
CUBE 4.1.4 – User Guide
Generic Display for Application Performance Data

February 2, 2013 The Scalasca Development Team
scalasca@fz-juelich.de

ii

Chapter 0. Copyright

Copyright

Copyright © 1998–2012 Forschungszentrum Jülich GmbH, Germany

Copyright © 2003–2008 University of Tennessee, Knoxville, USA

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or the University of Ten-
nessee, Knoxville, nor the names of their contributors may be used to endorse or
promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

iii

Chapter 0. Copyright

iv

Contents

Contents

Copyright iii

1 Cube User Guide 1
1.1 Abstract . 1
1.2 Introduction . 1
1.3 Using the Display . 3
1.4 Performance Algebra and Tools . 32

2 CUBE4 API 45
2.1 Creating CUBE Files . 45

3 Appendix 63
3.1 File format of statistics files . 63

Bibliography 65

v

Chapter 1. Cube User Guide

1 Cube User Guide

1.1 Abstract

CUBE is a presentation component suitable for displaying performance data for parallel programs in-
cluding MPI and OpenOpenMP applications. Program performance is represented in a multi-dimensional
space including various program and system resources. The tool allows the interactive exploration of this
space in a scalable fashion and browsing the different kinds of performance behavior with ease. CUBE
also includes a library to read and write performance data as well as operators to compare, integrate, and
summarize data from different experiments. This user manual provides instructions of how to use the
CUBE display, how to use the operators, and how to write CUBE files.

The version 4 of CUBE implementation has an incompatible API and file format to preceding versions.

1.2 Introduction

CUBE (CUBE Uniform Behavioral Encoding) is a presentation component suitable for
displaying a wide variety of performance data for parallel programs including MPI[1]
and OpenOpenMP[2] applications. CUBE allows interactive exploration of the perfor-
mance data in a scalable fashion. Scalability is achieved in two ways: hierarchical de-
composition of individual dimensions and aggregation across different dimensions. All
metrics are uniformly accommodated in the same display and thus provide the ability to
easily compare the effects of different kinds of program behavior.

CUBE has been designed around a high-level data model of program behavior called the
cube performance space. The CUBE performance space consists of three dimensions: a
metric dimension, a program dimension, and a system dimension. The metric dimension
contains a set of metrics, such as communication time or cache misses. The program
dimension contains the program’s call tree, which includes all the call paths onto which
metric values can be mapped. The system dimension contains the items executing in par-
allel, which can be processes or threads depending on the parallel programming model.
Each point (m,c,s) of the space can be mapped onto a number representing the actual
measurement for metric m while the control flow of process/thread s was executing call
path c . This mapping is called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, the metric
dimension is organized in an inclusion hierarchy where a metric at a lower level is a sub-

1

Chapter 1. Cube User Guide

set of its parent. For example, communication time is a subset of execution time. Second,
the program dimension is organized in a call-tree hierarchy. However, sometimes it can
be advantageous to abstract away from the hierarchy of the call tree, for example if one is
interested in the severities of certain methods, independently of the position of their invo-
cations. For this purpose CUBE supports also flat call profiles, that are represented as a
flat sequence of all methods. Finally, the system dimension is organized in a multi-level
hierarchy consisting of the levels: machine, SMPnode, process, and thread.

CUBE also provides a library to read and write instances of the previously described data
model in the form of a .CUBEXfile (which is a TAR TARfile anchor.xml inside of the
CUBEXenvelope. The data part contains the actual severity numbers to be mapped onto
the different elements of the performance space and stored in binary format in various
files inside of the CUBEXenvelope.

The display component can load such a file and display the different dimensions of the
performance space using three coupled tree browsers (Figure1.1). The browsers are
connected in such a way that you can view one dimension with respect to another di-
mension. The connection is based on selections: in each tree you can select one or more
nodes. For example, in Figure1.1 the Execution metric, the adi call path node, and
Process 0 are selected. For each tree, the selections in the trees on its left-hand-side
(if any) restrict the considered data: The metric nodes aggregate data over all call path
nodes and all system items, the call tree aggregates data for the Execution metric over
all system nodes, and each node of the system tree shows the severity for the Execution
metric of the adi call path node for this system node.

If the CUBE file contains topological information, the distribution of the performance
metric across the topology can be examined using the topology view. Furthermore, the
display is augmented with a source-code display that shows the position of a call site in
the source code.

As performance tuning of parallel applications usually involves multiple experiments
to compare the effects of certain optimization strategies, CUBE includes a feature de-
signed to simplify cross-experiment analysis. The CUBE algebra[4] is an extension of
the framework for multi-execution performance tuning by Karavanic and Miller[3] and
offers a set of operators that can be used to compare, integrate, and summarize multiple
CUBE data sets. The algebra allows the combination of multiple CUBE data sets into a
single one that can be displayed and examined like the original ones.

In addition to the information provided by plain CUBE files a statistics file can be pro-
vided, enabling the display of additional statistical information of severity values. Fur-
thermore, a statistics file can also contain information about the most severe instances
of certain performance patterns -- globally as well as with respect to specific call paths.
If a trace file of the program being analyzed is available, the user can connect to a trace
browser (i.e., Vampir or Paraver) and then use CUBE to zoom their timelines to the most
severe instances of the performance patterns for a more detailed examination of the cause
of these performance patterns.

2

1.3. Using the Display

The following sections explain how to use the CUBE display, how to create CUBE files,
and how to use the algebra and other tools.

1.3 Using the Display

This section explains how to use the CUBE-QT display component. After installation,
the executable "cube" can be found in the specified directory of executables (specifiable
by the “prefix” argument of configure, see the CUBE Installation Manual). The program
supports as an optional command-line argument the name of a cube file that will be
opened upon program start.

After a brief description of the basic principles, different components of the GUIwill be
described in detail.

1.3.1 Basic Principles

The CUBE-QT display has three tree browsers, each of them representing a dimension
of the performance space (Figure1.1). Per default, the left tree displays the metric di-
mension, the middle tree displays the program dimension, and the right tree displays the
system dimension. The nodes in the metric tree represent metrics. The nodes in the
program dimension can have different semantics depending on the particular view that
has been selected. In Figure1.1 , they represent call paths forming a call tree. The nodes
in the system dimension represent machines, nodes, processes, or threads from top to
bottom.

Each node is associated with a value, which is called the severity and is displayed si-
multaneously using a numerical value as well as a colored square. Colors enable the
easy identification of nodes of interest even in a large tree, whereas the numerical values
enable the precise comparison of individual values. The sign of a value is visually dis-
tinguished by the relief of the colored square. A raised relief indicates a positive sign, a
sunken relief indicates a negative sign.

Users can perform two basic types of actions: selecting a node or expanding/collapsing
a node. In the metric tree in Figure1.1 , the metric Execution is selected. Selecting a
node in a tree causes the other trees on its right to display values for that selection. For
the example of Figure1.1 , the metric tree displays the total metric values over all call
tree and system nodes, the call tree displays values for the Execution metric over all
system entities, and the system tree for the Execution metric and the adi call tree node.
Briefly, a tree is always an aggregation over all selected nodes of its neighboring trees to
the left.

Collapsed nodes with a subtree that is not shown are marked by a [+] sign, expanded
nodes with a visible subtree by a [-] sign. You can expand/collapse a node by left-clicking
on the corresponding [+]/[-] signs. Collapsed nodes have inclusive values, i.e., their

3

Chapter 1. Cube User Guide

Figure 1.1: CUBE display window

severity is the sum of the severities over the whole collapsed subtree. For the example
of Figure1.1 , the Execution metric value 3496.10 is the total time for all executions.
On the other hand, the displayed values of expanded nodes are their exclusive values.
E.g., the expanded Execution metric node in Figure1.2 shows that the program needed
2839.54 seconds for execution other than MPI.

Note that expanding/collapsing a selected node causes the change of the current values
in the trees on its right-hand side. As explained above, in our example in Figure1.1
the call tree displays values for the Execution metric over all system entities. Since
the Execution node is collapsed, the call tree severities are computed for the whole
Execution metric’s subtree. When expanding the selected Execution node, as shown
in Figure1.2 , the call tree displays values for the Execution metric without the MPI
metric.

1.3.2 GUI Components

The GUIconsists (from top to bottom) of

• a menu bar,

• a tool bar,

• three value mode combo boxes,

4

1.3. Using the Display

Figure 1.2: CUBE display window with expanded metric node ”Execution”

• three resizable panes each containing some tabs,

• three selected value information widgets,

• a color legend, and

• a status bar.

The three resizable panes offer different views: the metric, the call, and the system pane.
You can switch between the different tabs of a pane by left-clicking on the desired tab at
the top of the pane. Note that the order of the panes can be changed (see the description
of the menu item Display⇒ Dimension order in Section1.3.2.1).

The metric pane provides only the metric tree browser. The call pane offers a call tree
browser and a flat call profile. The system pane has a system tree browser, and possibly
several topology views, if corresponding topology data is defined in the CUBE file. Tree
browsers also provide a context menu.

1.3.2.1 Menu Bar

The menu bar consists of four menus: a file menu, a display menu, a topology menu
and a help menu. Some menu functions also have a keyboard shortcut, which is written
besides the menu item’s name in the menu. E.g., you can open a file with Ctrl+O without
going into the menu. A short description of the menu items is visible in the status bar if

5

Chapter 1. Cube User Guide

you stay for a short while with the mouse above a menu item.

1. File: The file menu offers the following functions:

a) Open (Ctrl+O): Offers a selection dialog to open a CUBE file. In case of an
already opened file, it will be closed before a new file gets opened. If a file
got opened successfully, it gets added to the top of the recent files list (see
below). If it was already in the list, it is moved to the top.

b) Save as (Ctrl+S): Offers a selection dialog to save a copy of a CUBE file.
Opened CUBE file stays loaded in cube.

c) Close (Ctrl+W): Closes the currently opened CUBE file. Disabled if no file
is opened.

d) Open external: Opens a file for the external percentage value mode (see
Section1.3.2.3).

e) Close external: Closes the current external file and removes all correspond-
ing data. Disabled if no external file is opened.

f) Connect to trace browser: This menu item is only visible if a CUBE file
with a corresponding statistics file, containing information about the most se-
vere instances of certain performance patterns, is open and CUBE was con-
figured for remote trace browsing. In this case, it offers to connect to a trace
browser (i.e., Vampir or Paraver) to examine the behaviour of the program
around the most severe pattern instances. For an in-depth explanation of this
feature see subsection1.3.3.2.

g) Settings: This menu item offers the saving, loading, and the deletion of set-
tings. You can save several settings under different names.

On the one hand, settings store the appearance of the application like the
widget sizes, color and precision settings, the order of panes, etc. On the
other hand, settings can also store which data is loaded, which tree nodes are
expanded, etc. When saving a setting, the appearance is always saved. While
saving, you will be asked whether you would also like to save the data-related
settings.

If you load a setting which stores also data settings, the corresponding data
is also loaded. In the dialog for loading settings you are offered the list of all
available settings. For the settings with data, the name of the corresponding
cube file is displayed in braces. Note that settings with data only store the
name of the cube file from which to load the data, but not the data itself.
Thus if the cube file is not available any more, CUBE cannot load the data
settings. CUBE also makes some basic tests on the data to check if it could
have changed since saving the setting. E.g., if the number of items does not
coincide with those upon saving, it also does not load the data.

h) Screenshot: The function offers you to save a screenshot in a PNG file.

6

1.3. Using the Display

Unfortunately the outer frame of the main window is not saved, only the
application itself.

i) Quit (Ctrl+Q): Closes the application.

j) Recent files: The last 5 opened files are offered for re-opening, the top-most
being the most recently opened one. A full path to the file is visible in the
status bar if you move the mouse above one of the recent file items in the
menu.

2. Display: The display menu offers the following functions:

a) Dimension order: As explained above, CUBE has three resizable panes.
Initially the metric pane is on the left, the call pane is in the middle, and
the system pane is on the right-hand side. However, sometimes you may be
interested in other orders, and that is what this menu item is about. It offers
all possible pane orderings. For example, assume you would like to see the
metric and call values for a certain thread. In this case, you could place the
system pane on the left, the metric pane in the middle, and the call pane on the
right, as shown in Figure1.3 . Note that in panes to the left of the metric pane
no meaningful valuescan be presented, since they miss a reference metric; in
this case values are specified to be undefined, denoted by a “-” sign.

