we extract 11 acoustic features from a large amount of SnS data, which can be 
visualized to help doctors and specialists to diagnose, research, and remedy 
the diseases efficiently. Results of GPU and CPU based systems for processing SnS data

• Result
We set 1 CPU (with Python2.7, numpy 1.10.4 and scipy 0.17 packages) for 
processing 1 subject’s data as our baseline. Result show that the GPU based 
system is almost 4.6×faster than the CPU  implementation. However, the 
speed-up decreases when increasing the data size. We think that this result 
should be caused by the fact that, the transmission of data is not hidden by other 
computations, as will be a real-world application. 



TSUBAME3.0 Container-Based Fine-grained 
Spatial Resource Allocations of Fat Nodes

GPU0

GPU1

GPU2

GPU3

NIC1
NIC0

NIC3
NIC2

MEM0

MEM1

CPU0

CPU1

Job Allocated Resource
１ CPU 2Cores, NIC0, GPU1, 32GB Mem
２ CPU 8 Cores, 64GB Mem
３ CPU 4 Cores, GPU0、16GB Mem
４ CPU 8 Cores, 64GB Mem
５ CPU 4 Cores, NIC2&3, GPU2&3, 48G

Mem

Resource Isolation via UGE 
Containers (future Docker etc.)

Container configuration 
and deployment tied to 
Univa Grid Engine



Background
Multi-GPU batch-queue systems have many 
idle GPUs despite having jobs waiting, due 

to the scattered idle-GPU problem [1].

Node A
GPU GPU GPU

Node B
GPU GPU GPU

Job 0
#Node: 2
#GPU: 2

Job 1
#Node: 1
#GPU: 2

??
idle

Scenario: Job 1 requests two GPUs on one node but
each node has only one unoccupied GPU left.

Result: Job 1 cannot run and two GPUs are left idle.

50

A kind of resource 
assignment fragmentation

[1] P. Markthub et al. “Using rCUDA to Reduce GPU Resource-Assignment Fragmentation Caused by Job 
Scheduler,” PDCAT2014



Idle-GPU Problem in Multi-GPU Batch-Queue 
Systems

51

TSUBAME2.5’s G Queue (GPU Queue)

The system had idle 
GPUs even though 

there were jobs 
waiting!!!



Previous Solution & Problems

Node A
GPU GPU GPU

Node B
GPU GPU GPU

Job 0
#Node: 2
#GPU: 2

Job 1
#Node: 1
#GPU: 2

GProxy

Network

Increased communication overhead System can satisfy more jobs

Previous Solution [1]:
• Enable the system to serve more 

jobs by creating a GPU proxy 
that links with a remote GPU.

• Proven to reduce job waiting 
times as much as 25%.

Problems:
• Remote GPU execution overhead
• Network congestion

The execution times of GPU 
communication intensive applications 
(e.g. LAMMPS, SRAD) may increase 

more than 5 times!!!
[1] P. Markthub et al. “Using rCUDA to Reduce GPU Resource-Assignment Fragmentation Caused by Job 
Scheduler,” PDCAT2014
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New Solution Overview

Node A
GPU GPU GPU

Node B
GPU GPU GPU

Job 1
#Node: 1
#GPU: 2

GProxy

Network

Migrate execution on a remote GPU to a local GPU when it 
becomes available can solve the performance problems

Propose:
1. mrCUDA: an extension of rCUDA [1] to enable remote-to-local

GPU migration.
2. MRQ: a heuristic extension of job scheduling algorithms to make

the best out of mrCUDA.
[1] F. Silla, “Is remote GPU virtualization useful?” http://rcuda.net/pub/rCUDA barna 15.pdf, September 2015.

Low-overhead remote GPU execution middleware

53



mrCUDA
Objective: Enable seamless and 
on-demand remote-to-local GPU 

migration on rCUDA

*A,B: Selectors

• rCUDA handles remote GPU 
execution, while mrCUDA handles 
GPU migration.

• GPU migration starts after mrCUDA
receives a migration command via its 
special UNIX socket.

