

# How performance tools are essential for designing next generation architectures

W. Jalby, C. Valensi, E. Oseret, M. Popov, M. Tribalat ECR (Exascale Computing Research) CEA INTEL UVSQ



# A LOOK AT THE PAST DECADE

| System                  | CPU        | Year | Core DP  | Freq  | # Cores | L3   | RAM  |
|-------------------------|------------|------|----------|-------|---------|------|------|
|                         |            |      | (Gflops) | (GHz) |         | (MB) | (GB) |
| Harpertown (45 nm)      | X5482      | 2007 | 12.80    | 3.20  | 8       | 0    | 16   |
| Harpertown (45 nm)      | X5492      | 2008 | 13.60    | 3.40  | 8       | 0    | 16   |
| Gainestown (45 nm)      | W5590      | 2009 | 13.32    | 3.33  | 8       | 8    | 48   |
| Westmere-EP (32 nm)     | X5680      | 2010 | 13.32    | 3.33  | 12      | 12   | 48   |
| Westmere-EP (32 nm)     | X5690      | 2011 | 13.88    | 3.47  | 12      | 12   | 96   |
| Sandy Bridge-EP (32 nm) | E5-2690    | 2012 | 23.20    | 2.90  | 16      | 20   | 64   |
| Ivy Bridge-EP (22 nm)   | E5-2690 v2 | 2013 | 24.00    | 3.00  | 20      | 25   | 128  |
| Haswell-EP (22 nm)      | E5-2690 v3 | 2014 | 41.60    | 2.60  | 24      | 30   | 256  |
| Haswell-EP (22 nm)      | E5-4650    | 2015 | 33.60    | 2.10  | 48      | 30   | 512  |
| Broadwell-EP (14 nm)    | E5-2690 v4 | 2016 | 41.60    | 2.60  | 28      | 35   | 256  |

- SPEC FP 2006 : Full set of "real" scientific applications
- SPEC a well known and thorough performance measurement methodology, a large (unique ??) amount of results
- 10 INTEL reference architectures from the past decade
- Architecture/compilers vary from year to year BUT Source code are invariant

ECR/UVSQ

#### PERFORMANCE PROGRESS DURING THIS PAST DECADE

- Speedup from one year to the next
- Violin: distribution for the full set of SPECFP
- Red Dots: speedup of peak FP performance
- Blue Dots: geometric mean of Speedups
- Unicore measurements
- Baseline



#### A MORE REALISTIC VIEW ON PERFORMANCE PROGRESS



- Unicore measurements (red bars) are optimistic: one core has full access to the whole memory hierarchy.
- SPECrate (blue bars) divided by number of cores is a more realistic view
- Baseline numbers

ECR/UVSQ

#### **SPEC MPI PERFORMANCE PROGRESS: LAST 4 YEARS**



| CPU        | cores per node | peak (TFlops) | SPEC result | result vs peak |
|------------|----------------|---------------|-------------|----------------|
| E5-2690 v2 | 20             | 19.2          | 100.26      | 5.22           |
| E5-2690 v3 | 24             | 39.94         | 111.61      | 2.79           |
| E5-2690 v4 | 28             | 46.59         | 128.94      | 2.77           |

# **GORDON BELL AWARD OVER THE LAST DECADE**

| Year | Machine           | Cores  | Tflops<br>obtained | Tflops<br>peak | Obtained over<br>Peak (%) | Computations                                                              |
|------|-------------------|--------|--------------------|----------------|---------------------------|---------------------------------------------------------------------------|
| 2007 | BlueGene/L        | 131K   | 0,11               | 0,28           | 39                        | Micron-Scale Atomistic Simulation of Kelvin-Helmholtz<br>Instability      |
| 2008 | Cray XT4          | 31K    | 0,2                | 0,26           | 77                        | Simulations of disorder effects in high-Tc superconductors                |
| 2009 | Cray XT5          | 147K   | 1,03               | 1,36           | 76                        | Ab initio computation of free energies                                    |
| 2010 | Cray XT5-HE       | 200K   | 0,7                | 2,3            | 30                        | Direct numerical simulation of blood flow                                 |
| 2011 | K computer        | 442K   | 3,08               | 7,07           | 44                        | First-principles calculations of electron states of a silicon<br>nanowire |
| 2012 | K computer        | 663K   | 4,45               | 10,6           | 42                        | Astrophysical N -Body Simulation                                          |
| 2013 | Sequoia           | 1.6M   | 11                 | 20,1           | 55                        | Cloud Cavitation Collapse                                                 |
| 2014 | Anton 2           | NA     | NA                 | NA             | NA                        | Molecular dynamics                                                        |
| 2015 | Sequoia           | 1.6M   | 0,69               | 20,1           | 3                         | Implicit Solver for Complex PDEs                                          |
| 2016 | Sunway TaihuLight | 10.56M | 7,85               | 125            | 6                         | Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics             |

- Very impressive results: high efficiency except for the last 2 years
- Very different results from SPEC evolution
- Codes have been fully customized: using (??) top of the line performance evaluation tools <sup>©</sup>
- Are these codes more than Proof of Concept ?? Impact on standard apps
  ECR/UVSQ

#### **RESOURCE USAGE: YALES2 LOOPPS**



- 28 loops among the hottest for YALES2: combustion CFD application used in academia and industry
- FP (Floating Point Units), L1R (L1 Read access), L1 (L1 Write access), L2 access, L3 access
- Per "node" (FP, L1R, L1W, L2, L3) and then per loop, percentage of peak bandwidth used: "saturation ratio". Loops sorted by increasing L3 usage
   ECR/UVSQ

#### **A FEW LESSONS**

SPEC numbers over the last decade are completely depressing.