Figure 1.3: Modified pane order via the menu ”Display⇒ Dimension order”

b) General coloring: Opens a dialog where different color settings can be
changed. The dialog is show in Figure1.4 . The Ok button applies the settings

7

Chapter 1. Cube User Guide

Figure 1.4: The color dialog opened via the menu ”Display⇒ General coloring”

to the display and closes the dialog, the Apply button applies the settings
to the display, and Cancel cancels all changes since the dialog was opened
(even if “Apply” was pressed in between) and closes the dialog.

At the top of the dialog you see a color legend with some vertical black
lines, showing the position of the color scale start, the colors cyan, green,
and yellow, and the color scale end. These lines can be dragged with the
left mouse button, or their position can also be changed by typing in some
values between 0.0 (left end) and 1.0 (right end) below the color legend in
the corresponding spins.

The different coloring methods offer different functions to interpolate the
colors at positions between the 5 data points specified above.

With the upper spin below the coloring methods you can define a threshold
percentage value between 0.0 and 100.0 , below which colors are lightened.
The nearer to the left end of the color scale, the stronger the lightening (with
linear increase).

With the spin at the bottom of the dialog you can define a threshold percent-
age value between 0.0 and 100.0 , below which values should be colored
white.

c) Precision: Activating this menu item opens a dialog for precision settings
(see Figure1.5). Besides Ok and Cancel, the dialog offers an Apply button,
that applies the current dialog settings to the display. Pressing Cancel undoes
all changes due to the dialog, even if you already pressed Apply previously,
and closes the dialog. Ok applies the settings and closes the dialog.

8

1.3. Using the Display

Figure 1.5: Display⇒ Precision

It consists of two parts: precision settings for the tree displays, and precision
settings for the selected value info widgets and the topology displays. For
both formats, three values can be defined:

i. Number of digits after the decimal point: As the name suggests, you
can specify the precision for the fraction part of the values. E.g., the
number 1.234 is displayed as 1.2 if you set this precision to 1, as 1.234
if you set it to 3, and as 1.2340 if you set it to 4.

ii. Exponent representation above 10x with x: Here you can define above
which threshold scientific notation should be used. E.g., the value 1000
is displayed as 1000 if this value is larger then 3 and as 1e3 otherwise.

iii. Display zero values below 10−x with x: Due to inexact floating point
representation, it often happens that users wish to round down values
near by zero to zero. Here you can define the threshold below which this
rounding should take place. E.g., the value 0.0001 is displayed as 0.0001
if this value is larger than 3 and as zero otherwise.

d) Trees: This menu item offers two sub-items:

i. Font: Here you can specify the font, the font size (in pt), and the line
spacing for the tree displays (see Figure1.6). The Ok button applies the
settings to the display and closes the dialog, the Apply button applies
the settings to the display, and Cancel cancels all changes since the di-
alog was opened (even if Apply was pressed in between) and closes the
dialog.

ii. Selection marking: Here you can specify if selected items in trees
should be marked by a blue background or by a frame.

e) Optimize width: Under this menu item CUBE offers widget rescaling such
that the amount of information shown is maximized, i.e., CUBE optimally

9

Chapter 1. Cube User Guide

Figure 1.6: The font dialog opened via the menu ”Display⇒ Trees⇒ Font”

distributes the available space between its components. You can chose if you
would like to stick to the current main window size, or if you allow to resize
it.

3. Topology: The topology menu offers the following functions related to the topol-
ogy display described in Section1.3.2.5:

a) Item coloring: Offers a choice how zero-valued system nodes should be col-
ored in the topology display. The two offered options are either to use white
or to use white only if all system leaf values are zero and use the minimal
color otherwise.

b) Line coloring: Allows to define the color of the lines in topology painting.
Available colors are black, gray, white, or no lines.

c) Toolbar: This menu item allows to specify if the topology toolbar buttons
should be labeled by icons, by a text description, or if the toolbar should be
hidden. For more information about the toolbar see Section1.3.2.2.

d) Show also unused hardware in topology: If not checked, unused topology
planes, i.e., planes whose grid elements don’t have any processes/threads as-
signed to, are hidden. Unused plane elements, if not hidden, are colored gray.

e) Topology antialiasing: If checked, antialiasing is used when drawing lines
in the topologies.

4. Help: The help menu provides help on usage and gives some information about
CUBE.

a) Getting started: Opens a dialog with some basic information on the usage
of CUBE.

b) Mouse and keyboard control: Lists mouse and keyboard controls as given
in Section1.3.4.

c) What’s this?: Here you can get more specific information on parts of the
CUBE GUI. If you activate this menu item, you switch to the “What’s this?”
mode. If you now click on a widget, an appropriate help text is shown. The

10

1.3. Using the Display

mode is left when help is given or when you press Esc.

Another way to ask the question is to move the focus to the relevant widget
and press Shift+F1.

d) About: Opens a dialog with release information.

e) Selected metric description and Selected regions description: For the first
selected metric trees and first flat call profiles (for call trees see under Called
region) shows some (usually more extensive) online description for the ref-
erence node. For example, metrics might point to an online documentation
explaining their semantics, or regions representing library functions might
point to the corresponding library documentation.

It duplicated the Online description context menu item.

1.3.2.2 Toolbar

As already mentioned, the system pane may contain topology displays if corresponding
data is specified in the CUBE file. For the topology displays see Section1.3.2.5. Basi-
cally, a topology display draws a two- or three-dimensional grid, in the form of some
planes placed one above the other. Each plane consists of a two-dimensional grid of
processes or threads.

The toolbar is enabled only if the system pane shows a topology display, and it offers
functions to manipulate the display of the above grid planes. The toolbar can be labeled
by icons, by text, or it can be hidden, see menu Topology⇒ Toolbar in Section1.3.2.1.
The toolbar buttons have tool tips, i.e., a short description pops up if the toolbar is enabled
and you move the mouse above a button.

The functions are the following, listed from the left to the right in the topology toolbar:

Move left Moves the whole topology to the left.

Move right Moves the whole topology to the right.

Move up Moves the whole topology upwards.

Move down Moves the whole topology downwards.

Increase plane distance Increase the distance between the planes of the topology.

Decrease plane distance Decrease the distance between the planes of the topology.

Zoom in Enlarge the topology.

Zoom out Scale down the topology.

Reset Reset the display. It scales the topology such that it fits into the visible rect-
angle, and transforms it into a default position.

11

Chapter 1. Cube User Guide

Scale into window It scales the topology such that it fits into the visible rectangle,
without transformations.

Set minimum/maximum values for coloring Similarly to the functions offered in
the context menu of trees (see Section1.3.2.4), you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes,
i.e., the values corresponding to the left and right end of the color legend. If you
activate user-defined values for the color extremes, you are asked to define two val-
ues that should correspond to the minimal and to the maximal colors. All values
outside of this interval will get the color gray. Note that canceling any of the input
windows causes no changes in the coloring method. If user-defined min/max val-
ues are activated, the selected value information widget displays a “(u)” for“user-
defined” behind the minimal and maximal color values.

x-rotation Rotate the topology cube about the x-axis with the defined angle.

y-rotation Rotate the topology cube about the y-axis with the defined angle.

Dimension order for the topology displays The topologies may have two or three di-
mensions. Here you can define the order of dimensions in the display.

1.3.2.3 Value modes

Each tree view has its own value mode combobox, a drop-down menu above the tree,
where it is possible to change the way the severity values are displayed.

The default value mode is the Absolute value mode. In this mode, as explained below,
the severity values from the CUBE file are displayed. However, sometimes these values
may be hard to interpret, and in such cases other value modes can be applied. Basically,
there are three categories of additional value modes.

• The first category presents all severities in the tree as percentage of a reference
value. The reference value can be the absolute value of a selected or a root node
from the same tree or in one of the trees on the left-hand side. For example, in the
Own root percent value mode the severity values are presented as percentage of
the own root’s (inclusive) severity value. This way you can see how the severities
are distributed within the tree. All the value modes (Own root percent -- System
selection percent) fall into this category.

All nodes of trees on the left-hand side of the metric tree have undefined values.
(Basically, we could compute values for them, but it would sum up the severities
over all metrics, that have different meanings and usually even different units, and
thus those values would not have much expressiveness.) Since we cannot compute
percentage values based on undefined reference values, such value modes are not
supported. For example, if the call tree is on the left-hand side, and the metric tree
is in the middle, then the metric tree does not offer the Call root percent mode.

• The second category is available for system trees only, and shows the distribution

12

1.3. Using the Display

of the values within hierarchy levels. E.g., the Peer percent value mode displays
the severities as percentage of the maximal value on the same hierarchy depth. The
value modes (Peer percent -- Peer distribution) fall into this category.

• Finally, the External percent value mode relates the severity values to severities
from another external CUBE file (see below for the explanation).

Depending on the type and position of the tree, the following value modes may be avail-
able:

1. Absolute (default): Available for all trees. The displayed values are the severity
value as read from the cube file, in units of measurement (e.g., seconds). Note that
these values can be negative, too, i.e., the expression “absolute” in not used in its
mathematical sense here.

2. Own root percent: Available for all trees. The displayed node values are the
percentage of their absolute values with respect to the absolute value of their root
node in collapsed state.

3. Metric root percent: Available for trees on the right-hand side of the metric tree.
The displayed node values are the percentage of their absolute values with respect
to the absolute value of the collapsed metric root node. If there are several metric
roots, the root of the selected metric node is taken. Note, that multiple selection
in the metric tree is possible within one root’s subtree only, thus there is always a
unique metric root for this mode.

4. Metric selection percent: Available for trees on the right-hand side of the metric
tree. The displayed node values are the percentage of their absolute values with re-
spect to the selected metric node’s absolute value in its current collapsed/expanded
state. In case of multiple selection, the sum of the selected metrics’ values for the
percentage computation is taken.

5. Call root percent: Available for trees on the right-hand side of the call tree. Simi-
lar to the metric root percent, but the call tree root instead of the metric tree root is
considered. In case of multiple selection with different call roots, the sum of those
root values is considered.

6. Call selection percent: Available for trees on the right-hand side of the call tree.
Similar to the metric selection percent, percentage is computed with respect to
the selected call node’s value in its current collapsed/expanded state. In case of
multiple selections, the sum of the selected call values is considered.

7. System root percent: Available for trees on the right-hand side of the system
tree. Similar to the call root percent, the sum of the inclusive values of all roots of
selected system nodes are considered for percentage computation.

8. System selection percent: Available for trees on the right-hand side of the system
tree. Similar to the call selection percent, percentage is computed with respect to
the selected system node(s) in its current collapsed/expanded state.

13

Chapter 1. Cube User Guide

9. Peer percent: For the system tree only. The peer percentage mode shows the
percentage of the nodes’ inclusive absolute values relative to the largest inclusive
absolute peer value, i.e., to the largest inclusive value between all entities on the
current hierarchy depth. For example, if there are 3 threads with inclusive absolute
values 100, 120, and 200, then they have the peer percent values 50, 60, and 100.

10. Peer distribution: For the system tree only. The peer distribution mode shows
the percentage of the system nodes’ inclusive absolute values on the scale between
the minimum and the maximum of peer inclusive absolute values. For example, if
there are 3 threads with absolute values 100, 120 and 200, then they have the peer
distribution values 0, 20 and 100.

11. External percent: Available for all trees, if the metric tree is the left-most widget.
To facilitate the comparison of different experiments, users can choose the external
percentage mode to display percentages relative to another data set. The external
percentage mode is basically like the metric root percentage mode except that the
value equal to 100% is determined by another data set.

Note that in all modes, only the leaf nodes in the system hierarchy (i.e., processes or
threads) have associated severity values. All other hierarchy levels (i.e., machines, nodes
and eventually processes) are only used to structure the hierarchy. This means that their
severity is undefined---denoted by a “-” sign---when they are expanded.

1.3.2.4 Tree browsers

A tree browser displays different hierarchical data structures in form of trees. Currently
supported tree types are metric trees, call trees, flat call profiles, and system trees. The
structure of the displayed data is common in all trees: The indentation of the tree nodes
reflects the hierarchical structure. Expandable nodes, i.e., nodes with non-hidden chil-
dren, are equipped with a [+]/[-] sign ([+] for collapsed and [-] for expanded nodes).
Furthermore, all nodes have a color icon, a value, and a label.