Migration Algorithm – a modified version of Replay Method [1]:
• Intercept all CUDA invocations.
• Before migration: Pass all intercepted calls to rCUDA while recording some 

CUDA calls (e.g. cudaMalloc).
• During migration: Replay the recorded calls in order and memsync GPU data.
• After migration: Pass all intercepted calls to libcudart without recording.
[1] A. Nukada et al. “NVCR: A transparent checkpoint-restart library for NVIDIA CUDA,” IPDPWS2011

54

To recreate remote GPU’s states on local GPU



Case Study: Migrating remote CUDA 
Execution of LAMMPS

55

negligible

visible but small
Linearly increase due to 

rCUDA’s overhead 
before migration

After the migration, 
mrCUDA completely cuts 

off rCUDA’s overhead

*2 nodes, Tesla K20c, InfiniBand 4xFDR *x%: migrate after finish x% of total iterations



GPU Occupancy Patterns
56

FC
FS

M
RQ

Systems can server 
more jobs 

concurrently with 
MRQ.

MRQ uses the same 
scheduling policy as 

FCFS.

Jobs do not 
experience 

significant execution 
time expansion, 
mainly thanks to 
GPU migration.

Colors: remote GPUs



Open Source Release of EBD System 
Software (install on T3/Amazon/ABCI)

• mrCUDA
• rCUDA extension enabling remote-

to-local GPU migration 
• https://github.com/EBD-

CREST/mrCUDA
• GPU 3.0
• Co-Funded by NVIDIA

• Huron FS (w/LLNL)
• I/O Burst Buffer for Inter Cloud 

Environment
• https://github.com/EBD-

CREST/cbb
• Apache License 2.0
• Co-funded by Amazon

• ScaleGraph Python
• Python Extension for ScaleGraph

X10-based Distributed Graph Library 
• https://github.com/EBD-

CREST/scalegraphpython
• Eclipse Public License v1.0

• GPUSort
• GPU-based Large-scale Sort
• https://github.com/EBD-

CREST/gpusort
• MIT License

• Others, including dynamic graph 
store

https://github.com/EBD-CREST/mrCUDA
https://github.com/EBD-CREST/cbb
https://github.com/EBD-CREST/scalegraphpython
https://github.com/EBD-CREST/gpusort


Estimated Compute Resource Requirements for Deep Learning
[Source: Preferred Network Japan Inc.]

2015 2020 2025 2030 

1E〜100E Flops
自動運転車１台あたり1日 1TB
10台〜1000台, 100日分の走行データの学習

Bio / Healthcare

Image Recognition Robots / Drones

10P〜 Flops
1万人の5000時間分の音声データ
人工的に生成された10万時間の
音声データを基に学習 [Baidu 2015]

100P 〜 1E Flops
一人あたりゲノム解析で約10M個のSNPs
100万人で100PFlops、1億人で1EFlops

10P（Image) 〜 10E（Video） Flops
学習データ：1億枚の画像 10000クラス分類
数千ノードで6ヶ月 [Google 2015]

Image/Video
Recognition

1E〜100E Flops
1台あたり年間1TB
100万台〜1億台から得られた
データで学習する場合

Auto Driving

10PF 100EF100PF 1EF 10EF

P:Peta 
E:Exa
F:Flops 

機械学習、深層学習は学習データが大きいほど高精度になる
現在は人が生み出したデータが対象だが、今後は機械が生み出すデータが対象となる

各種推定値は1GBの学習データに対して1日で学習するためには
1TFlops必要だとして計算

To complete the learning phase in one day

It’s the FLOPS 
(in reduced 
precision)
and BW!

So both are 
important in the
infrastructure



Fast and cost-effective deep learning algorithm 
platform for video processing in social infrastructure

Principal Investigator:    Koichi Shinoda
Collaborators:                  Satoshi Matsuoka

Tsuyoshi Murata
Rio Yokota

Tokyo Institute of Technology
(Members RWBC-OIL 1-1 and 2-1)

JST-REST “Development and Integration of Artificial 
Intelligence Technologies for Innovation Acceleration”



