
V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis is easy
... but obtaining the traces is not

C. Niethammer, A. Shamakina,
S. Walter, J. Gracia
HLRS, U Stuttgart

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

POP Project: performance analysis as a service

§ CoE POP – Performance Optimisation and Productivity
§ EU-funded
§ Partners: BSC, HLRS, JSC, NAG, RWTH-Aachen, Teratec

§ Service activities:
? Performance Audit:

identify performance issues
! Performance Plan:

root cause analysis and recommendations
ü Proof-of-Concept:

prototype code changes
show effect of proposed optimisations

FOOTER (INSERT > HEADER AND FOOTER) 2

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis is simple

POP Ref.No. POP AR 5 CONTENTS

Contents

1 Background 4

2 Application structure & Focus of Analysis 4

3 Scalability 4

4 E�ciency 6

5 Load Balance 8

6 Computational Performance 9

7 Communications 10

8 I/O 11

9 Summary of observations 12

List of Figures 14

List of Tables 14

Acronyms and Abbreviations 14

3

FOOTER (INSERT > HEADER AND FOOTER) 3

Musubi performance assessment report

Document Information
Reference Number POP AR 5, Version 0.3
Author Stephan Walter (HLRS)
Contributor(s) José Gracia (HLRS)
Date 21.07.2016
Application Musubi
Service Level Performance Audit
Keywords Load Balance, MPI, Strong Scaling, Performance variability

Notices: The research leading to these results has received funding from the European Unionâ�ès Horizon
2020 research and innovation programme under grant agreement No no676553.

c•2015 POP Consortium Partners. All rights reserved.

POP Ref.No. POP AR 5

which is an acceptable value. Apart from that, there is no noteworthy feature in the scaling
curve which would indicate a transition in scaling behaviour or single out particular core counts.
Therefore, we will continue using runs with 12 MPI ranks as reference and report analysis for
runs with 192 ranks.

4 E�ciency
In this section we discuss certain performance metrics which have been obtained from the
instrumented benchmark runs. The results are presented in terms of a number of e�ciencies
and scalabilities, which are related to fundamental performance issues. As usual e�ciencies and
scalabilities can take values between 0% and 100%. These metrics are all derived from the time
the application spends in di�erent execution states. For an MPI code, these states are useful
and MPI runtime. In the former case, the cores are executing user code, i.e doing useful work,
while in the latter case the application is executing code which is related to the MPI runtime
system, as for instance doing communication or synchronising processes, and thus not directly
contributing to the application’s business logic.

The Table 1 gives details on the time the application is spending in these states within
the focus of analysis across di�erent core counts. For illustration the timeline showing useful
and runtime states for an 8-iteration section of the focus of analysis is shown in Figure 1. In
particular, the cores spend most of their time doing useful work.

ranks 12 192
average useful time [s] 80,20 5,21
maximum useful time [s] 85,08 6,05
execution time [s] 85,99 6,34

Table 1: Breakdown of application time spent in the execution state useful user code within
the focus of analysis and its total runtime for runs with 12 and 192 MPI ranks, respectively.
The average and maximum are understood to be taken across the set of all MPI ranks, while
the total runtime is assumed equal for all.

From these basic measurements we can derive the following performance metrics.

ranks 12 192
Parallel E�ciency 93% 82%
Load Balance 94% 86%
Communication E�ciency 99% 95%
Computation Scalability (strong scaling) 100% 96%
Instructions Scalability 100% 94%
IPC Scalability 100% 106%
Global E�ciency 92% 78%

Table 2: E�ciency metrics for the FoA.

6

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Obtaining traces is non-trivial in many cases

§ HLRS: 21 tracing cases
(code, tool, target)

§ target specified by customer,
e.g.: MPI, MPI+OpenMP, IO

§ classified instrumentation effort to
obtain full traces for target:

§ easy: just using official documentation
§ difficult: required sources beyond

docu, e.g. developers, other specialist
§ failed: impossible to obtain full traces

as planned

FOOTER (INSERT > HEADER AND FOOTER) 4

easy:
43%

difficult:
19%

failed:
38%

Instrumentation effort

21 total

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Closer look at instrumentation effort

§ By language: easy/difficult/failed [%] total#
Fortran 58 / 17 / 25 12
C++ 0 / 33 / 67 3
mixed 33 / 17 / 50 6
(Fortran & C/C++)

§ By tool:
VI-HPS 29 / 21 / 50 14
others 71 / 14 / 14 7
(Cray, perf, …)

§ By customer:
HLRS user 62 / 13 / 25 8
others 31 / 23 / 46 13

POP customers seem to have
more “complex” codes than HLRS users

FOOTER (INSERT > HEADER AND FOOTER) 5

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Some instrumentation issues

§ large instrumentation overhead for C++ -> trace useless
setting up filtering for C++ codes is non-trivial

§ collecting data from IO, in particular Fortran

§ code spawns new process which is invisible to tracing

§ unreliable time-stamps in traces

§ uncommon language or programming model constructs

§ incomplete documentation

FOOTER (INSERT > HEADER AND FOOTER) 6

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Misleading failed instrumentation

Looks like really low IPC …

but is a spawned Fortran process which remains invisible to
tracing infrastructure

FOOTER (INSERT > HEADER AND FOOTER) 7

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Misleading failed traces

Looks like load-imbalance(?), one node does different stuff …

but is unreliable time-stamps due to clock skew.

FOOTER (INSERT > HEADER AND FOOTER) 8

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Are POP customer codes different?

typical HLRS user code?

monolithic binary

FOOTER (INSERT > HEADER AND FOOTER) 9

typical POP code?

multiple binaries, workflow, etc

main()

libmkl

libother

main()
dlopen()

system()

libcustom1

Fortran

libother

libother

Are “typical” HPC codes only a non-representative subgroup of
all codes running on clusters?

filesystem

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Discussion

§ Analysis of POP applications is relatively simple
§ serialisation of communication
§ algorithmic load-imbalance

§ Instrumenting POP applications is relatively difficult

§ Larger variation of HPC codes outside of large centres?
Multi-binary, workflows?

§ As a community, put less effort in analysis capabilities?
And more in instrumentation framework?

FOOTER (INSERT > HEADER AND FOOTER) 10

V IRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Thank You

