VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis is easy
... but obtaining the traces is not

C. Niethammer, A. Shamakina,
S. Walter, J. Gracia
HLRS, U Stuttgart

allinea #) JULICH

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

POP Project: performance analysis as a service

= CoE POP - Performance Optimisation and Productivity
= EU-funded

= Partners: BSC, HLRS, JSC, NAG, RWTH-Aachen, Teratec

= Service activities:
? Performance Audit:
identify performance issues
! Performance Plan:
root cause analysis and recommendations
v Proof-of-Concept:
prototype code changes
show effect of proposed optimisations

FOOTER (INSERT > HEADER AND FOOTER)

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis is simple

009
POP Ref.No. CONTENTS
Contents
1 Background 4
2 Application structure & Focus of Analysis 4
3 Scalability 4
4 Efficiency 6
5 Load Balance 8
6 Computational Performance 9
7 Communications 10
8 1/0 11
9 Summary of observations 12
Musubi performance assessment report List of Figures 14
List of Tables 14
Acronyms and Abbreviations 14
Document Information
Reference Number | POI ersion 0.3
Author Stephan Walter (HLRS)
Conttar(s) | Jost Gracha (HLES) From these basic measurements we can derive the following performance metrics.
Date 21.07.2016
Application S
Service Level | Performance Audit
Keywords | Toad Balance, MPL Strong Scaling, Performance variability

ranks | 12| 192

Parallel Efficiency 93% | 82%
Load Balance 94% | 86%

Notiess h s fning 1o these s s e fing o the Fopean Uniond s Horieon Communication Efficiency 99% | 95%
2020 pscarh and fnovatin progane nder ot agement No 76773 Computation Scalability (strong scaling) | 100% | 96%
m ©2015 POP Gonortium Partners. Al igts roserved Instructions Scalability 100% | 94%
IPC Scalability 3 100% | 106%
Global Efficiency 92% | 8%

Table 2: Efficiency metrics for the FoA.

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Obtaining traces is non-trivial in many cases

= HLRS: 21 tracing cases Instrumentation effort
(code, tool, target)

= target specified by customer,
e.g.: MPI, MPI+OpenMP, 10

» classified instrumentation effort to

obtain full traces for target:
= easy: just using official documentation
= difficult: required sources beyond
docu, e.g. developers, other specialist
» failed: impossible to obtain full traces
as planned

21 total

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Closer look at instrumentation effort

= By language: easy/difficult/failed [%] total#
Fortran 58/ 17/ 25 12
C++ 0/33/ 67 3
mixed 33/17 /50 6
(Fortran & C/C++)

= By tool:
VI-HPS 29 /21 /50 14
others 71 /14 / 14 7

(Cray, perf, ...)

= By customer:
HLRS user 62/ 13/ 25 8
others 31/ 23/ 46 13
POP customers seem to have

more “complex” codes than HLRS users

FOOTER (INSERT > HEADER AND FOOTER)

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Some instrumentation issues

= |arge instrumentation overhead for C++ -> trace useless
setting up filtering for C++ codes is non-trivial

= collecting data from IO, in particular Fortran
= code spawns new process which is invisible to tracing
= unreliable time-stamps in traces

= uncommon language or programming model constructs

= jncomplete documentation

FOOTER (INSERT > HEADER AND FOOTER) 6

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Misleading failed instrumentation

Looks like really low IPC ...

0 Sl st 240

but is a spawned Fortran process which remains invisible to
tracing infrastructure

FOOTER (INSERT > HEADER AND FOOTER)

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Misleading failed traces

Looks like load-imbalance(?), one node does different stuff ...

New window #1 @ 4_node_bpmf-2016-06-24.filterl.prv

THREAD 1.1.
THREAD 1.1.17
THREAD 1.1.2
THREAD 1.1.3
THREAD 1.2.
THREAD 1.2.1
THREAD 1.2.21
THREAD 1.2.2
THREAD 1.3.1
THREAD 1.3.
THREAD 1.3.17
THREAD 1.3.25
THREAD 1.3.3
THREAD 1.4.
THREAD 1.4.1
THREAD 1.4.21
THREAD 1.4.2
THREAD 1.4.3 8 n

but is unreliable time-stamps due to clock skew.

FOOTER (INSERT > HEADER AND FOOTER) 8

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Are POP customer codes different?

typical HLRS user code? typical POP code?
main() main()
dlopen() sy
libcustom1
libmk
system () ===
Fortran
libother libother
libother
filesystem | mmp
monolithic binary multiple binaries, workflow, etc

Are “typical” HPC codes only a non-representative subgroup of
all codes running on clusters?

FOOTER (INSERT > HEADER AND FOOTER)

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Discussion

= Analysis of POP applications is relatively simple
= gserialisation of communication
= algorithmic load-imbalance

= Instrumenting POP applications is relatively difficult

= Larger variation of HPC codes outside of large centres?
Multi-binary, workflows?

= As a community, put less effort in analysis capabilities?
And more in instrumentation framework?

FOOTER (INSERT > HEADER AND FOOTER) 10

VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

allinea

