VIRTUALINSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis is easy
... but obtaining the traces is not
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POP Project: performance analysis as a service

= CoE POP - Performance Optimisation and Productivity
= EU-funded

= Partners: BSC, HLRS, JSC, NAG, RWTH-Aachen, Teratec

= Service activities:
? Performance Audit:
identify performance issues
! Performance Plan:
root cause analysis and recommendations
v Proof-of-Concept:
prototype code changes
show effect of proposed optimisations
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Performance analysis is simple
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ranks | 12| 192

Parallel Efficiency 93% | 82%
Load Balance 94% | 86%

Notiess h s fning 1o these s s e fing o the Fopean Uniond s Horieon Communication Efficiency 99% | 95%
2020 pscarh and fnovatin progane nder ot agement No 76773 Computation Scalability (strong scaling) | 100% | 96%
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Table 2: Efficiency metrics for the FoA.
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Obtaining traces is non-trivial in many cases

= HLRS: 21 tracing cases Instrumentation effort
(code, tool, target)

= target specified by customer,
e.g.: MPI, MPI+OpenMP, 10

» classified instrumentation effort to

obtain full traces for target:
= easy: just using official documentation
= difficult: required sources beyond
docu, e.g. developers, other specialist
» failed: impossible to obtain full traces
as planned

21 total
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Closer look at instrumentation effort

= By language: easy/difficult/failed [%] total#
Fortran 58/ 17/ 25 12
C++ 0/33/ 67 3
mixed 33/17 /50 6
(Fortran & C/C++)

= By tool:
VI-HPS 29 /21 /50 14
others 71 /14 / 14 7

(Cray, perf, ...)

= By customer:
HLRS user 62/ 13/ 25 8
others 31/ 23/ 46 13
POP customers seem to have

more “complex” codes than HLRS users
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Some instrumentation issues

= |arge instrumentation overhead for C++ -> trace useless
setting up filtering for C++ codes is non-trivial

= collecting data from IO, in particular Fortran
= code spawns new process which is invisible to tracing
= unreliable time-stamps in traces

= uncommon language or programming model constructs

= jncomplete documentation
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Misleading failed instrumentation

Looks like really low IPC ...

0 Sl st 240

but is a spawned Fortran process which remains invisible to
tracing infrastructure
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Misleading failed traces

Looks like load-imbalance(?), one node does different stuff ...

New window #1 @ 4_node_bpmf-2016-06-24.filterl.prv

THREAD 1.1.
THREAD 1.1.17
THREAD 1.1.2
THREAD 1.1.3
THREAD 1.2.
THREAD 1.2.1
THREAD 1.2.21
THREAD 1.2.2
THREAD 1.3.1
THREAD 1.3.
THREAD 1.3.17
THREAD 1.3.25
THREAD 1.3.3
THREAD 1.4.
THREAD 1.4.1
THREAD 1.4.21
THREAD 1.4.2
THREAD 1.4.3 8 n

but is unreliable time-stamps due to clock skew.
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Are POP customer codes different?

typical HLRS user code? typical POP code?
main() main()
dlopen() sy
libcustom1
libmk
system () ===
Fortran
libother libother
libother
filesystem | mmp
monolithic binary multiple binaries, workflow, etc

Are “typical” HPC codes only a non-representative subgroup of
all codes running on clusters?
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Discussion

= Analysis of POP applications is relatively simple
= gserialisation of communication
= algorithmic load-imbalance

= Instrumenting POP applications is relatively difficult

= Larger variation of HPC codes outside of large centres?
Multi-binary, workflows?

= As a community, put less effort in analysis capabilities?
And more in instrumentation framework?
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Thank You
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