Background
• Video processing in smart society 

for safety and security
• Intelligent transport systems

Drive recorder video
• Security systems

Surveillance camera video
• Deep learning

• Much higher performance than 
before

• IT giants with large computational 
resources has formed a monopoly

Problems：
• Real-time accurate recognition of small objects and their movement
• Edge-computing without heavy traffic on Internet
• Flexible framework for training which can adapt rapidly to the 

environmental changes 60



Research team

CPU GPUNode

Parallel
processing

Fast deep
learning

Minimize 
network size

TokyoTech AIST AIRC

Denso・
Denso IT Lab

61
Collaborators

Yokota G

Matsuoka G

Shinoda G

Murata G

System

Reference

Argonne National 
Laboratory and 

Chicago Univ

Toyota 
InfoTechnology

Center

Application



4 Layers of Parallelism in DNN Training

• Hyper Parameter Search
• Searching optimal network 

configurations and parameters
• Often use evolutionary algorithms

• Data Parallelism
• Split and parallelize the batch data
• Synchronous, asynchronous, hybrid, …

• Model Parallelism
• Split and parallelize the layer calculations 

in forward/backward propagation 
• ILP and other low level Parallelism

• Parallelize the convolution operations etc. 
(in reality matrix multiply)

62



NodeNode
GPUGPUGPUGPU

∇

Parallelizing Deep Neural Network Training
Data Parallel SGD(Stochastic Gradient Descent)

17/05/19@成果報告会 デンソーアイティーラボラトリ
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Example AI Research: Predicting Statistics of Asynchronous SGD Parameters 
for a Large-Scale Distributed Deep Learning System on GPU Supercomputers

Background

• In large-scale Asynchronous Stochastic Gradient Descent 
(ASGD), mini-batch size and gradient staleness tend to be 
large and unpredictable, which increase the error of trained 
DNN

Objective function E

W(t)
-ηΣi ∇Ei

W(t+1)
W(t+1)

-ηΣi ∇Ei

W(t+3)

W(t+2)

Twice asynchronous 
updates within 

gradient computation

Staleness=0

Staleness=2

DNN parameters space

Mini-batch size

(NSubbatch: # of samples per one GPU iteration)

Mini-batch size Staleness

Measured

Predicted

4 nodes
8 nodes

16 nodes Measured
Predicted

Proposal
• We propose a empirical performance model for an ASGD 

deep learning system SPRINT which considers probability 
distribution of mini-batch size and staleness

• Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of 
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", in proceedings of 
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016



Performance Prediction of Future HW for CNN

 Predicts the best performance with two future architectural extensions
 FP16: precision reduction to double the peak floating point performance
 EDR IB: 4xEDR InfiniBand (100Gbps) upgrade from FDR (56Gbps)

→ Not only flops, but also NW injection bandwidth is important for scalability

65

N_Node N_Subbatch Epoch Time Average Minibatch Size
(Current HW) 8 8 1779 165.1
FP16 7 22 1462 170.1
EDR IB 12 11 1245 166.6
FP16 + EDR IB 8 15 1128 171.5

TSUBAME-KFC/DL ILSVRC2012 dataset deep learning
Prediction of best parameters (average minibatch size 138±25%)

16/08/08SWoPP2016



The current status of AI & Big Data in Japan
We need the triage of advanced algorithms/infrastructure/data but we lack 
the cutting edge infrastructure dedicated to AI & Big Data (c.f. HPC)

R&D ML
Algorithms

& SW

AI&Data
Infrastructures

“Big”Data

B

IoT Communication, 
location & other data

Petabytes of Drive
Recording Video

FA&Robots

Web access and
merchandice

Use of Massive Scale Data now 
Wasted

Seeking Innovative 
Application of AI & 
Data

AI Venture Startups
Big Companies AI/BD 
R&D (also Science)

In HPC, Cloud continues to 
be insufficient for cutting 
edge research => 
dedicated SCs dominate & 
racing to Exascale

Massive Rise in Computing
Requirements (1 AI-PF/person?)

