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Computability to Performance 

Computability 

Complexity 

Parallelism 

Performance 

What can be computed? 
•  computational power 

How hard is a problem? 
•  complexity classes 
•  how problems scale 

Computation model 
• Church-Turing thesis 

Complexity theory 
•  P, NP 
• NP-hard, NP-complete 
•  steps (time), space 

Is there concurrency? 
•  dependencies 
•  parallel behavior 

Parallel algorithm 
•  scaling models 
•  isoefficiency 

How well are requirements 
of the computation are met 
by computing resources? 

Parallel programs run 
on parallel machines 
•  theory / simulation 
•  empirical evaluation 

Question Formalism 



q  Performance is the raison d’être of parallelism 
❍  Reduce time to solution 
❍  Computer larger problems 
❍  Handle greater complexity 

q  Productivity is the raison d’être of (parallel) performance 
❍  Advance outcomes of value 

q  A (high-performance) parallel computer uses advanced 
technology with high computational potential 

q  Computational potential is delivered to high value 
outcomes by realizing high performance for applications 

q  Performance is relative to its environment (in context) 
❍  Machine, application, operating system, … 
❍  Performance portability and performant applications 

L'existence Précède L'essence 



(High-Performance) Scientific Productivity 



End-to-End Productivity 

•  	  Dynamic	  performance	  adapta0on	  

Application Software Productivity Execution-time Productivity 

Increased complexity 
in scientific applications 



q  What is the nature of parallel performance? 
q  There are fundamental theoretical issues 

❍  Performance observation and analysis uncertainty 
q  Achieving performance is an (empirical) engineering process 

❍  Observation: measure and characterize behavior 
❍  Diagnosis: identify and understand problems 
❍  Tuning: modify to run optimally on high-end machines 

q  Want the process to be effective and productive 
❍  What is the nature of the performance problem solving? 
❍  What is the performance technology to be applied? 

q  Compelling reasons to build and integrate performance tools 
q  Parallel systems evolution will drive changes in the technology 

and process and how they are applied in practice 

Parallel Performance, Methodology, and Tools 



q  Performance methodology and tools have evolved to serve 
the dominant architectures and programming models 

q  Observability era (1991 – 1998) 
❍  Instrumentation, measurement, analysis 

q  Diagnosis era (1998 – 2007) 
❍  Identifying performance inefficiencies 

q  Complexity era (2008 – 2012) 
❍  Scale, memory, multicore, accelertor 

q  Productivity era (2013 – future) 
❍  Extreme scale, variance, performance 

portability, dynamic adaptability, … 

Performance Technology Eras 

TAU 
Performance 

System® 



❑  Performance evaluation problems define the requirements 
for performance measurement and analysis methods 

❑  Performance observability is the ability to “accurately” 
capture, analyze, and present understand (collectively 
observe) information about parallel software and system 

❑  Tools for performance observability must balance the need 
for performance data against the cost of obtaining it 
(environment complexity, performance intrusion) 
❍  Too little performance data makes analysis difficult 
❍  Too much data perturbs the measured system  

❑  Important to understand performance observability 
complexity and develop technology to address it 

Performance Observability (1991-1998) 

A. Malony, “Performance Observability,” Ph.D. Thesis, University of Illinois, Urbana-Champaign, 1991. 



Performance Uncertainty 

q  How do we understand (true) parallel performance? 
q  Performance “science” theory and methodology 
q  Want to apply to real HPC-class machines 
q  Performance (observation and analysis) uncertainty 

❍  Performance analysis requires performance observation 
❍  Any performance observation will be intrusive 
❍  Any performance intrusion may perturb the system state 

q  Uncertainty applies to all experimental methods 
❍  “Truth” lies just beyond the reach of observation 

q  Performance technology must embrace uncertainty 
❍  Develop performance observation systems that can deliver robust 

performance data efficiently with low overhead 
❍  Rationalize about performance measurement effects 
◆  perturbation analysis, … 



Performance Diagnosis (1998-2007) 
Performance diagnosis is a 
process to detect and explain 
performance problems 



❑  Semantic entities, attributes, 
associations (SEAA) 
❍  Entities: represent semantics 

at any level 
❍  Attribute: encode entity 

semantics 
❍  Association: link entities 

across levels to map 
performance data 

❑  SEAA ability to map low-
level data to high levels of 
abstraction reduces the 
semantic gap for user 

Semantic Gap in Performance Mapping 

S. Shende, “The Role of Instrumentation and Mapping in 
Performance Measurement,” Ph.D. Thesis, University of Oregon, 2001. 
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❑  APART – Automatic Performance Analysis - Real Tools 
❍  Problem specification and identification 

❑  Poirot – theory of performance diagnosis processes 
❍  Compare and analyze performance diagnosis systems 
❍  Heuristic classification 
❍  Heuristic search 
❍  Lack of explanation power  

❑  Hercule – knowledge-based (model-based) diagnosis 
❍  Capture knowledge about performance problems 
❍  Capture knowledge about how to detect and explain them 
❍  Knowledge comes from parallel computational models 
◆  associate computational models with performance models 

Performance Diagnosis Projects 

L. Li, “Model-based Automatic Performance Diagnosis of Parallel Computations,” Ph.D. Thesis, University of Oregon, 2007. 



q  Should not just redescribe the performance results 
q  Should explain performance phenomena 
❍  What are the causes for performance observed? 
❍  What are the factors and how do they interrelate? 
❍  Performance analytics, forensics, and decision support 

q  Need to add knowledge to do more intelligent things 
❍  Automated analysis needs good informed feedback 
◆  iterative tuning, performance regression testing 

❍  Performance model generation requires interpretation 
q  We need better methods and tools for 
❍  Integrating meta-information 
❍  Knowledge-based performance problem solving 

