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A LOOK AT THE PAST DECADE  

� SPEC FP 2006 : Full set of “real” scientific applications 
� SPEC a well known and thorough performance measurement methodology, 

a large (unique ??) amount of results  
� 10 INTEL reference architectures from the past decade 
� Architecture/compilers vary from year to year BUT Source code are 

invariant 
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System CPU Year Core DP Freq # Cores L3 RAM
(Gflops) (GHz) (MB) (GB)

Harpertown (45 nm) X5482 2007 12.80 3.20 8 0 16
Harpertown (45 nm) X5492 2008 13.60 3.40 8 0 16
Gainestown (45 nm) W5590 2009 13.32 3.33 8 8 48
Westmere-EP (32 nm) X5680 2010 13.32 3.33 12 12 48
Westmere-EP (32 nm) X5690 2011 13.88 3.47 12 12 96
Sandy Bridge-EP (32 nm) E5-2690 2012 23.20 2.90 16 20 64
Ivy Bridge-EP (22 nm) E5-2690 v2 2013 24.00 3.00 20 25 128
Haswell-EP (22 nm) E5-2690 v3 2014 41.60 2.60 24 30 256
Haswell-EP (22 nm) E5-4650 2015 33.60 2.10 48 30 512
Broadwell-EP (14 nm) E5-2690 v4 2016 41.60 2.60 28 35 256
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PERFORMANCE PROGRESS DURING THIS PAST DECADE 

� Speedup from one 
year to the next 

� Violin: distribution 
for the full set of 
SPECFP 

� Red Dots: speedup 
of peak FP 
performance 

� Blue Dots: 
geometric mean of 
Speedups 

� Unicore 
measurements 

� Baseline 
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A MORE REALISTIC VIEW ON PERFORMANCE PROGRESS  

� Unicore measurements (red bars) are optimistic: one core has full access 
to the whole memory hierarchy.  

� SPECrate (blue bars) divided by number of cores is a more realistic view 
� Baseline numbers 
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SPEC MPI PERFORMANCE PROGRESS: LAST 4 YEARS 
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CPU cores per node peak (TFlops) SPEC result result vs peak
E5-2690 v2 20 19.2 100.26 5.22
E5-2690 v3 24 39.94 111.61 2.79
E5-2690 v4 28 46.59 128.94 2.77
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GORDON BELL AWARD OVER THE LAST DECADE  

� Very impressive results: high efficiency except for the last 2 years 
� Very different results from SPEC evolution 
� Codes have been fully customized: using (??) top of the line performance 

evaluation tools - 
� Are these codes more than Proof of Concept ?? Impact on standard apps 

?? 
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Year Machine Cores
Tflops 

obtained
Tflops 
peak

Obtained over 
Peak (%)

Computations

2007 BlueGene/L 131K 0,11 0,28 39
Micron-Scale Atomistic Simulation of Kelvin-Helmholtz 

Instability
2008 Cray XT4 31K 0,2 0,26 77 Simulations of disorder effects in high-Tc superconductors
2009 Cray XT5 147K 1,03 1,36 76 Ab initio computation of free energies
2010 Cray XT5-HE 200K 0,7 2,3 30 Direct numerical simulation of blood flow

2011 K computer 442K 3,08 7,07 44
First-principles calculations of electron states of a silicon 

nanowire
2012 K computer 663K 4,45 10,6 42 Astrophysical N -Body Simulation
2013 Sequoia 1.6M 11 20,1 55 Cloud Cavitation Collapse
2014 Anton 2 NA NA NA NA Molecular dynamics
2015 Sequoia 1.6M 0,69 20,1 3 Implicit Solver for Complex PDEs

2016 Sunway TaihuLight10.56M 7,85 125 6 Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics
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RESOURCE USAGE: YALES2 LOOPPS 

� 28 loops among the hottest for YALES2: combustion CFD application used in 
academia and industry 

� FP (Floating Point Units), L1R (L1 Read access), L1 (L1 Write access), L2 access, L3  
access 

� Per “node” (FP, L1R, L1W, L2, L3) and then per loop, percentage of peak bandwidth 
used: “saturation ratio”. Loops sorted by increasing L3 usage 
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A FEW LESSONS 

SPEC numbers over the last decade are completely depressing. 
  
Hardware resource usage is poorly controlled. Low saturation 
ratio means bad investment also useless power consumption. 
 
Several possible choices: 
1. Improve Compiler Autotuning: OK but will provide at best 10 

to 20% perf improvement 
2. Fully rewrite applications (cf Gordon Bell): OK but very 

costly and not practical for most application fields 
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A FEW DIRECTIONS 

More powerful approaches 
� Use performance tools to guide application restructuring. Stop 

giving detailed diagnostics that a standard user cannot 
understand or lead to the wrong path. Instead of pointing to 
problems, suggest and evaluate potential solutions. THINK AS 
A DOCTOR - 

� Use performance tools to conduct application performance 
characterization and drive hardware/software co design 
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FOUR OPTIMIZATIONS TO BE EVALUATED 

 
� “Clean Code”: checks compiler deficiencies. Supress non FP 

instructions and evaluate performance potential gains. 
� “FP Arith Vectorization “ : evaluate performance gains due to 

partial vectorization  
� “Fully Vectorized”: evaluate performance due to full 

vectorization (Loads/Stores + arithmetic) 
� “L1 Blocking”: evaluate performance impact of perfect 

blocking (all data in L1). 
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Ecuptae nobis et vel hillitas dolupta turiat.  

“ONE View” optimization report on Yales 2 CFD Combustion code. 
X axis: the most fruitful loops to be optimized. Loop identifiers 
given for the 5 most fruitful loops. 
Y axis: cumulative performance gain 
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A QUICK LOOK AT ENERGY 

� 2 Haswell architecture: 
client and server 

� Different behavior across 
instructions 

� Different behavior 
between two “similar” 
architectures 

� Power varies during 
computation 
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ENERGY: NEW AND MANDATORY CHALLENGES 

C: Capacity. Performance metric (Flops per cycle, Transactions 
per cycle, etc….) 
E: Energy consumed by a computation 
� Only maximizing C is no longer a correct objective because it 

might lead to unacceptable power/energy costs 
� Only minimizing E is not a correct objective either because it 

leads to low capacities. 
� Race to Halt strategies are also too short minded because 

they essentially assume constant power 
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PERFORMANCE AND ENERGY MODELS ARE NEEDED 

Real Objectives 
� Maximising a Quality metric (C, C/E) under constraints 

(Constant Power, Constant Capacity) 
� To be correctly addressed, such objectives needs performance 

models which will use as an essential component 
“measurements” 

� Performance tools needs to add predictive power to predict 
power behavior, performance behavior.  
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Ecuptae nobis et vel hillitas dolupta turiat.  

FOOTER (INSERT > HEADER AND FOOTER) 15 

1
1,05
1,1

1,15
1,2

1,25
1,3

1,35
1,4

1,45
1,5

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING 

Ecuptae nobis et vel hillitas dolupta turiat.  
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Thank You 