The value of a node is computed, as explained earlier, basing on the current selections
in the trees on the left-hand side and on the current value mode. The precision of the
value display in trees can be modified, see the menu item Display⇒ Precision in Sec-
tion1.3.2.1. The color icon reflects the position of the node’s value between 0.0 and a
maximal value. These maximal value is the maximal value in the tree for the absolute
value mode, or 100.0 otherwise. See the menu item Display⇒ General coloring in Sec-
tion1.3.2.1 and the context menu item Min/max values in the context menu description
below for color settings.

A label in the metric tree shows the metric’s name. A label in the call tree shows the
last callee of a particular call path. If you want to know the complete call path, you
must read all labels from the root down to the particular node you are interested in. After
switching to the flat profile view (see below), labels in the flat call profile denote methods
or program regions. A label in the system tree shows the name of the system resource it

14

1.3. Using the Display

represents, such as a node name or a machine name. Processes and threads are usually
identified by a rank number, but it is possible to give them specific names when creating
a CUBE file. The thread level of single-threaded applications is hidden. Multiple root
nodes are supported.

After opening a data set, the middle panel shows the call tree of the program. However,
a user might wish to know which fraction of a metric can be attributed to a particular
region (e.g., method) regardless of from where it was called. In this case, you can switch
from the call-tree view (default) to the flat-profile view (Figure1.7). In the flat-profile
view, the call-tree hierarchy is replaced with a source-code hierarchy consisting of two
levels: regions and their subroutines. Any subroutines are displayed as a single child
node labeled Subroutines. A subroutine node represents all regions directly called from
the region above. In this way, you are able to see which fraction of a metric is associated
with a region exclusively, that is, without its regions called from there.

Tree displays are controlled by the left and right mouse buttons and some keyboard
keys. The left mouse button is used to select or expand/collapse a node: You can ex-
pand/collapse a node by left-clicking on the attached [+]/[-] sign, and select it by left-
clicking elsewhere in the node’s line. To select multiple items, Ctrl + left mouse button
can be used. Selection without the Ctrl key deselects all previously selected nodes and
selects the clicked node. In single-selection mode you can also use the up/down arrows
to move the selection one node up/down. The right mouse button is used to pop up
a context menu with node-specific information, such as online documentation (see the
description of the context menu below).

Each tree has its own context menu which can be activated by a right mouse click within
the tree’s window. If you right-click on one of the tree’s nodes, this node gets framed,
and serves as a reference node for some of the menu items. If you click outside of tree
items, there is no refernce node, and some menu items are disabled.

The context menu consists, depending on the type of the tree, of some of the following
items. If you move the mouse over a context menu item, the status bar displays some
explanation of the functionality of that item.

1. Collapse all: For all trees. Collapses all nodes in the tree.

2. Collapse subtree: For all trees. Enabled only if there is a reference node. It
collapses all nodes in the subtree of the reference node (including the reference
node).

3. Collapse peers: For system trees only. Enabled only if there is a reference node.
Collapses all peer nodes of the reference node, i.e., all nodes at the same hierarchy
level.

4. Expand all: For all trees. Expands all nodes in the tree.

5. Expand subtree: For all trees. Enabled only if there is a reference node. Expands
all nodes in the subtree of the reference node (including the reference node).

15

Chapter 1. Cube User Guide

Figure 1.7: CUBE flat profile

6. Expand peers: For system trees only. Enabled only if there is a reference node.
Expands all peer nodes of the reference node, i.e., all nodes at the same hierarchy
level.

7. Expand largest: For all trees. Enabled only if there is a reference node. Starting
at the reference node, expands its child with the largest inclusive value (if any),
and continues recursively with that child until it finds a leaf. It is recommended
to collapse all nodes before using this function in order to be able to see the path
along the largest values.

8. Dynamic hiding: Not available for metric trees. This menu item activates dy-
namic hiding. All currently hidden nodes get shown. You are asked to define a
percentage threshold between 0.0 and 100.0. All nodes whose color position on
the color scale (in percent) is below this threshold get hidden. As default value, the
color percentage position of the reference node is suggested, if you right-clicked
over a node. If not, the default value is the last threshold. The hiding is called
dynamic, because upon value changes (caused for example by changing the node
selection) hiding is re-computed for the new values. In other words, value changes
may change the visibility of the nodes.

a) Redefine threshold: This menu item is enabled if dynamic hiding is already
activated. This function allows to re-define the dynamic hiding threshold as
described above.

16

1.3. Using the Display

During dynamic hiding, for expanded nodes with some hidden children and for
nodes with all of its children hidden, their displayed (exclusive) value includes the
hidden children’s inclusive value. The percentage of the hidden children is shown
in brackets next to this aggregate value.

9. Static hiding: Not available for metric trees. This menu item activates static hid-
ing. All currently hidden nodes stay hidden. Additionally, you can hide and show
nodes using the now enabled sub-items:

a) Static hiding of minor values: Enabled only in the static hiding mode. As
described under dynamic hiding, you are asked for a hiding threshold. All
nodes whose current color position on the color scale is below this percentage
threshold get hidden. However, in contrast to dynamic hiding, these hidings
are static: Even if after some value changes the color position of a hidden
node gets above the threshold, the node stays hidden.

b) Hide this: Enabled only in the static hiding mode if there is a reference node.
Hides the reference node.

c) Show children of this: Enabled only in the static hiding mode if there is a
reference node. Shows all hidden children of the reference node, if any.

Like for dynamic hiding, for expanded nodes with some hidden children and for
nodes with all of its children hidden, their displayed (exclusive) value includes the
hidden children’s inclusive value. The percentage of the hidden children is shown
in brackets next to this aggregate value.

10. No hiding: Not available for metric trees. This menu item deactivates any hiding,
and shows all hidden nodes.

11. Find items: For all trees. Opens a dialog to get a regular expression from the user.
If the user called the context menu over an item, the default text is the name of the
reference node, otherwise it is the last regular expression which was searched for.

The function marks all non-hidden nodes whose names contain the given text by
a yellow background, and all collapsed nodes whose subtree contains such a non-
hidden node by a light yellow background. The current node found, that is initial-
ized to the first found node, is marked by a distinguishable yellow hue.

12. Find next: For all trees. Changes the current found node to the next found node.
If you did not start a search yet, then you are asked for the regular expression to
search for.

13. Clear found items: For all trees. Removes the background markings of the pre-
ceding find items.

14. Info: For all trees (for call trees under Called region). Gives some short infor-
mation about the reference node. Disabled if there is no reference node or if no
information is available for the reference node.

17

Chapter 1. Cube User Guide

15. Full Info: For metric tree only. Lists a complete information about the selected
metric. One gets information about display and unique name, data type, unit of
measurements, kind of metric and CubePL expression if the metric is derived.
Disabled if not clicked over metric item.

16. Online description: For metric trees and flat call profiles (for call trees see under
Called region). Shows some (usually more extensive) online description for the
reference node. For example, metrics might point to an online documentation
explaining their semantics, or regions representing library functions might point to
the corresponding library documentation. Disabled if there is no reference node or
if no online information is available.

17. Location: For flat profiles only. Disabled if there is no reference node. Displays
information about the module and position within the module (line numbers) where
the method is defined.

18. Source code: For flat call profiles only (for call trees see Call site and Called
region below). Disabled if there is no reference node. Opens an editor for dis-
playing, editing, and saving the source code of the method/region to which the
reference node refers. The begin and the end of the method/region are highlighted.
If the specified source file is not found, you are asked to choose a file to open.

The file is in a read-only mode per default. If you wish to edit the text, please
uncheck the Read only box in the bottom left corner. For keyboard and mouse
control, see Section1.3.4.

19. Call site: For call trees only. Enabled only if there is a reference node. Offers
information about the caller of the reference node.

a) Location: Displays information about the module and position within the
module (line numbers) of the caller of the reference node.

b) Source code: Opens an editor for displaying, editing, and saving the source
code where the call for which the reference node stays for happens. The
begin and the end of the relevant source code region are highlighted. If the
specified source file is not found, you are asked to chose a file to open.

20. Called region: For call trees only. Enabled only if there is a reference node. Offers
information about the reference node.

a) Info: Gives some short information about the reference node.

b) Online description: Shows some (usually more extensive) online descrip-
tion for the reference node. Disabled if no online description is available.

c) Location: Displays information about the module and position within the
module (line numbers) where the callee method of the reference node is de-
fined.

d) Source code: Opens an editor for displaying, editing, and saving the source
code of the callee of the reference node. Begin and end of the relevant region

18

1.3. Using the Display

are highlighted. If the specified source code does not exists, you are asked to
choose a file to open.

21. Min/max values: Not for metric trees. Here you can activate and deactivate the
application of user-defined minimal and maximal values for the color extremes,
i.e., the values corresponding to the left and right end of the color legend. If you
activate user-defined values for the color extremes, you are asked to define two
values that should correspond to the minimal and to the maximal colors. All values
outside of this interval will get the color gray. Note that canceling any of the
input windows causes no changes in the coloring method. If user-defined min/max
values are activated, the selected value information widget (see Section1.3.2.7)
displays a “(u)” for “user-defined” behind the minimal and maximal color values.

22. Statistics: Only available if a statistics file for the current CUBE file is pro-
vided. Displays statistical information about the instances of the selected metric
in the form of a box plot. For an in-depth explanation of this feature see subsec-
tion1.3.3.1.

23. Max severity in trace browser: Only available for metric and call trees and only
if a statistics file providing information about the most severe instance(s) of the
selected metric is present. If CUBE is already connected to a trace browser (via
File ⇒ Connect to trace browser), the timeline display of the trace browser is
zoomed to the position of the occurrence of the most severe pattern so that the
cause for the pattern can be examined further. For a more detailed explanation of
this feature see subsection1.3.3.2.

24. Cut all tree: For call trees only. Enabled only if clicked over item in call tree.
Offers different modification possibilities:

a) Set as root: Removes all call path above the selected item and sets selected
call path as a root node.

b) Prune element: Removes the selected item and all its children. Its inclusive
value will be added then to the exclusive value of its parent.

c) Set as leaf: Removes all children of its element and add their inclusive values
to its exclusive value.

25. Create derived metric For metric tree only. It offers a dialog1.8 to create a new
derived metric as a root metric if clicked over an empty part of window or as a child
metric if clicked over another metric. Enabled if parent metric has type DOUBLE.

Documentation about derived metrics see in[12]

Some details about the fields in the dialog:

a) Derived metric type: Selects the type of the derived metrics. Available are :
Postderived metric, Prederived exclusive metric and Prederived
inclusive metric.

b) Display name: Sets the display name of the metric in the metric tree.

19

Chapter 1. Cube User Guide

Figure 1.8: Create derived metric

c) Unique name: Sets the unique name of the metric. There is no check done
if another metric is present with the same unique name.

d) Data type : For derived metrics it is preselected and is always DOUBLE.

e) Unit of measurement: Selects a unit of measurement. It is a user defined
string.

f) URL: Selects a URL with the documentation about this metric.

g) Description: Describes a metric with a few words.

h) Calculation(CubePL): Field where one enters the CubePL expression for
the derived metric. Automatic syntax check is done. If there is a syntax error,
dialog highlights the place of the error and gives an error message.

If syntax is correct, it reports OK

i) Create metric - closes dialog and creates metric with parameters, set in this
dialog. Enabled if syntax is OK type of metric is selected and fields Unique
name Display name are set.

j) Cancel - closes dialog without creating any metric.

To simplify the creation of a derived metric a little bit there is a way to fill the fields
of this dialog automatically.

If one prepares a file with the following syntax one can select it and open "drop" on
dialog via drag’n’drop, or copy its content into clipboard and paste in the dialog.

20

1.3. Using the Display

Example of a syntax of this file:
metric type: postderived
display name: Average execution time
unique name: kenobi
uom:sec
url: https://scalasca.org/documentation.html#kenobi
description:Calculates an average execution time
#
Here is the Kenobi metric
#
cubepl expression: metric::time(i)/metric::visits(e)

metric type can have values: postderived, prederived_exclusive or
prederived_inclusive.

26. Remove metric For metric tree only. Removes metric from the metric tree. En-
abled only if the selected metric is a root metric.

27. Sort by value (descending): For flat call profiles only. Sorts the nodes by their
current values in descending order. Note that if an item is expanded its exclusive
value is taken for sorting, otherwise its inclusive value.

28. Sort by name (ascending): For flat call profiles only. Sorts the nodes alphabeti-
cally by name in ascending order.

1.3.2.5 Topology Display

In many parallel applications, each process (or thread) communicates only with a limited
number of processes. The parallel algorithm divides the application domain into smaller
chunks known as sub-domains. A process usually communicates with processes owning
sub-domains adjacent to its own. The mapping of data onto processes and the neighbor-
hood relationship resulting from this mapping is called virtual topology. Many appli-
cations use one or more virtual topologies specified as one-, two- or three-dimensional
Cartesian grids.