Massive “Big” Data in 
Training

Riken 
-AIP

Joint 
RWBC 
Open Innov. 
Lab (OIL)
(Director: Matsuoka)

AIST-AIRC

NICT-
UCRI

Over $1B Govt.
AI investment
over 10 years

AI/BD Centers & 
Labs in National 
Labs & Universities



METI AIST-AIRC ABCI
as the worlds first large-scale OPEN AI Infrastructure

67

Univ. Tokyo Kashiwa Campus

• 130~200 AI-Petaflops
• < 3MW Power
• < 1.1 Avg. PUE
• Operational 2017Q4

~2018Q1

• ABCI: AI Bridging Cloud Infrastructure
• Top-Level SC compute & data capability for DNN (130~200 AI-Petaflops)

• Open Public & Dedicated infrastructure for Al & Big Data Algorithms,
Software and Applications

• Platform to accelerate joint academic-industry R&D for AI in Japan



The “Chicken or Egg Problem” of 
AI-HPC Infrastructures

• “On Premise” machines in clients => “Can’t invest in big in AI 
machines unless we forecast good ROI. We don’t have the 
experience in running on big machines.”

• Public Clouds other than the giants => “Can’t invest big in AI 
machines unless we forecast good ROI. We are cutthroat.”

• Large scale supercomputer centers => “Can’t invest big in AI 
machines unless we forecast good ROI. Can’t sacrifice our existing 
clients and our machines are full”

• Thus the giants dominate, AI technologies, big data, and people stay 
behind the corporate firewalls…



But Commercial Companies esp. the “AI 
Giants”are Leading AI R&D, are they not?
• Yes, but that is because their shot-term goals could harvest the 

low hanging fruits in DNN rejuvenated AI 

• But AI/BD research is just beginning--- if we leave it to the 
interests of commercial companies, we cannot tackle difficult 
problems with no proven ROI

• Very unhealthy for research

• This is different from more mature
fields, such as pharmaceuticals or 
aerospace, where there is balanced 
investments and innovations in both 
academia/government and the industry  



ABCI Prototype: AIST AI Cloud (AAIC) 
March 2017 (#3 June 2017 Green 500)
• 400x NVIDIA Tesla P100s and Infiniband EDR accelerate various AI workloads 

including ML (Machine Learning) and DL (Deep Learning).
• Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache 

Spark w/ its ecosystem.

AI Computation System Large Capacity Storage System
Computation Nodes (w/GPU) x50
• Intel Xeon E5 v4 x2
• NVIDIA Tesla P100 (NVLink) x8
• 256GiB Memory, 480GB SSD
Computation Nodes (w/o GPU) x68
• Intel Xeon E5 v4 x2
• 256GiB Memory, 480GB SSD

Mgmt & Service 
Nodes x16

Interactive Nodes 
x2

400 Pascal GPUs
30TB Memory

56TB SSD DDN SFA14K
• File server (w/10GbEx2, 

IB EDRx4) x4
• 8TB 7.2Krpm NL-SAS 

HDD x730
• GRIDScaler (GPFS)

>4PiB effective
RW100GB/s

Computation Network
Mellanox CS7520 Director Switch
• EDR (100Gbps) x216

Bi-direction 200Gbps
Full bi-section bandwidth

Service and Management Network

IB EDR (100Gbps) IB EDR (100Gbps)

GbE or 10GbE GbE or 10GbE

Firewall
• FortiGate 3815D x2
• FortiAnalyzer 1000E x2

UTM Firewall
40-100Gbps class

10GbE

SINET5
Internet 

Connection
10-100GbE



The “Real” ABCI – 2018Q1
• Extreme computing power

– w/ >130 AI-PFlops for AI/ML especially DNN
– x1 million speedup over high-end PC: 1 Day training for 3000-Year DNN

training job
– TSUBAME-KFC (1.4 AI-Pflops) x 90 users (T2 avg)

• Big Data and HPC converged modern design
– For advanced data analytics (Big Data) and scientific simulation (HPC), etc.
– Leverage Tokyo Tech’s “TSUBAME3” design, but differences/enhancements

being AI/BD centric
• Ultra high BW & Low latency memory, network, and storage

– For accelerating various AI/BD workloads
– Data-centric architecture, optimizes data movement

• Big Data/AI and HPC SW Stack Convergence
– Incl. results from JST-CREST EBD
– Wide contributions from the PC Cluster community desirable.