Hardware resource usage is poorly controlled. Low saturation ratio means bad investment also useless power consumption.

Several possible choices:

- Improve Compiler Autotuning: OK but will provide at best 10 to 20% perf improvement
- 2. Fully rewrite applications (cf Gordon Bell): OK but very costly and not practical for most application fields

# **A FEW DIRECTIONS**

More powerful approaches

- Use performance tools to guide application restructuring. Stop giving detailed diagnostics that a standard user cannot understand or lead to the wrong path. Instead of pointing to problems, suggest and evaluate potential solutions. THINK AS A DOCTOR <sup>©</sup>
- Use performance tools to conduct application performance characterization and drive hardware/software co design

# FOUR OPTIMIZATIONS TO BE EVALUATED

- "Clean Code": checks compiler deficiencies. Supress non FP instructions and evaluate performance potential gains.
- "FP Arith Vectorization": evaluate performance gains due to partial vectorization
- "Fully Vectorized": evaluate performance due to full vectorization (Loads/Stores + arithmetic)
- "L1 Blocking": evaluate performance impact of perfect blocking (all data in L1).

#### Ecuptae nobis et vel hillitas dolupta turiat.



"ONE View" optimization report on Yales 2 CFD Combustion code. X axis: the most fruitful loops to be optimized. Loop identifiers given for the 5 most fruitful loops. Y axis: cumulative performance gain

# A QUICK LOOK AT ENERGY

- 2 Haswell architecture: client and server
- Different behavior across instructions
- Different behavior between two "similar" architectures
- Power varies during computation

| Energy (nJ)/ HW node          | HSWE3    | HSWEP    |
|-------------------------------|----------|----------|
|                               | (3.5GHz) | (2.4GHz) |
| FE (nJ/Inst)                  | 0.11     | 0.08     |
| INT (nJ/Inst)                 | 0.14     | 0.13     |
| ADD (SS/SD) 32/64 (nJ/Inst)   | 0.33     | 0.33     |
| ADD (PS/PD) 128 (nJ/Inst)     | 0.33     | 0.33     |
| ADD (PS/PD) 256 (nJ/Inst)     | 0.60     | 0.45     |
| MUL (SS/SD) 32/64 (nJ/Inst)   | 0.16     | 0.13     |
| MUL (PS/PD) 128 (nJ/Inst)     | 0.30     | 0.15     |
| MUL (PS/PD) 256 (nJ/Inst)     | 0.33     | 0.25     |
| DIV (SS) 32 (nJ/Inst)         | 3.76     | 4.19     |
| DIV (SD) 64 (nJ/Inst)         | 5.59     | 5.46     |
| DIV (PS) 128 (nJ/Inst)        | 5.21     | 4.80     |
| DIV (PD) 128 (nJ/Inst)        | 6.32     | 6.15     |
| DIV (PS) 256 (nJ/Inst)        | 11.83    | 11.20    |
| DIV (PD) 256 (nJ/Inst)        | 14.09    | 17.05    |
| FMA (PS/PD) 256 (nJ/Inst)     | 0.70     | 0.63     |
| LD/L1 (SS/SD) 32/64 (nJ/Inst) | 0.30     | 0.15     |
| LD/L1 (PS/PD) 128 (nJ/Inst)   | 0.33     | 0.18     |
| LD/L1 (PS/PD) 256 (nJ/Inst)   | 0.45     | 0.34     |
| ST/L1 (SS/SD) 32/64 (nJ/Inst) | 0.69     | 0.69     |
| ST/L1 (PS/PD) 128 (nJ/Inst)   | 0.69     | 0.69     |
| ST/L1 (PS/PD) 256 (nJ/Inst)   | 0.78     | 0.69     |
| L2 (Read/Write) (nJ/64 bytes) | 2.96     | 2.12     |
| L3 (Read/Write) (nJ/64 bytes) | 4.59     | 4.70     |

Table 2: Energy coefficients expressed in nano-Joule

# **ENERGY: NEW AND MANDATORY CHALLENGES**

- C: Capacity. Performance metric (Flops per cycle, Transactions per cycle, etc....)
- E: Energy consumed by a computation
- Only maximizing C is no longer a correct objective because it might lead to unacceptable power/energy costs
- Only minimizing E is not a correct objective either because it leads to low capacities.
- Race to Halt strategies are also too short minded because they essentially assume constant power

# PERFORMANCE AND ENERGY MODELS ARE NEEDED

#### **Real Objectives**

- Maximising a Quality metric (C, C/E) under constraints (Constant Power, Constant Capacity)
- To be correctly addressed, such objectives needs performance models which will use as an essential component "measurements"
- Performance tools needs to add predictive power to predict power behavior, performance behavior.

#### Ecuptae nobis et vel hillitas dolupta turiat.



#### Ecuptae nobis et vel hillitas dolupta turiat.





# **Thank You**