Another sort of topologies are physical topologies reflecting the hardware structure on
which the application was run. A typical three-dimensional physical topology is given
by the (hardware) nodes in the first dimension, and the arrangement of cores/processors
on nodes in further two dimensions.

The CUBE display supports multi-dimensional Cartesian grids. If the currently opened
cube file defines such a topology, the topology display shows performance data mapped
onto the Cartesian topology of the application. The corresponding grid is specified by the
number of dimensions and the size of each dimension. Threads/processes are attached to
the grid elements, as specified by the CUBE file. Not all system items have to be attached
to a grid element, and not every grid element has a system item attached. Examples of
a two- and of a three-dimensional topology are shown on Figure1.9 . Note that the
topology toolbar is enabled when a topology is displayed.

21

Chapter 1. Cube User Guide

Figure 1.9: Topology Display

The Cartesian grid is presented by planes stacked on top of each other in a three dimen-
sional projection. The number of planes depends on the number of dimensions in the
grid. Each plane is divided into squares (typically shown as rombi). The number of
squares depends on the dimension size. Each square represents a system resource (e.g.,
a process) of the application and has a coordinate associated with it.

The current value of each grid element (with respect to the selections on the left-hand
side and to the current value mode) is represented by coloring the grid element. To make
use of the whole color scale, coloring in topologies in absolute value mode is based on
the minimal and the maximal system leaf values, instead of considering all system items,
as for the system tree coloring. In all other value modes, coloring is based on a value
scale from 0.0 to 100.0. Grid elements without having a system item attached to it are

22

1.3. Using the Display

colored gray. See Section1.3.2.1 (menu Topology) for further topology-specific coloring
settings. For example, the upper topology in Figure1.9 is drawn without lines, and the
one below with black lines and topology line antialiasing.

If the selected system item (or the first selected one in case of multiple selection) occurs
in the topology, it is marked by an additional frame and by additional lines at the side
of the plane which contains the corresponding grid point, such that the selected item’s
position is also visible if the corresponding plane is not completely visible.

Besides the functions offered by the topology toolbar (see1.3.2.2), the following func-
tionality is supported:

1. Item selection: You can change the current system selection by left-clicking on a
grid element which has a system item assigned to it (resulting in the selection of
that system item).

2. Info: By right-clicking on a grid element, an information widget appears with
information about the system item assigned to it. The information contains

• the coordinate of the grid point,

• the hardware node to which the attached system item belongs to,

• the system item’s name,

• its MPI rank,

• its identifier,

• and its value, followed by the percentage of this value on the scale between
the minimal and maximal topology values.

3. Rotation about the x and y axes: can be done with left-mouse drag (click and
hold the left-mouse button while moving the mouse).

4. Increasing/decreasing the distance between the planes: with Ctrl+<left-mouse
drag>

5. Moving the whole topology up/down/left/right: with Shift+<left-mouse drag>

1.3.2.6 Topologies with more than three dimensions

If the number of dimensions is larger than three, the first three dimensions are displayed
and an additional toolbar appears below the topology display. This toolbar allows to
select the three dimensions to display and to choose one element of each of the re-
maining dimensions. The example in figure1.10 shows a topology with 4 dimensions
(32x16x32x4). The first element of the 4th dimension t is automatically selected. By
clicking on the button above the t, an index from 0 to 3 can be choosen. If the index is
set to all, the selection becomes invalid until an index of another dimension is selected.

Alternatively, the folding mode can be activated by clicking on the fold button. This
mode is available for topologies with four to six dimensions and allows to display all

23

Chapter 1. Cube User Guide

Figure 1.10: 4-dimensional example

elements by folding two dimensions into one. Every dimension appears in a box, with
can be dragged into one of the three container boxes for the displayed dimensions x, y
and z. In folding mode, the color of the inner borders is changed into gray. The black
bordered rectangles show the element borders of each of the three displayed dimensions.

The right image in figure1.10 shows the folding of dimension Z with dimension T. One
element with index (0,0,1,3) has been selected by clicking with the right mouse button
into it. All elements inside the black rectancle around the selection belong to Z index
one. The gray lines devide the rectangle into four elements which correspond to the
elements of dimension T with index 0 to 3.

1.3.2.7 Selected value info

Below each pane there is a selected value information widget. If no data is loaded, the
widget is empty. Otherwise, the widget displays more extensive and precise information
about the selected values in the tree above. This information widget and the topologies
may have different precision settings than the trees, such that there is the possibility to
display more precise information here than in the trees (see Section1.3.2.1, menu Display
⇒ Precision).

The widget has a 3-line display. The first line displays at most 4 numbers. The left-
most number shows the smallest value in the tree (or 0.0 in any percentage value mode
for trees, or the user-defined minimal value for coloring if activated), and the right-most
number shows the largest value in the tree (or 100.0 in any percentage value mode in
trees, or the user-defined maximal value for coloring if activated). Between these two

24

1.3. Using the Display

numbers the current value of the selected node is displayed, if it is defined. Additionally,
in the absolute value mode it is followed by the percentage of the selected value on the
scale between the minimal and maximal values, shown in brackets. Note that the values
of expanded non-leaf system nodes and of nodes of trees on the left-hand side of the
metric tree are not defined. If the value mode is not the absolute value mode, then in the
second line similar information is displayed for the absolute values in a light gray color.

In case of multiple selection, the information refers to the sum of all selected values. In
case of multiple selection in system trees in the peer distribution and in the peer percent
modes, this sum does not state any valuable information, but is displayed for consistency
reasons.

If the widget width is not large enough to display all numbers in the given precision, then
a part of the number displays get cut down and a “ . . . ” indicates that not all digits could
be displayed.

Below these numbers, in the third line, a small color bar shows the position of the color
of the selected node in the color legend. In case of undefined values, the legend is filled
with a gray grid.

1.3.2.8 Color legend

By default, the colors are taken from a spectrum ranging from blue over cyan, green,
and yellow to red, representing the whole range of possible values. You can change the
color settings in the menu,Display ⇒ General coloring, see Section1.3.2.1. Exact
zero values are represented by the color white (in topologies you can decide whether you
would like to use white or the minimal color, see Section1.3.2.1, menu Topology).

1.3.2.9 Status Bar

The status bar displays some status information, like state of execution for longer proce-
dures, hints for menus the mouse pointing at etc.

1.3.3 Features enabled through statistic files

In this section we will explain two features -- namely the display of statistical information
about performance patterns which represent performance problems and the display of the
most severe instances of these patterns in a trace browser -- which both are only available
if a statistic file for the currently opened CUBE file is present. Currently, such a statistic
file can be generated by the SCOUT analyzer[5]. The file format of statistic files is
described in the Appendix 3.1.

In order for CUBE to recognize the statistic file, it must be placed in the same folder as
the CUBE file. The basename of the statistic file has to be identical to that of the CUBE

25

Chapter 1. Cube User Guide

file, but with the suffix .stat. If for example the CUBE file is called foo.cubex, the
corresponding statistic file is called foo.stat.

1.3.3.1 Statistical information about performance patterns

If a statistic file is provided, you can view statistical information about one or multiple
patterns (for example in order to compare them). This is done by selecting the desired
metrics in the metric tree and then selecting the Statistics menu item in the context menu.
This brings up the box plot window as shown in Figure1.11 .

Figure 1.11: Screenshot of a box plot as shown by CUBE displaying statistical informa-
tion about the selected patterns. The additional window on the top right
displaying the exact values of the statistics.

The box plot shows a graphical representation of the statistical data of the selected pat-
terns. The slender black lines on the top and the bottom designate the maximum and
the minimum measured severity of the pattern, respectively. The lower and the upper
borders of the white box indicate the values of the 25% and 75% quantile. The thick line

26

1.3. Using the Display

inside the box represents the median of the values, while the dashed line indicates the
mean.

There are two ways of interacting with the box plot. You can zoom to a certain interval
on the y-axis by clicking on a position with the height of the desired maximal or mini-
mal value and by consecutively dragging the mouse to a position with the height of the
corresponding other extreme value. You can reset the view (i.e., to undo all zooming) by
clicking the middle mouse button somewhere on the box plot.

If you are interested in more precise values for the severity statistics of a certain metric,
you can click somewhere in the column of the desired metric, which will yield a small
window (as shown in the top right corner of Figure1.11) displaying the exact values of
the statistics.

1.3.3.2 Display of most severe pattern instances using a trace browser

If a statistic file also contains information about the most severe instances of certain
patterns, CUBE can be connected to a trace browser (currently Vampir[8, 9] and Paraver
[6, 7] are supported) in order to view the state of the program being analyzed at the time
this most severe pattern instance occurred. For collective operations, the most severe
instance is the one with the largest sum of the waiting times of all processes, which is not
necessarily the one with the largest maximal waiting time of each individual process.

Figure 1.12: The dialog windows for a connection to Vampir and to Paraver

To use this feature, you first have to connect to a trace browser by using the Connect to
trace browser menu item of the File menu, which offers to connect to Vampir as well as
to Paraver. This will open one of the two dialog windows shown below.

For Vampir, you have to specify the host name and port of the Vampir server
you want to connect to and the path of the trace file you want to load. This
will launch the Vampir client (if it is correctly configured) and load the speci-
fied trace file. To configure Vampir so that it can be started automatically by
CUBE, a service file com.gwt.vampir.service, describing the path to your Vam-
pir client executable must be placed under (/usr/share/dbus-1/service) or

27

Chapter 1. Cube User Guide

${HOME}/.local/share/dbus-1/services. This service file must be exactly as
shown below, with the exception that Exec should point to your Vampir client executable.

[D-BUS Service]
Name=com.gwt.vampir
Exec=/private/utils/bin/vng

An example of the com.gwt.vampir.service file

For Paraver, you have to specify a configuration file (which is used to initialize the Par-
aver window which is opened when zooming) as well as the path of the desired trace
file. This will launch Paraver which will directly open the correct trace file. In order for
CUBE to be able to launch Paraver, the executable directory of Paraver must be in your
path.

Figure 1.13: CUBE display window with a selected metric and a context menu called on
the same metric in a special call path showing the ”Max severity in trace
browser” menu item.

It is also possible to connect to multiple trace browsers so that you can view a trace file
in Paraver and Vampir simultaneously, but due to limitations with the Vampir client you
can only have two Vampir clients running at the same time. All trace browsers will be
zoomed simultaneously if you select a zoom command (as described below).

Once CUBE is connected to a trace browser you can select the Max severity in trace
browser menu item of the metric tree so that all connected trace browsers are zoomed to
the (globally) most severe instance of the selected pattern.

28

1.3. Using the Display

A more sophisticated feature of CUBE is the ability to zoom to the most severe instance
of a pattern in a selected call path. This can be done by selecting a metric in the metric
tree which will highlight the most severe call paths in the call tree. You can then use the
context menu of the call tree to select the Max severity in trace browser menu item (see
Figure1.13 for illustration). This menu item will then zoom all connected trace browsers
to the most severe instance of the selected pattern with respect to the chosen call path
(see Figure1.14).

Figure 1.14: Location and display in timeline of the worst Late Sender pattern instance
in Vampir. Here one can see that some Waitall enter the operation earlier
than the root process. This can lead to additional overhead.