• Ultra-Green (PUE<1.1), High Thermal (60KW) Rack
– Custom, warehouse-like IDC building and internal pods
– Final “commoditization” of HPC technologies into Clouds
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ABCI Cloud Infrastructure
• Ultra-dense IDC design from ground-up

– Custom inexpensive lightweight “warehouse” building w/ substantial
earthquake tolerance

– x20 thermal density of standard IDC
• Extreme green

– Ambient warm liquid cooling, large Li-ion battery storage, and high-
efficiency power supplies, etc.

– Commoditizing supercomputer cooling technologies to
Clouds (60KW/rack)

• Cloud ecosystem
– Wide-ranging Big Data and HPC standard software stacks

• Advanced cloud-based operation
– Incl. dynamic deployment, container-based virtualized provisioning,

multitenant partitioning, and automatic failure recovery, etc.
– Joining HPC and Cloud Software stack for real

• Final piece in the commoditization of HPC (into IDC)
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ABCI AI-IDC CG Image

引用元: NEC導入事例

Reference Image



ABCI Cloud Data Center
“Commoditizing 60KW/rack Supercomputer”

Data Center Image

Layout Plan
high voltage transformers (3.25MW)

Passive  Cooling Tower
Free cooling
Cooling Capacity: 3MW

Active Chillers
Cooling Capacity: 200kW

Lithium battery
1MWh, 1MVA

W:18m x D:24m x H:8m

72 Racks

18 Racks

• Single Floor, inexpensive build
• Hard concrete floor 2 tonnes/m2 

weight tolerance for racks and 
cooling pods

• Number of Racks
• Initial: 90
• Max: 144

• Power Capacity
• 3.25 MW (MAX)

• Cooling Capacity
• 3.2 MW (Minimum in 

Summer)

Future 
Expansion
Space



Implementing 60KW cooling in Cloud IDC – Cooling Pods

Cooling Block Diagram (Hot Rack)

19 or 23 inch 
Rack (48U)

Computing
Server

Hot Water 
Circuit: 40℃Cold Water 

Circuit: 32℃

Hot Aisle: 40℃

Fan Coil Unit
Cooling 

Capacity 10kW

Front 
side

Water Block
(CPU or/and 
Accelerator, etc.)

Air: 40℃Air: 35℃ CDU
Cooling 

Capacity10kW

Cold Aisle: 35℃

Water

Cooling Capacity
• Fan Coil Unit 10KW/Rack
• Water Block: 50KW/Rack

Hot Aisle 
Capping

Flat concrete slab – 2 tonnes/m2 weight tolerance

Commoditizing Supercomputing 
Cooling Density and Efficiency
• Warm water cooling – 32C
• Liquid cooling & air cooling in same rack
• 60KW Cooling Capacity, 50KW 

Liquid+10KW Air
• Very low PUE
• Structural integrity by rack + skeleton 

frame built on high flat floor load



ABCI Procurement Benchmarks

• Big Data Benchmarks
– (SPEC CPU Rate)
– Graph 500
– MinuteSort
– Node Local Storage I/O
– Parallel FS I/O

• AI/ML Benchmarks
– Low precision GEMM

• CNN Kernel, defines “AI-Flops”
– Single Node CNN

• AlexNet => RESNET?
• ILSVRC2012 Dataset

– Multi-Node CNN
• Caffe+MPI (could allow other

MPI-enabled frameworks)
– Large Memory CNN

• Convnet on Chainer
– RNN / LSTM

• OpenNMT RNN (collaboration
w/NICT UCL)
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No traditional HPC 
Simulation Benchmarks

Except SPECCPU



Basic Requirements for AI Cloud System 

PFS
Lustre・

GPFS

Batch Job 
Schedulers

Local Flash+3D 
XPoint
Storage

DFS
HDFS

BD/AI User Applications

RDB
PostgreSQL

Python, Jupyter Notebook, R etc. + IDL 

SQL
Hive/Pig

CloudDB/NoSQL
Hbase/MondoDB/Redis

Resource 
Brokers

Machine 
Learning 
Libraries

Numerical Libraries
BLAS/Matlab

Fortran・C・C++
Native Codes

BD Algorithm 
Kernels (sort etc.)