How to Explain and Understand Performance 

K. Huck, “Knowledge Support for Parallel Performance Data Mining,” Ph.D. Thesis, University of Oregon, 2008. 



❑  Performance tools have evolved incrementally to serve the 
dominant architectures and programming models 
❍  Reasonably stable, static parallel execution models 
❍  Allowed application-level observation focus 

❑  Observation requirements for 1st-person measurement: 
❍  Performance measurement can be made locally (per thread) 
❍  Performance data collected at the end of the execution 
❍  Post-mortem analysis and presentation of performance results 
❍  Offline performance engineering 

❑  Architecture factors increase performance complexity 
❍  Greater core counts and hierarchical memory system 
❍  Heterogeneous computing 
❍  Significantly larger scale 

❑  Focus on performance technology integration 

Performance Complexity (2008-2012) 



Evolution 
❑  Increased performance complexity and scale forces the 

engineering process to be more intelligent and automated 
❍  Automate performance data analysis / mining / learning 
❍  Automated performance problem identification 

❑  Even with intelligent and application autotuning, the 
decisions of what to analyze are difficult 
❍  Performance engineering tools and practice must incorporate 

a performance knowledge discovery process 
❑  Extreme scale performance is an optimized orchestration 

❍  Application, processor, memory, network, I/O 
❑  Application-level only performance view is myopic 
❑  Reductionist approaches will be unsuccessful 
❑  Need for whole performance evaluation 



Productivity Era (2012 – ???) 
❑  Challenges of performance growth and power will cause 

exascale systems to depart from conventional MPP designs  
❍  Greater core counts and hardware thread concurrency 
❍  Heterogeneous hardware and deeper memory hierarchy 
❍  Hardware-assisted global addressing space support 
❍  Power limits and reliability concerns built in 

❑  Emerging exascale programming models emphasize message-
driven computation and finer-grained parallelism semantics 
❍  More asynchronous and lower-level thread management 
❍  More exposure of concurrency through task-level parallelism  
❍  Global address space models versus conventional message passing 
❍  Heterogeneity in parallel execution and locality optimization 

❑  Productivity and performance are coupled at exascale 
❍  Applications are more complex and must be mapped to systems 
❍  Growing crisis for performant and maintainable scientific software  



Uniformity Assumptions are No Longer Valid 
❑  Exascale design directions raise issues of uniformity 

❍  Components and behaviors are not the same or regular 
❍  Heterogeneous compute engines behave differently 
❍  Fine-grained power management affects homogeneity 
❍  Process technology results in non-uniform execution behavior 
❍  Fault resilience introduces inhomogeneity  

❑  Bulk synchronous model is increasingly impractical 
❍  Removing sources of performance variation (jitter) is unrealistic 
❍  Huge costs in power/complexity/performance to extend the life 

❑  Embrace performance heterogeneity!!! 
❍  Variation, variation, variation 
❍  Can not assume a stable “state” of the system a priori 
❍  Post-mortem performance analysis fails for lack of repeatability 



A New Performance “Observability” 
❑  Key exascale parallel “performance” abstraction 

❍  Inherent state of exascale execution is dynamic  
❍  Embodies non-stationarity of “performance” 
❍  Constantly shaped by the adaptation of resources to meet 

computational needs and optimize objectives 
❑  Fundamentally different performance “observability” 

❍  “1st person” + “3rd person” performance introspection 
❍  Designed to support introspective adaptation 
❍  In-situ analysis of performance state, objectives, and 

progress 
❍  Aware of multiple performant and productivity objectives 
❍  Policy-driven dynamic feedback and adaptation 
❍  Reflects computation to execution model mapping 
❍  Integration in exascale productivity environment 



Ph.D. Thesis 
❑  D. Ozog, High Performance 

Computational Chemistry, 
Ph.D. thesis, December 2016. 

❑  N. Chaimov, Insightful 
Performance Analysis of 
Many-task Runtimes through 
Tool-Runtime Integration, 
Ph.D. thesis, June 2017. 

❑  D. Ellsworth, System-wide 
Power Management 
Targeting Early Hardware 
Overprovisioned High 
Performance Computers, 
Ph.D. thesis, June 2017. 



1992-1995: DARPA pC++ (Gannon, Malony, Mohr). TAU (Tools Are Us) is born. 
   [parallel profiling, tracing, performance extrapolation] 
1995-1998: Shende Ph.D. (performance mapping, instrumentation). TAU v1.0. 
   [multiple languages, source analysis, automatic instrumentation] 

1998-2001: Significant effort in Fortran analysis and instrumentation, work with 
   Mohr on OpenMP, Kojak tracing integration, focus on automated performance 
   analysis. [performance diagnosis, source analysis, instrumentation] 
2002-2005: Focus on profiling analysis, measurement scalability, and perturbation 
   compensation. [analysis, scalability, perturbation analysis, applications] 
2005-2007: More emphasis on tool integration, usability, and data presentation. TAU 
   v2.0 released. [performance visualization, binary instrumentation, integration, 
   performance diagnosis and modeling] 

2008-2011: Add performance database support, data mining, and rule-based analysis. 
  Develop measurement/analysis for heterogeneous systems.  Core measurement 
  infrastructure integration (Score-P). [database, data mining, expert system, 
  heterogeneous measurement, infrastructure integration] 

2012-present: Focus on exascale systems. Improve scalability, heterogeneous 
  support, runtime system integration, dynamic adaptation.  Apply to petascale / 
  exascale applications. [scale, autotuning, introspection, autonomic] 

TAU History 

Observability 

Diagnosis 

Complexity 

Exascale 



Parallel Performance is more than the NPB! 



Parallel Performance Research Future 

“When you come to 
a fork in the road, 
take it. – Yogi Berra 



I compute, therefore I am! 