29

Chapter 1. Cube User Guide

1.3.4 Keyboard and mouse control

1.3.4.1 General control

Shift+F1 Help: What’s this?
Ctrl+O Shortcut for menu File ⇒ Open
Ctrl+W Shortcut for menu File ⇒ Close
Ctrl+Q Shortcut for menu File ⇒ Quit
Left click over menu/tool bar: activate

menu/function
over value mode combo: select value
mode
over tab: switch to tab
in tree: select/deselect/expand/collapse
items
in topology: select item

Right click in tree: context menu
in topology: context information

Ctrl+Left click in tree: multiple selection/deselection
Left drag over scroll bar: scroll

in topology: rotate topology
Ctrl+Left drag in topology: increase plane distance
Shift+Left drag in topology: move topology
Mouse wheel in topology: zoom in/out
Up arrow in tree: move selection one item up

(single-selection only)
in topology/scroll area: scroll one unit
up

Down arrow in tree: move selection one item down
(single-selection only)
in topology/scroll area: scroll one unit
down

Left arrow in scroll area: scroll to the left
Right arrow in scroll area: scroll to the right
Page up in tree/topology/scroll area: scroll one

page up
Page down in tree/topology/scroll area: scroll one

page down

1.3.4.2 Source code editor

Control in read only mode:

30

1.3. Using the Display

Up Arrow Move one line up
Down Arrow Move one line down
Left Arrow Scroll one character to the left (if

horizontally scrollable)
Right Arrow Scroll one character to the right (if

horizontally scrollable)
Page Up Move one (viewport) page up
PageDown Move one (viewport) page down
Home Move to the beginning of the text
End Move to the end of the text
Mouse wheel Scroll the page vertically
Alt+Mouse wheel Scroll the page horizontally (if

horizontally scrollable)
Ctrl+Mouse wheel Zoom the text
Ctrl+A Select all text

Additionally for the read and write mode:

Left Arrow Move one character to the left
Right Arrow Move one character to the right
Backspace Delete the character to the left of the

cursor
Delete Delete the character to the right of the

cursor
Ctrl+C Copy the selected text to the clipboard
Ctrl+Insert Copy the selected text to the clipboard
Ctrl+K Delete to the end of the line
Ctrl+V Paste the clipboard text into text edit
Shift+Insert Paste the clipboard text into text edit
Ctrl+X Delete the selected text and copy it to the

clipboard
Shift+Delete Delete the selected text and copy it to the

clipboard
Ctrl+Z Undo the last operation
Ctrl+Y Redo the last operation
Ctrl+Left arrow Move the cursor one word to the left
Ctrl+Right arrow Move the cursor one word to the right
Ctrl+Home Move the cursor to the beginning of the

text
Ctrl+End Move the cursor to the end of the text
Hold Shift + some movement (e.g., Right
arrow)

Select region

31

Chapter 1. Cube User Guide

1.4 Performance Algebra and Tools

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE offers a mechanism called
performance algebra that can be used to merge, subtract, and average the data from
different experiments and view the results in the form of a single “derived” experiment.
Using the same representation for derived experiments and original experiments provides
access to the derived behavior based on familiar metaphors and tools in addition to an
arbitrary and easy composition of operations. The algebra is an ideal tool to verify and
locate performance improvements and degradations likewise. The algebra includes three
operators---diff , merge, and mean---provided as command-line utilities which take two
or more CUBE files as input and generate another CUBE file as output. The operations
are closed in the sense that the operators can be applied to the results of previous oper-
ations. Note that although all operators are defined for any valid CUBE data sets, not
all possible operations make actually sense. For example, whereas it can be very helpful
to compare two versions of the same code, computing the difference between entirely
different programs is unlikely to yield any useful results.

1.4.1 Difference

Changing a program can alter its performance behavior. Altering the performance behav-
ior means that different results are achieved for different metrics. Some might increase
while others might decrease. Some might rise in certain parts of the program only, while
they drop off in other parts. Finding the reason for a gain or loss in overall performance
often requires considering the performance change as a multidimensional structure. With
CUBE’s difference operator, a user can view this structure by computing the difference
between two experiments and rendering the derived result experiment like an original
one. The difference operator takes two experiments and computes a derived experiment
whose severity function reflects the difference between the minuend’s severity and the
subtrahend’s severity.
The possible output is presented below.

user@host: cube_diff scout.cube remapped.cube -o result.cube
Reading scout.cube ... done.
Reading remapped.cube ... done.
++++++++++++ Diff operation begins ++++++++++++++++++++++++++
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies...

Topology retained in experiment.
done.

INFO::Diff operation... done.
++++++++++++ Diff operation ends successfully ++++++++++++++++

32

1.4. Performance Algebra and Tools

Writing result.cube ... done.

Usage: cube_diff [-o output] [-c] [-C] [-h] minuend subtrahend

-o Name of the output file (default: diff.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

1.4.2 Merge

The merge operator’s purpose is the integration of performance data from different
sources. Often a certain combination of performance metrics cannot be measured during
a single run. For example, certain combinations of hardware events cannot be counted si-
multaneously due to hardware resource limits. Or the combination of performance met-
rics requires using different monitoring tools that cannot be deployed during the same
run. The merge operator takes an arbitrary number of CUBE experiments with a differ-
ent or overlapping set of metrics and yields a derived CUBE experiment with a joint set
of metrics.
The possible output is presented below.

user@host: cube_merge scout.cube remapped.cube -o result.cube
++++++++++++ Merge operation begins ++++++++++++++++++++++++++
Reading scout.cube ... done.
Reading remapped.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Merge operation...

Topology retained in experiment.

Topology retained in experiment.
done.

++++++++++++ Merge operation ends successfully ++++++++++++++++
Writing result.cube ... done.

Usage: cube_merge [-o output] [-c] [-C] [-h] cube ...

-o Name of the output file (default: merge.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

33

Chapter 1. Cube User Guide

1.4.3 Mean

The mean operator is intended to smooth the effects of random errors introduced by un-
related system activity during an experiment or to summarize across a range of execution
parameters. You can conduct several experiments and create a single average experiment
from the whole series. The mean operator takes an arbitrary number of arguments.
The possible output is presented below.

user@host: cube_mean scout1.cube scout2.cube scout3.cube scout4.cube -o mean.cube
++++++++++++ Mean operation begins ++++++++++++++++++++++++++
Reading scout1.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout2.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout3.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout4.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
++++++++++++ Mean operation ends successfully ++++++++++++++++
Writing mean.cube ... done.

Usage: cube_mean [-o output] [-c] [-C] [-h cube ...

-o Name of the output file (default: mean.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

34

1.4. Performance Algebra and Tools

1.4.4 Compare

Compares two experiments and prints out if they are equal or not. Two experiments are
equal if they have same dimensions hierarchy and the equal values of the severieties.
An example of the output is below.

user@host: cube_cmp remapped.cube scout1.cube
Reading remapped.cube ... done.
Reading scout1.cube ... done.
++++++++++++ Compare operation begins ++++++++++++++++++++++++++
Experiments are not equal.
+++++++++++++ Compare operation ends successfully ++++++++++++++++

Usage: cube_cmp [-h] cube1 cube2

-h Help; Output a brief help message.

1.4.5 Clean

CUBE files may contain more data in the definition part than absolutely necessary. The
cube_clean utility creates a new CUBE file with an identical structure as the input
experiment, but with the definition part cleaned up.
An example of the output is presented below.

user@host: cube_clean remapped.cube -o cleaned.cube
++++++++++++ Clean operation begins ++++++++++++++++++++++++++
Reading remapped.cube ... done.

Topology retained in experiment.
++++++++++++ Clean operation ends successfully ++++++++++++++++
Writing cleaned.cube ... done.

Usage: cube_clean [-o output] [-h cube

-o Name of the output file (default: clean.cube|.gz)

-h Help; Output a brief help message.

1.4.6 Reroot, Prune

For the detailed study of some part of the execution, the CUBE file can be modified based
on a given call-tree node. Two different operations are possible:

• The call tree may be re-rooted, i.e., only sub-trees with the given call-tree node as
root are retained in the experiment.

• An entire sub-tree may be pruned, i.e., removed from the experiment. In this case,
all metric values for that sub-tree will be attributed to it’s parent call-tree node (=
“inlined”).

35

Chapter 1. Cube User Guide

An example of the output is presented below.

user@host: cube_cut -r inner_auto_ -p flux_err_ -o cutted.cube remapped.cube
Reading remapped.cube ... done.
++++++++++++ Cut operation begins ++++++++++++++++++++++++++

Topology retained in experiment.
++++++++++++ Cut operation ends successfully ++++++++++++++++
Writing cutted.cube ... done.

Usage: cube_cut [-h] [-r nodename] [-p nodename] [-o output cube

-o Name of the output file (default: cut.cube|.gz)

-r Re-root call tree at named node

-p Prune call tree from named node (= ”inline”)

-h Help; Output a brief help message.

1.4.7 Remap

The Scalasca toolset initially creates CUBE files containing data for only a limited num-
ber of performance metrics. The full hierarchy of performance metrics is then created
during post-processing using the cube_remap tool. Typically, it is automatically called
by the scalasca -examine command, but can also be executed manually.

Usage: cube_remap [-o output] [-h cube

-o Name of the output file (default: remap.cube|.gz)

-h Help; Output a brief help message.

1.4.8 Remap (version 2)

A more flixible implementation of the tool cube_remap is the cube_remap2.

This tool takes a remapping specification file as a command line argument and perform
recalculation of the metric values according to the specified rules, expressed in CubePL
syntax.

This tool can be used to convert all derived metrics into usual metrics, which are holding
data (notice, that POSTDERIVED metrics became invalid while this conversion).

CUBE provides examplees of remapping specification files for SCOUT and Score-P.
They are stored in the directory [prefix]/share/doc/cube/examples

Usage: ./cube_remap2 -r <remap specification file> [-o output] [-d] [-s] [-h] <cube
experiment>

36

1.4. Performance Algebra and Tools

-r Name of the remapping specification file. By omitting this option the specification
file from the cube experiment is taken if present.

-c Create output file with the same structure as an input file. It overrides option "-r"

-o Name of the output file (default: remap)

-d Convert all prederived metrics into usual metrics, calculate and store their values as
a data.

-s Add hardcoded SCALSCA metrics "Idle threads" and "Limited parallelizm"

-h Help; Output a brief help message.

1.4.9 Statistics

Extracts statistical information from the CUBE files.

user@host: ./cube_stat -m time,mpi -p remapped.cube -%
MetricRoutine Count Sum Mean Variance Minimum ... Maximum
time INCL(MAIN__) 4 143.199101 35.799775 0.001783 35.759769 ... 35.839160
time EXCL(MAIN__) 4 0.078037 0.019509 0.000441 0.001156 ... 0.037711
time task_init_ 4 0.568882 0.142221 0.001802 0.102174 ... 0.181852
time read_input_ 4 0.101781 0.025445 0.000622 0.000703 ... 0.051980
time decomp_ 4 0.000005 0.000001 0.000000 0.000001 ... 0.000002
time inner_auto_ 4 142.361593 35.590398 0.000609 35.566589 ... 35.612125
time task_end_ 4 0.088803 0.022201 0.000473 0.000468 ... 0.043699

mpi INCL(MAIN__) 4 62.530811 15.632703 2.190396 13.607989 ... 17.162466
mpi EXCL(MAIN__) 4 0.000000 0.000000 0.000000 0.000000 ... 0.000000
mpi task_init_ 4 0.304931 0.076233 0.001438 0.040472 ... 0.113223
mpi read_input_ 4 0.101017 0.025254 0.000633 0.000034 ... 0.051952
mpi decomp_ 4 0.000000 0.000000 0.000000 0.000000 ... 0.000000
pi inner_auto_ 4 62.037503 15.509376 2.194255 13.478049 ... 17.031288
mpi task_end_ 4 0.087360 0.021840 0.000473 0.000108 ... 0.043333

user@host: ./cube_stat -t33 remapped.cube -p -m time,mpi,visits
Region NumberOfCalls ExclusiveTime InclusiveTime time mpi visits
sweep_ 48 76.438435 130.972847 76.438435 0.000000 48
MPI_Recv 39936 36.632249 36.632249 36.632249 36.632249 39936
MPI_Send 39936 17.684986 17.684986 17.684986 17.684986 39936
MPI_Allreduce 128 7.383530 7.383530 7.383530 7.383530 128
source_ 48 3.059890 3.059890 3.059890 0.000000 48
MPI_Barrier 12 0.382902 0.382902 0.382902 0.382902 12
flux_err_ 48 0.380047 1.754759 0.380047 0.000000 48
TRACING 8 0.251017 0.251017 0.251017 0.000000 8
MPI_Bcast 16 0.189381 0.189381 0.189381 0.189381 16
MPI_Init 4 0.170402 0.419989 0.170402 0.170402 4
snd_real_ 39936 0.139266 17.824251 0.139266 0.000000 39936
MPI_Finalize 4 0.087360 0.088790 0.087360 0.087360 4
initialize_ 4 0.084858 0.168192 0.084858 0.000000 4