Parallel Debuggers and Profilers

Workflow 
Systems

Graph 
Computing 
Libraries

Deep 
Learning 

Frameworks
Web 

Services

Linux Containers ・Cloud Services 

MPI・OpenMP/ACC・CUDA/OpenCL

Linux OS 

IB・OPA
High Capacity

Low Latency NW

X86 (Xeon, Phi)＋
Accelerators e.g. 
GPU, FPGA, Lake 

Crest

Application
 Easy use of various ML/DL/Graph frameworks from 

Python, Jupyter Notebook, R, etc.
 Web-based applications and services provision

System Software

 HPC-oriented  techniques for numerical libraries, BD 
Algorithm kernels, etc.

 Supporting long running jobs / workflow for DL 
 Accelerated I/O and secure data access to large data 

sets
 User-customized environment based on Linux 

containers for easy deployment and reproducibility 

OS

Hardware
 Modern supercomputing facilities based on commodity 

components



DLUTM features
Architecture designed for Deep Learning
High performance HBM2 memory
Low power design
➔ Goal: 10x Performance/Watt compared to others

Massively parallel：Apply supercomputer interconnect technology
➔Ability to handle large scale neural networks
➔TOFU Network derivative for massive scaling

(Deep Learning Unit)

Supercomputer K technologies

Fujitsu Deep Learning Processor (DLUTM)

DLU

FY2018～

TM

23 All Rights Reserved, Copyright 2017 FUJITSU LIMITED

“Exascale” AI
possible in 
1H2019

Designed for Scalable Learning, technically superior to Google TPU2



Oct. 2015
TSUBAME-KFC/DL
(Tokyo Tech./NEC)
1.4 AI-PF(Petaflops)

Cutting Edge Research AI Infrastructures in Japan
Accelerating BD/AI with HPC
(and my effort to design & build them)

Mar. 2017
AIST AI Cloud
(AIST-AIRC/NEC)
8.2 AI-PF

Mar. 2017
AI Supercomputer
Riken AIP/Fujitsu
4.1 AI-PF

Aug. 2017
TSUBAME3.0 (Tokyo Tech./HPE)
47.2 AI-PF (65.8 AI-PF 
w/Tsubame2.5)

In Production

Under 
Acceptance

Being 
Manufactured Mar. 2018

ABCI (AIST-AIRC)
>130 AI-PF

Draft RFC out
IDC under 
construction

1H 2019?
“ExaAI”
~1 AI-ExaFlop

Undergoing
Engineering
Study

R&D Investments into world leading 
AI/BD HW & SW & Algorithms and their 
co-design for cutting edge Infrastructure 
absolutely necessary (just as is with 
Japan Post-K and US ECP in HPC)

x5.8

x5.8

x2.8~4.2
x5.0~7.7





Big Data AI-
Oriented

Supercomput
ers

Acceleration 
Scaling, and 

Control of HPC via 
BD/ML/AI and 

future SC designs

Robots / Drones

Image and Video

Big Data and 
ML/AI Apps 

and 
Methodologies

Large Scale Graphs

Future Big Data・AI
Supercomputer Design

Optimizing System
Software and Ops

Mutual and Semi-
Automated Co-
Acceleration of 

HPC and BD/ML/AI

Co-Design of BD/ML/AI with HPC using BD/ML/AI
- for survival of HPC

Accelerating 
Conventional HPC Apps

Acceleration and Scaling of 
BD/ML/AI via HPC and 

Technologies and 
Infrastructures

ABCI: World’s first and 
largest open 100 Peta AI-
Flops AI Supercomputer, 
Fall 2017, for co-design



LLNL-PRES-730739
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Network

Core
FLOPs
Instructions
Cache Misses

Rack

Temperature
Humidity

Facility

Power 
Consumption
Cooling UnitsNode

Bandwidth
Data Traffic

Sonar collects data from the HPC Center and applications, 
allowing users to access it with secure permissions
(Slide courtesy Todd Gamblin @ LLNL)

Inputs

Application OS/
Runtime

Nodes Processors
Job

Job allocations
Runtimes

Message-
Passing

Message size/contents
Message routing
Communication rates

Data-Sharing
Data accessed
Access rate
Data motion

Application Phases/Iterations
Memory Allocations

HPC Center Data Application Data

Sonar enables all LC users to research into the root causes of performance variation

LC Security Infrastructure

Sonar Data Cluster
Provides storage and compute for performance analysis.