37

Chapter 1. Cube User Guide

initxs_ 4 0.083242 0.083242 0.083242 0.000000 4
MAIN__ 4 0.078037 143.199101 0.078037 0.000000 4
rcv_real_ 39936 0.077341 36.709590 0.077341 0.000000 39936
inner_ 4 0.034985 142.337220 0.034985 0.000000 4
inner_auto_ 4 0.024373 142.361593 0.024373 0.000000 4
task_init_ 4 0.014327 0.568882 0.014327 0.000000 4
read_input_ 4 0.000716 0.101781 0.000716 0.000000 4
octant_ 416 0.000581 0.000581 0.000581 0.000000 416
global_real_max_ 48 0.000441 1.374712 0.000441 0.000000 48
global_int_sum_ 48 0.000298 5.978850 0.000298 0.000000 48
global_real_sum_ 32 0.000108 0.030815 0.000108 0.000000 32
barrier_sync_ 12 0.000105 0.383007 0.000105 0.000000 12
bcast_int_ 12 0.000068 0.189395 0.000068 0.000000 12
timers 2 0.000044 0.000044 0.000044 0.000000 2
initgeom_ 4 0.000042 0.000042 0.000042 0.000000 4
initsnc_ 4 0.000038 0.000050 0.000038 0.000000 4
task_end_ 4 0.000013 0.088803 0.000013 0.000000 4
bcast_real_ 4 0.000010 0.000065 0.000010 0.000000 4
decomp_ 4 0.000005 0.000005 0.000005 0.000000 4
timers_ 2 0.000004 0.000048 0.000004 0.000000 2

Usage: cube_stat [-h] [-p] [-m metric[,metric...] -%] [-r routine[,routine...] cubefile

OR

cube_stat -h] [-p] [-m metric[,metric...] -t topN cubefile

-h Display this help message

-p Pretty-print statistics (instead of CSV output)

-% Provide statistics about process/thread metric values

-m List of metrics (default: time)

-r List of routines (default: main)

-t Number for topN regions flat profile

1.4.10 from TAU to CUBE

Converts a profile generated by the TAU Performance System [11] into the CUBE format.
Currently, only 1-level, 2-level and full call-path profiles are supported.
An example of the output is presented below.

user@host: ./tau2cube3 tau2 -o b.cube
Parsing TAU profile...
tau2/profile.0.0.2
tau2/profile.1.0.0
Parsing TAU profile... done.
Creating CUBE profile...
Number of call paths : 5

38

1.4. Performance Algebra and Tools

Childmain int (int, char **)
Number of call paths : 5
ChildsomeA void (void)
Number of call paths : 5
ChildsomeB void (void)
Number of call paths : 5
ChildsomeC void (void)
Number of call paths : 5
ChildsomeD void (void)
Path to Parents : 5
Path to Child : 1
Number of roots : 5
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
value time :: 8.0151
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 8.01506
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 5.00815
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0.000287
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0
value ncalls :: 0
value time :: 9.00879
value ncalls :: 1
done.

Usage: tau2cube [tau-profile-dir][-o cube]

1.4.11 Topology Assistant

Topology assistant is a tool to handle topologies in cube files. It is able to add or edit a
topology.

Usage: cube_topoassist {OPTION} cubefile

The current available options are:

• To create a new topology in an existing cube file,

39

Chapter 1. Cube User Guide

• To [re]name an existing virtual topology, and

• To [re]name the dimensions of a virtual topology.

The command-line switches for this utility are:

-c: creates a new topology in a given cube file.

-n: displays a numbered list of the existing topologies in the given cube file, and lets the
user choose one to be named or renamed.

-d: displays the existing topologies, and lets the user name the dimensions of one of
them.

The resulting CUBE file is named topo.cube[.gz], in the current directory.

As mentioned abot, when using the -d or -n command-line options, a numbered list of
the current topologies will appear, showing the topology names, its dimension names
(when existing), and the number of coordinates in each dimension, as well as the total
number of threads. This is an example of the usage:

$ cube_topoassist topo.cube.gz -n
Reading topo.cube.gz . Please wait... Done.
Processes are ordered by rank. For more information about this file,
use cube_info -S <cube experiment>

This CUBE has 3 topologie(s).
0. <Unnamed topology>, 3 dimensions: x: 3, y: 1, z: 4. Total = 12 threads.
1. Test topology, 1 dimensions: dim_x: 12. Total = 12 threads.
2. <Unnamed topology>, 3 dimensions: 3, 1, 4. Total = 12 threads. <Dimensions are not named>

Topology to [re]name?
1
New name:
Hardware topology
Topology successfully [re]named.

Writing topo.cube.gz ... done.

The process is similar for [re]naming dimensions within a topology. One characteristic
is that either all dimensions are named, or none.

One could easily create a script to generate the coordinates according to some algo-
rithm/equation, and feed this to the assistant as an input. The only requirement is to
answer the questions in the order they appear, and after that, feed the coordinates. Coor-
dinates are asked for in rank order, and inside every rank, in thread order.

The sequence of questions made by the assistant when creating a new topology (the -c
switch) is:

• New topology’s name

40

1.4. Performance Algebra and Tools

• Number of dimensions

• Will the above dimensions be named? (Y/N)

• If yes, asks the name. Empty is not valid.

• Number of coordinates in that dimension

• Asks if this dimension is either periodic or not (Y/N)

• Repeat the previous three steps for every dimension

• After that, it expects the coordinates for each thread in this topology, separated by
spaces, in the order described above.

This is a sample session of the assistant:

$ cube_topoassist -c experiment.cube.gz
Reading experiment.cube.gz. Please wait... Done.
Processes are ordered by rank. For more information about this file, use cube_info -S <cube experiment>

So far, only cartesian topologies are accepted.
Name for new topology?
Test topology
Number of Dimensions?
3
Do you want to name the dimensions (axis) of this topology? (Y/N)
y
Name for dimension 0
torque
Number of elements for dimension 0
2000
Is dimension 0 periodic?
y
Name for dimension 1
rotation
Number of elements for dimension 1
1500
Is dimension 1 periodic?
n
Name for dimension 2
period
Number of elements for dimension 2
50
Is dimension 2 periodic?
n
Alert: The number of possible coordinates (150000000) is bigger than the number of threads
on the specified cube file (12). Some positions will stay empty.

Topology on THREAD level.
Thread 0’s (rank 0) coordinates in 3 dimensions, separated by spaces
0 0 0
0 0 1
0 0 2
...

41

Chapter 1. Cube User Guide

...

...
Writing topo.cube.gz ... done.
$

So, a possible input file for this cube experiment could be:

Test topology
3
y
torque
2000
y
rotation
1500
n
period
50
n
0 0 0
0 0 1
0 0 2
... (the remaining coordinates)

And then call the assistant: cube_topoassist -c cubefile.cube < input.txt

1.4.12 Dump

To export values from the cube report into another tool or to examine internal structure of
the cube report CUBE framework provedes a tool cube_dump tool, which prints out dif-
ferent values. It calculates inclusive and exclusive values along metric tree and call tree,
agregates over system tree or displays values for every thread separately. Additionally
provides a calculation of the flat profile values.

Usage: ./cube_dump [-m <metric>|all [-c <cnode id>] [-x incl|excl] [-z
incl|excl|stored] [-t thread_id] [-r]] [-f name] [-w] [-h] <cube experiment>

-m <metric>|all Select metric (unique name) for data dump. All - all metrics will be
printed

-c <cnode id>|all Select a allpaths to be printed out

-x incl|excl Selects, if the data along the metric tree should be calculated as an inclusive
or an exclusive value. (Default value: incl)

-z incl|excl|stored Selects, if the data along the call tree should be calculated as an
inclusive or an exclusive value. (Default value: excl)

-t <thread id>| aggr Show data only for selected thread or aggregated over system tree

42

1.4. Performance Algebra and Tools

-r Prints aggregated values for every region (flat profile), sorted by id

-f <name> Selects a stored data with the name <name> to display

-d Shows the coordinates for every topology as well

-w Prints out the information about structure of the cube

-h Help; Output a brief help message

43

Chapter 1. Cube User Guide

44

Chapter 2. CUBE4 API

2 CUBE4 API

2.1 Creating CUBE Files

The CUBE data format in a tar envelope, having extension .cubex, with various files.
Description of the cube stored in file anchor.xml[10] inside of the cubex instance. The
data stored in binary formt in variuos files inside of the cubex file. The CUBE library
provides an interface to create CUBE files. It is a simple class interface and includes only
a few methods. This section first describes the CUBE APIand then presents a simple C++
program as an example of how to use it.

2.1.1 CUBE API

The class interface defines a class Cube. The class provides a default constructor and
nearly fourty methods. The methods are divided into five groups. The first three groups
are used to define the three dimensions of the performance space, forth group is used to
enter the actual data and last group is used to open or to save the cube report. In addition,
an output operator << to export the data into CUBE3 format is provided.

2.1.1.1 Metric Dimension

This group refers to the metric dimension of the performance space. It consists of a single
method used to build metric trees. Each node in the metric tree represents a performance
metric. Metrics have different units of measurement. The unit can be either “sec” (i.e.,
seconds) for time based metrics, such as execution time, or “occ” (i.e., occurrences) for
event-based metrics, such as floating-point operations. During the establishment of a
metric tree, a child metric is usually more specific than its parent, and both of them have
the same unit of measurement. Thus, a child performance metric has to be a subset of its
parent metric (e.g., system time is a subset of execution time).

Metric* def_met(const std::string &disp_name, const std::string &uniq_name,
const std::string &dtype, const std::string &uom,
const std::string &val, const std::string &url,
const std::string &descr, Metric* parent,
TypeOfMetric type_of_metric = CUBE_METRIC_EXCLUSIVE,
const std::string& expression = "",
TypeOfMetric is_ghost = CUBE_METRIC_NO_GHOST);

45

Chapter 2. CUBE4 API

Returns a metric with display name disp_name, unique name uniq_name and descrip-
tion descr.

dtype specifies the data type, which can either be “INTEGER” or “FLOAT”.

uom is the unit of measurement, which is either “sec” for seconds or “occ” for number
of occurrences.

val specifies whether there is any data available for this particular metric. It can either
be “VOID” (no data available, metric will not be shown in CUBE) or an empty
string (metric will be shown and data is present).

parent is a previously created metric which will be the new metric’s parent. To define
a root node, use NULL instead.

url is a link to an HTMLpage describing the new metric in detail. If you want to mir-
ror the page at several locations, you can use the macro @mirror@ as a prefix,
which will be replaced by an available mirror defined using def_mirror() (see
Section??).

type_of_metric specifies the nature of this metric. If you want to store exclu-
sive (along call tree) values, use a constant CUBE_METRIC_EXCLUSIVE, if
you want to store inclusive (along call tree) values, use a constant CUBE_-
METRIC_EXCLUSIVE, if you want to define a derived metric, use one of the con-
stants: CUBE_POSTDERIVED_METRIC, CUBE_PREDERIVED_METRIC_-
EXCLUSIVE or CUBE_PREDERIVED_METRIC_INCLUSIVE.

expression is a CubePL expression to specify the derived metric.

is_ghost is used internally by CubePL Engine and can be left with default value
CUBE_METRIC_NO_GHOST

For furter information about kinds of the derived metrics in cube and about CubePL
syntax see[12].

const std::vector<Metric*>& get_metv() const;

Returns a vector with all metrics in the CUBE object.

const std::vector<Metric*>& get_root_metv() const;

Returns a vector with all roots of the metric dimension in the CUBE object.

Metric* get_met(const std::string& uniq_name) const;

Returns a metric with the given uniq_name. Returns NULL if the CUBE object doesn’t
contain a metric with this name.

Metric* get_root_met(Metric * met);

Returns the root metric for the given metric met.

46

2.1. Creating CUBE Files

2.1.1.2 Program Dimension

This group refers to the program dimension of the performance space. The entities pre-
sented in this dimension are emph{region}, call site, and call-tree node (i.e., call paths).
A region can be a function, a loop, or a basic block. Each region can have multiple call
sites from which the control flow of the program enters a new region. Although we use
the term call site here, any place that causes the program to enter a new region can be
represented as a call site, including loop entries. Correspondingly, the region entered
from a call site is called callee, which might as well be a loop. Every call-tree node
points to a call site. The actual call path represented by a call-tree node can be derived
by following all the call sites starting at the root node and ending at the particular node
of interest. The user can choose among three ways of defining the program dimension:

1. Call tree with line numbers

2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes point to call sites. A
call tree without line numbers is defined as a tree whose nodes point to regions (i.e., the
callees). A flat profile is simply defined as a set of regions, that is, no tree has to be
defined.

Region* def_region
(const std::string &name, long begln, long endln,
const std::string &url, const std::string &descr,
const std::string &mod);

Returns a new region with region name name and description descr. The region is
located in the module mod and exists from line begln to line endln.

url is a link to an HTMLpage describing the new region in detail. For example, if the
region is a library function, the url can point its documentation. If you want to
mirror the page at several locations, you can use the macro @mirror@ as a prefix,
which will be replaced by an available mirror defined using disp{def_mirror()}
(see Section??).