2 clusters: CZ, RZ (SCF TBD)

Jupyter

ScrubJay
Spark

Cassandra

Sonar Prediction Apollo ScrubJay



LLNL-PRES-730739
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 CNN prediction:
— Takes only job scripts and queue data as input
— Leverage unstructured information (coding style, job scripts)
— No preprocessing of job scripts required; fully automated

 Queue simulation:
— Use predicted runtimes to simulate future job schedule

 We can predict many I/O bursts.
— Some bursts can’t be predicted b/c jobs enter the queue and 

run immediately
— There may be periodicity or other patterns to these bursts

 We are investigating additional modeling techniques 
to predict bursts that cannot be simulated

We combine neural networks with queue 
simulation to predict resource utilization
(Slide courtesy Todd Gamblin @ LLNL)

User Estimate CNN prediction

Convolutional Neural Networks Job Runtime

Predicted
(30 min horizon)

Observed

Queue Simulation

I/O Bandwidth

These results will provide input for resource-aware scheduling on the Flux project

Sonar Prediction Apollo ScrubJay



Power optimization using Deep Q-Network
・ Background
Power optimization by frequency control in existing research 

 Detailed analysis is necessary
 Low versatility Use Deep Learning for analysis.

Performance counter
Temperature
Frequency,…

Frequency

Kento Teranishi

・ Objective
Implement the computer
control system using Deep Q-Network. Counter

Power
Frequency
Temperature
etc.

↑
↓

Frequency 
control

Deep Q-Network (DQN)
Deep reinforcement learning
Calculate action value function Q from neural network
Used for game playing AI, robot car, AlphaGO.



• Strategy 5: Develop shared public datasets and 
environments for AI training and testing. The 
depth, quality, and accuracy of training datasets 
and resources significantly affect AI performance. 
Researchers need to develop high quality 
datasets and environments and enable 
responsible access to high-quality datasets as well 
as to testing and training resources. 

• Strategy 6: Measure and evaluate AI technologies 
through standards and benchmarks. Essential to 
advancements in AI are standards, benchmarks, 
testbeds, and community engagement that guide 
and evaluate progress in AI. Additional research is 
needed to develop a broad spectrum of 
evaluative techniques. 

We are implementing the US AI&BD strategies already
…in Japan, at AIRC w/ABCI



What is worse: Moore’s Law will end in the 2020’s
•Much of underlying IT performance growth due to Moore’s law 

•“LSI: x2 transistors in 1~1.5 years” 
• Causing qualitative “leaps” in IT and societal innovations
• The main reason we have supercomputers and Google...

•But this is slowing down & ending, by mid 2020s…!!!
• End of Lithography shrinks
• End of Dennard scaling
• End of Fab Economics

•How do we sustain “performance growth” beyond the “end of 
Moore”?
• Not just one-time speed bumps
• Will affect all aspects of IT, including BD/AI/ML/IoT, not just HPC
• End of IT as we know it

Gordon Moore
The curse of constant 
transistor power shall 

soon be upon us



20 year Eras towards of End of Moore’s Law

3-5nm and 
beyond 2025-
Constant 
Transistor Power

• 1980s~2004 
Dennard scaling, 
perf+ = single 
thread+ = transistor 
& freq+ = power+

• 2004~2015 feature 
scaling, perf+ = 
transistor+ = core#+, 
constant power

• 2015~2025 all 
above gets harder

• 2025~ post-Moore, 
constant 
feature&power = 
flat performance

Need to realize the next 20-year era of supercomputing

20 year
Post-Dennard
Many-Core Era

20-year
Moore-Dennard
Single Core
ILP-Vector 
Killer-Micro Era

20-year
Next-Gen
Post-Moore era



The “curse of constant transistor power”
- Ignorance of this is like ignoring global warming -

• Systems people have been telling the algorithm people that 
“FLOPS will be free, bandwidth is important, so devise 
algorithms under that assumption”