Cnode* def_cnode
(Region* callee,
const std::string \&mod, int line,
Cnode* parent);

Returns a new call-tree node representing a call from call site located at the line line
of the module mod. The call tree node calls the callee callee (i.e., a previously defined
region). parent is a previously created call-tree node which will be the new one’s parent.
To define a root node, use NULL instead. This method is used to create a call tree with
line numbers.

47

Chapter 2. CUBE4 API

Cnode* def_cnode
(Region* region,
Cnode* parent);

Defines a new call-tree node representing a call to the region region. parent is a pre-
viously created call-tree node which will be the new one’s parent. To define a root node,
use NULL instead. Note that different from the previous def_cnode(), this method is
used to create a call-tree without line numbers where each call-tree node points to a
region.

To define a call tree with line numbers use def_cnode(Region∗, string, int ...).
To define a call tree without line numbers use def_cnode(Region∗, Cnode∗) instead.
To create a flat profile use neither one --- just defining a set of regions will be sufficient.

const std::vector<Region*>& get_regv() const;

Returns a vector with all regions in the CUBE object.

const std::vector<Cnode*>& get_cnodev() const;

Returns a vector with all call-tree nodes in the CUBE object.

Cnode* get_cnode(Cnode & cn) const;

Search a call-tree node cn. Returns NULL if the CUBE object does not contain the given
call-tree node.

2.1.1.3 System Dimension

This group refers to the system dimension of the performance space. It reflects the system
resources which the program is using at runtime. The entities present in this dimension
are machine, node, process, thread, which populate four levels of the system hierarchy
in the given order. That is, the first level consists of machines, the second level of nodes,
and so on. Finally, the last (i.e., leaf) level is populated only by threads. The system tree
is built in a top-down way starting with a machine. Note that even if every process has
only one thread, users still need to define the thread level.

Machine* def_mach (const std::string &name, const std::string &desc);

Returns a new machine with the name name and description desc.

Node* def_node (const std::string &name, Machine* mach);

48

2.1. Creating CUBE Files

Returns a new (SMP) node which has the name name and which belongs to the machine
mach.

Process* def_proc
(const std::string &name, int rank,
Node* node);

Returns a new process which has the name name and the rank rank. The rank is a number
from 0 to (n−1), where n is the total number of processes. MPIapplications may use the
rank in MPI_COMM_WORLD. The process runs on the node node.

Thread* def_thrd
(cosnt std::string name&, int rank,

~Process* proc);

Defines a new thread which has the name name and the rank rank. The rank is a number
from 0 to (n− 1), where n is the total number of threads spawned by a process. Open
MPapplications may use the Open MPthread number. The thread belongs to the process
proc.

const std::vector<Sysres*>& get_sysv() const;

Returns a vector with all system resources (e.g. node, thread, process) available in the
CUBE object.

const std::vector<Machine*>& get_machv() const;

Returns a vector with all machines in the CUBE object.

const std::vector<Node*>& get_nodev() const;

Returns a vector with all nodes of all machines in the CUBE object.

const std::vector<Process*>& get_procv() const;

Returns a vector with all processes in the CUBE object.

const std::vector<Thread*>& get_thrdv() const;

Returns a vector with all threads in the CUBE object.

Machine * get_mach(Machine & mach) const;

Search for the machine mach in the CUBE object. Returns NULL if the CUBE object does
not contain the given machine.

Node *get_node(Node & node) const;

Search for the node node in the CUBE object. Returns NULL if the CUBE object does
not contain the given node.

49

Chapter 2. CUBE4 API

2.1.1.4 Virtual Topologies

Virtual topologies are used to describe adjacency relationships among machines,
SMPnodes, processes or threads. A topology usually consists of a single class of enti-
ties such as threads or processes. The CUBE APIprovides a set of functions to create
Cartesian topologies and to define the machine/ SMPnode/process/thread mappings onto
coordinates. Note that the definition of virtual topologies is optional.

Cartesian* def_cart
(long ndims, const std::vector<long>& dimv,
const std::vector<bool>& periodv);

Defines a new Cartesian topology. ndims and dimv specify the number of dimensions
and the size of each dimension. periodv specifies the periodicity for each dimension.
Currently,the maximum value for ndims is three.

void def_coords
(Cartesian* cart, Sysres* sys,
const std::vector<long>& coordv);

Maps a specific system resource onto a Cartesian coordinate. The system resource sys
may be a machine, SMPnode, process or a thread. It is not recommended to map a mixed
set of entities onto one topology (e.g., machines and threads are located in the same
topology). The parameter of cart has been defined by the above def_cart() method.

const std::vector<Cartesian *>& get_cartv () const;

Returns a vector of all cartesian topologies available in the CUBE object.

const Cartesian * get_cart (int i) const;

Returns in i-th topology in the CUBE object.

2.1.1.5 Severity Mapping

After the establishment of the performance space, users can assign severity values to
points of the space. Each point is identified by a tuple (met, cnode, thrd) . The value
should be inclusive with respect to the metric, but exclusive with respect to the call-tree
node, that is it should not cover its children. The default severity value for the data points
left undefined is zero. Thus, users only need to define non-zero data points.

void set_sev
(Metric* met, Cnode* cnode,
Thread* thrd, double value);

50

2.1. Creating CUBE Files

Assigns the value value to the point (met, cnode, thrd).

void add_sev
(Metric* met, Cnode* cnode,
Thread* thrd, double value);

Adds the value value to the present value at point (met, cnode, thrd).

The previous two methods set_sev() and add_sev() are intended to be used when the
program dimension contains a call tree and not a flat profile. As the flat profile does
not require the definition of call-tree nodes, the following two functions should be used
instead:

void set_sev
(Metric* met, Region* region,
Thread* thrd, double value);

Assigns the value value to the point (met, region, thrd).

void add_sev
(Metric* met, Region* region,
Thread* thrd, double value);

Adds the value value to the present value at point (met, region, thrd).

double get_sev (Metric * met, Cnode * cnode, Thread * thrd) const;

Returns the value for the point (met, cnode, thrd).

Cube library provides various calls of type get_sev, which allow to perform different
ways of aggregations.
Here is the short list

double get_sev (Metric * met, CalculationFlavour mf,
Cnode * cnode, , CalculationFlavour cf,
Thread * thrd, CalculationFlavour sf) const;

double get_sev (Metric * met, CalculationFlavour mf,
Region * region, , CalculationFlavour rf,
Thread * thrd, CalculationFlavour sf) const;

double get_sev (Metric * met, CalculationFlavour mf,
Cnode * cnode, , CalculationFlavour cf) const;

double get_sev (Metric * met, CalculationFlavour mf,
Region * region, , CalculationFlavour rf) const;

double get_sev (Metric * met, CalculationFlavour mf) const;

51

Chapter 2. CUBE4 API

With CalculationFlavour one calculates either inclusive or exclusive value along the
corresponding tree. Value cube::CUBE_CALCULATE_EXCLUSIVE stands for exclusive
value and value cube::CUBE_CALCULATE_INCLUSIVE - for inclusive.

2.1.1.6 Miscellaneous

Often users may want to define some information related to the CUBE file itself, such
as the creation date, experiment platform, and so on. For this purpose, CUBE allows
the definition of arbitrary attributes in every CUBE data set. An attribute is simply a
key-value pair and can be defined using the following method:

void def_attr (const std::string &key, const std::tring &value);

Assigns the value value to the attribute key.

CUBE allows using multiple mirrors for the online documentation associated with met-
rics and regions. The url expression supplied as an argument for def_metric() and
def_region() can contain a prefix @mirror@. When the online documentation is ac-
cessed, CUBE can substitute all mirrors defined for the prefix until a valid one has been
found. If no valid online mirror can be found, CUBE will substitute the ./doc directory
of the installation path for @mirror@.

void def_mirror (const std::string &mirror);

Defines the mirror mirror as potential substitution for the URLprefix @mirror@.

std::string get_attr(const std::string &key) const;

Returns the attribute in the CUBE object stored for the given key.

const std::map<std::string, std::string> get_attrs() const;

Returns all attributes associated to the CUBE object as a map.

const std::vector<std::string>& get_mirrors() const;

Returns all mirrors defined in the CUBE object.

int get_num_thrd() const;

Returns the maximal number of threads per process in the CUBE object.

52

2.1. Creating CUBE Files

void setGlobalMemoryStrategy(CubeStrategy strategy);

Sets same memory usage strategy for all metrics. Possible values are:

• CUBE_MANUAL_STRATEGY

• CUBE_ALL_IN_MEMORY_STRATEGY

• CUBE_LAST_N_ROWS_STRATEGY

void setMetricMemoryStrategy(Metric* metric, CubeStrategy strategy);

Sets memory usage strategy for selected metric.

void dropRowInMetric(Metric* metric, Cnode * cnode);

Removes data row for the cnode from the memory of metric if its memory straregy
allows.

In case of CUBE_MANUAL_STRATEGY it is allways the case.

In case of CUBE_ALL_IN_MEMORY_STRATEGY it is never the case and this call has no
action.

void dropRowInAllMetrics(Cnode * cnode);

Removes data row for the cnode from the memory of all metrics if their memory straregy
allows.

void reroot_cnode(Cnode * cnode);

Removes all parents of the cnode and sets it as a root.

void prune_cnode(Cnode * cnode);

Removes the cnode and its subtree and sets its parent as a leaf.

void set_cnode_as_leaf(Cnode * cnode);

Removes its subtree.

void set_statistics_name(const std::string& name);

Stores the name of the statistic file inside of cube report.

53

Chapter 2. CUBE4 API

std::string get_statistics_name() const;

Returns the name of the statistic file if stored.

void enable_flat_tree(const bool status);

Enables or disables the calculation of the flat tree. For some applications flat tree doesn’t
make sense.

bool is_flat_tree_enabled() const;

Returns whether calculation of flat tree is enabled or disabled.

void set_metrics_title(const std::string& title);

Sets the title for the metric dimension. In some applications with CUBE name metric
is misleading.

std::string&
set_metrics_title() const;

Returns the title of the metric dimension.

void set_calltree_title(const std::string& title);

Sets the title for the program dimension. In some applications with CUBE name
calltree is misleading.

std::string&
set_calltree_title() const;

Returns the title of the program dimension.

void set_systemtree_title(const std::string& title);

Sets the title for the system dimension. In some applications with CUBE name System
is misleading.

std::string&
set_systemtree_title() const;

Returns the title of the system dimension.

54

2.1. Creating CUBE Files

vector<string>
get_misc_data();

Returns a list with names of all files, stored inside of the cubex container. This list
includes files with description of the cube and metric data.

vector<char>
get_misc_data(const std::string& name);

Returns content of the file name if present, otherwise empty vector.

void
write_misc_data(const std::string& name,

const chat* buffer,
size_t length);

Writes content of the buffer of length chars as a file with a name name.

void
write_misc_data(const std::string& name,

std:vector<char> buffer);

Alternatice call to previous.

2.1.1.7 Writer Library in C

In order to create data files, another possibility is to use the C version of the CUBE writer
API. The interface defines a struct cube_t and provides the following functions:

cube_t* cube_create();

Returns a new CUBE structure.

void cube_free(cube_t* c);

Destroys the given CUBE structure.

cube_metric* cube_def_met
(cube_t* c, const char* disp_name,
const char* uniq_name, const char* dtype,
const char* uom, const char* val,
const char* url, const char* descr,
cube_metric* parent);

55

Chapter 2. CUBE4 API

Returns a new metric structure.

cube_region* cube_def_region
(cube_t* c, const char* name, long begln,
long endln, ~const char* url,
const char* descr, const char* mod);

Returns a new region.

cube_cnode* cube_def_cnode_cs
(cube_t* c, cube_region* callee,
const char* mod, int line,
cube_cnode* parent);

Returns a new call-tree node structure with line numbers.

cube_cnode* cube_def_cnode
(cube_t* c, cube_region* callee,
cube_cnode* parent);

Returns a new call-tree node structure without line numbers.

cube_machine* cube_def_mach
(cube_t* c, const char* name
const char* desc);

Returns a new machine.

cube_node* cube_def_node
(cube_t* c, const char* name,
cube_machine* mach);

Returns a new node.

cube_process* cube_def_proc
(cube_t* c, const char* name,
int rank, cube_node* node);

Returns a new process.

cube_thread* cube_def_thrd
(cube_t* c, const char* name,
int rank, cube_process* proc);

Returns a new thread.