• This will certainly be true until exascale in 2020…
• But when Moore’s Law ends in 2025-2030, constant transistor 

power (esp. for logic) = FLOPS will no longer be free!
• So algorithms that simply increase arithmetic intensity will no 

longer scale beyond that point
• Like countering global warming – need disruptive change in 

computing – in HW-SW-Alg-Apps etc. for the next 20 year era 



Performance growth via data-centric computing: 
“From FLOPS to BYTES”

• Identify the new parameter(s) for scaling over time
• Because data-related parameters (e.g. capacity and bandwidth) will still 

likely continue to grow towards 2040s
• Can grow transistor# for compute, but CANNOT use them AT THE SAME 

TIME(Dark Silicon) => multiple computing units specialized to type of data
• Continued capacity growth: 3D stacking (esp. direct silicon layering) and 

low power NVM (e.g. ReRAM)
• Continued BW growth: Data movement energy will be capped constant by 

dense 3D design and advanced optics from silicon photonics technologies
• Almost back to the old “vector” days(?), but no free lunch – latency still 

problem, locality still important, need general algorithmic acceleration 
thru data capacity and bandwidth, not FLOPS



Transistor Lithography Scaling
(CMOS Logic Circuits, DRAM/SRAM)

Loosely Coupled with Electronic Interconnect

Data Data

Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture

Flops-Centric System Software

Novel Devices + CMOS (Dark Silicon)
(Nanophotonics, Non-Volatile Devices etc.)

Ultra Tightly Coupled w/Aggressive 
3-D+Photonic Switching Interconnected

Hardware/Software System APIs
Data-Centric Heterogeneous Architecture

Bytes-Centric System Software

Heterogeneous CPUs + Holistic Data

Data Data

Homogeneous General Purpose Nodes 
+ Localized Data

Reconfigurable
Dataflow Optical

ComputingDNN&
Neuromorphic

Massive BW
3-D Package

Quantum
ComputingLow Precision

Error-Prone

Non-Volatile
Memory

Flops-Centric Algorithms and Apps Bytes-Centric Algorithms and Apps

Compute 
Nodes

Gen CPU Gen CPU

汎用CPU Gen CPU

~2025
M-P Extinction

Event 

Many Core Era Post Moore Era

Compute 
Nodes

Compute 
Nodes

Compute 
Nodes



Post-Moore High Bandwidth Hierarchical Memory 
Model

Post-Moore Data Science
and AI Libraries

Post-Moore Computational
Science Libraries

ComputationCommunicationMemory

PC-RAM
ReRAM

Photonic Switching

3D architecture
Next gen VIAs & silicon
fabrication

New memory Devices

Tnugsten VIAs and 3D silicon

Photonic Interposes

Silicon Photonics WDM Interconnect

Inductive ＴＣＩ
Building Block “gluable” architecture

Neural Networks/
Neromorphic/
Izing - Annealing

Brain-inspired Computing

Low-Reliability computing
Near threshold computing

Low-Reliablility Communication

Quantum Computing

Customizable logic

Photonic Compute Devices
Optical Packet Switching

STT-MRAM

High B/F Algorithms

Low Precision & 
Probablistic
Computing

Accelerator-
Specific 

Compilers

Accelerator 
“Binaries”

Programmable 
Logic

Data Memoization

Machine Learning
based acceleration

Data Assimilation

Parallel Space-and-Time
Algorithms

BW Reducing Alg.

Post-Moore 
Performance 
Parameters

Auto Tuning

Post-Moore 
Performamce
Models

Data & Custom Compute Centric Platform

Uncertainty 
Quantification

Couplers

Multi-Phyics
SImulation

Low Rank
Approximation

Out-of-core Alg

Massive Medical 
Imaging

Post-Moore Programming Model

Data-oriented 
Scheduling

Latency 
Hiding

Data-Movement
Runtime

Hierarchical Data
Abstractions

Fault 
Tolerance

High-Level 

Synthesis 

Compilers

Fusion/Plasma EMF AnalysisManufacturing

Post-Moore is NOT a 
More-Moore device 
as a panacea

Device & arch. advances
improving data-related
parameters over time

“Rebooting Computing”
in terms of devices,
architectures, software.
Algorithms, and 
applications necessary
=> Co-Design even
more important
c.f. Exascale
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