56

2.1. Creating CUBE Files

cube_cartesian* cube_def_cart
(cube_t* c, long ndims,
long int* dimv, int* periodv);

Defines a new Cartesian topology.

void cube_def_coords
(cube_t* c, cube_cartesian* cart,
cube_thread* thrd, long int* coord);

Maps a thread onto a Cartesian coordinate.

void cube_set_sev
(cube_t* c, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd, double value);

Assigns the severity value to the point (met, cnode, thrd). Can only be used after
metric, cnode and thread definitions are complete. Note that you can only use either the
region or the cnode form of these calls, but not both at the same time.

double cube_get_sev
(cube_t* c, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd);

Returns the severity of the point (met, cnode, thrd).

void cube_set_sev_reg
(cube_t* c, cube_metric* met, cube_region* reg,
cube_thread* thrd, double value);

Assigns the severity value to the point (met, reg, thrd). Can only be used after metric,
regino and thread definitions are complete. Note that you can only use either the region
or the cnode form of these calls, but not both at the same time.

void cube_add_sev
(cube_t* c, cube_metric* met, cube_cnode* cnode,
cube_thread* thrd, double value);

Adds the severity value to the present value at point (met, cnode, thrd). Can only be
used after metric, cnode and thread definitions are complete. Note that you can only use
either the region or the cnode form of these calls, but not both at the same time.

void cube_add_sev_reg
(cube_t* c, cube_metric* met, cube_region* reg,
cube_thread* thrd, double value);

57

Chapter 2. CUBE4 API

Adds the severity value to the present value at point (met, reg, thrd). Can only be
used after metric, region and thread definitions are complete. Note that you can only use
either the region or the cnode form of these calls, but not both at the same time.

void cube_write_all
(cube_t* c, FILE* fp);

Writes the entire CUBE data to the given file. This basically corresponds to calling
cube_write_def() and cube_write_sev_matrix().

void cube_write_def
(cube_t* c, FILE* fp);

Writes the definitions part of the CUBE data to the given file. Should only be used after
definitions are complete.

void cube_write_sev_matrix
(cube_t* c, FILE* fp);

Writes the severity values part of the CUBE data to the given file. Should only be used
after severity values are completely set. Unset values default to zero.

void cube_write_sev_row
(cube_t* c, FILE* fp,
cube_metric* met,
cube_cnode* cnode,
double* sevs);

Writes the given severity values of (met, cnode) for all threads to the given file. This
can be used instead of cube_write_sev_matrix() to incrementally write parts of the
severity matrix.

void cube_write_finish
(cube_t* c, FILE* fp);

Writes the end tags to a file. Must be called at the very end before closing the file, but
only when incrementally writing the severity matrix using cube_write_sev_matrix().
When using cube_write_sev_matrix() to write the severity matrix in one chunk, call-
ing this function is not needed.

58

2.1. Creating CUBE Files

2.1.2 Typical Usage

A simple C++ program is given to demonstrate how to use the CUBE write interface.
Example below shows the corresponding CUBE display. The source code of the target
application is provided below.

1 void foo() {
...

10 }
11 void bar() {

...
20 }
21 int main(int argc, char* argv) {

...
60 foo();

...
80 bar();

...
100 }

// A C++ example using CUBE write interface
#include <cube3/Cube.h>
#include <string>
#include <fstream>

using namespace std;
using namespace cube;

int main(int argc, char* argv[]) {
Cube cube;

// Specify mirrors (optional)
cube.def_mirror("http://icl.cs.utk.edu/software/kojak/");
cube.def_mirror("http://www.fz-juelich.de/jsc/kojak/");

// Specify information related to the file (optional)
cube.def_attr("experiment time", "September 27th, 2006");
cube.def_attr("description", "a simple example");

// Build metric tree
Metric* met0 = cube.def_met("Time", "Time", "FLOAT", "sec", "",

"@mirror@patterns-2.1.html#execution",
"root node", NULL); // using mirror

Metric* met1 = cube.def_met("User time", "User Time", "FLOAT", "sec", "",
"http://www.cs.utk.edu/usr.html",
"2nd level", met0); // without using mirror

Metric* met2 = cube.def_met("System time", "System Time", "FLOAT", "sec", "",
"http://www.cs.utk.edu/sys.html",
"2nd level", met0); // without using mirror

// Build call tree

59

Chapter 2. CUBE4 API

string mod = "/ICL/CUBE/example.c";
Region* regn0 = cube.def_region("main", 21, 100, "", "1st level", mod);
Region* regn1 = cube.def_region("foo", 1, 10, "", "2nd level", mod);
Region* regn2 = cube.def_region("bar", 11, 20, "", "2nd level", mod);

Cnode* cnode0 = cube.def_cnode(regn0, mod, 21, NULL);
Cnode* cnode1 = cube.def_cnode(regn1, mod, 60, cnode0);
Cnode* cnode2 = cube.def_cnode(regn2, mod, 80, cnode0);

// Build system resource tree
Machine* mach = cube.def_mach("MSC", "");
Node* node = cube.def_node("Athena", mach);
Process* proc0 = cube.def_proc("Process 0", 0, node);
Process* proc1 = cube.def_proc("Process 1", 1, node);
Thread* thrd0 = cube.def_thrd("Thread 0", 0, proc0);
Thread* thrd1 = cube.def_thrd("Thread 1", 1, proc1);

// Build 2D Cartesian a topology (a 5x5 grid)
int ndims = 2;
vector<long> dimv;
vector<bool> periodv;
for (int i = 0; i < ndims; i++) {

dimv.push_back(5);
if (i % 2 == 0)

periodv.push_back(true);
else

periodv.push_back(false);
}
Cartesian* cart = cube.def_cart(ndims, dimv, periodv);
vector<long> coord0, coord1;
coord0.push_back(0);
coord0.push_back(0);
coord1.push_back(3);
coord1.push_back(3);
// map the two threads onto the above 2 coordinates
cube.def_coords(cart, thrd0, coord0);
cube.def_coords(cart, thrd1, coord1);

// Severity mapping
cube.set_sev(met0, cnode0, thrd0, 4);
cube.set_sev(met0, cnode0, thrd1, 4);
cube.set_sev(met0, cnode1, thrd0, 4);
cube.set_sev(met0, cnode1, thrd1, 4);
cube.set_sev(met0, cnode2, thrd0, 4);
cube.set_sev(met0, cnode2, thrd1, 4);
cube.set_sev(met1, cnode0, thrd0, 1);
cube.set_sev(met1, cnode0, thrd1, 1);
cube.set_sev(met1, cnode1, thrd0, 1);
cube.set_sev(met1, cnode1, thrd1, 1);
cube.set_sev(met1, cnode2, thrd0, 1);
cube.set_sev(met1, cnode2, thrd1, 1);
cube.set_sev(met2, cnode0, thrd0, 1);

60

2.1. Creating CUBE Files

cube.set_sev(met2, cnode0, thrd1, 1);
cube.set_sev(met2, cnode1, thrd0, 1);
cube.set_sev(met2, cnode1, thrd1, 1);
cube.set_sev(met2, cnode2, thrd0, 1);
cube.set_sev(met2, cnode2, thrd1, 1);

// Output to a cube file
ofstream out;
out.open("example.cube");
out << cube;

}

Figure 2.1: Display of example.cube

61

Chapter 2. CUBE4 API

62

Chapter 3. Appendix

3 Appendix

3.1 File format of statistics files

Statistic files (for an example see3.1) are simply text files which contain the necessary
data. The first line is always ignored but should look similar to that in the example as
it simplifies the understanding for the human reader. All values in a statistic file are
simply separated by an arbitrary number of spaces. For each pattern there is a line

PatternName MetricID Count Mean Median Minimum Maximum Sum Variance Quartil25 Quartil75
LateBroadcast 6 4 0.010 0.000031 0.000004 0.042856 0.042 0.000459
- cnode: 5 enter: 0.245877 exit: 0.256608 duration: 0.042856

WaitAtBarrier 18 20 0.018 0.006477 0.000002 0.065293 0.369 0.000698 0.000040 0.047409
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000100
- cnode: 12 enter: 0.326120 exit: 0.335651 duration: 0.065293

BarrierCompletion 17 20 0.000 0.000005 0.000002 0.000018 0.000 0.000000 0.000003 0.000009
- cnode: 14 enter: 0.192332 exit: 0.192378 duration: 0.000009
- cnode: 12 enter: 0.159321 exit: 0.165005 duration: 0.000018

WaitAtIBarrier 27 144 0.001 0.000027 0.000001 0.028451 0.212 0.000028 0.000002 0.000437
- cnode: 11 enter: 0.297292 exit: 0.297316 duration: 0.000057
- cnode: 10 enter: 0.322577 exit: 0.332093 duration: 0.028451

Figure 3.1: An example of a statistic file

which contains at least the pattern name (as plain text without spaces), its corresponding
metric id in the CUBE file (integer as text) and the count -- i.e., how many instances
of the pattern exist (also as integer). If more values are provided, there have to be the
mean value, median, minimum and maximum as well as the sum (all as floating point
numbers in arbitrary format). If one of these values is provided, all have to. The next
optional value is the variance (also as a floating point number). The last two optional
values of which both or none have to be provided are the 25% and the 75% quantile, also
as floating point numbers.

If any of these values is omitted, all following values have to be omitted, too. If for ex-
ample the variance is not provided, the lower and the upper quartile must not be provided

63

Chapter 3. Appendix

either.

In the subsequent lines (there can be an arbitrary number), the information of the most
severe instances is provided. Each of these lines has to begin with a minus sign (-). Then
the text cnode:, followed by the cnode id of this instance in the CUBE file (integer as
text) is provided. The same holds for enter, exit and duration (floats as text).

The begin of the next pattern is indicated by a blank line.

64

Bibliography

Bibliography

[1] Message Passing Interface Forum: MPI: A Message Passing Interface Standard,
June,1995, http://www.mpi-forum.org 1

[2] OpenMP Architecture Review Board: OpenMP Fortran Application Program In-
terface --- Version 2.5, May,2000 http://www.openmp.org 1

[3] K. L. Karavanic and B.Miller, A Framework for Multi-Execution Performance Tun-
ing, Parallel and Distributed Computing Practices, 4(3), 2001, September 2

[4] F.Song and F.Wolf and N.Bhatia and J.Dongarra and S.Moore, An Algebra for
Cross-Experiment Performance Analysis, Proc. of ICPP 2004, 63-72, 2004, Augh-
ust, Montreal, Canada 2

[5] F.Wolf and B.Mohr and J.Dongarra and S.Moore, Efficient Pattern Search in Large
Traces through Successive Refinement, Proc. of the European Conference on Par-
allel Computing (Euro-Par), August - September, 2004 Lecture Notes in Computer
Science, Springer,Pisa, Italy, 25

[6] J.Labarta and S.Girona and V.Pillet and T.Cortes and L.Gregoris, DiP: A Parallel
Program Development Environment, Proc. of the 2nd International Euro-Par Con-
ference, Springer, 665-674 Lyon, France, August, 1996 27

[7] Barcelona Supercomputing Center, Paraver: Obtain De-
tailed Information from Raw Performance Traces,Oct,2008,
http://www.bsc.es/plantillaA.php?cat_id=485 27

[8] H.Brunst and W.E.Nagel, Scalable Performance Analysis of Parallel Systems: Con-
cepts and Experiences Proc. of the Parallel Computing Conference (ParCo), 2003,
Dresden, Germany 27

[9] Technical University Dresden, Vampir - Performance Optimization, Oct, 2008
http://vampir.eu/ 27

[10] World Wide Web Consortium, Extensible Markup Language (XML) 1.0 (Second
Edition), October, 2000 http://www.w3.org/TR/REC-xml 45

[11] Sameer S. Shende and Allen D. Malony, The TAU Parallel Performance System,
International Journal of High Performance Computing Applications,20(2), 287--
331 SAGE Publications, Summer, 2006 38

[12] The Scalasca Development Team scalasca@fz-juelich.de, Cube 4.1.3- Cube
Derived Metrics, Usage and syntax documentation 19, 46

65

http://www.mpi-forum.org
http://www.openmp.org
http://www.bsc.es/plantillaA.php?cat_id=485
http://vampir.eu/
http://www.w3.org/TR/REC-xml
mailto:scalasca@fz-juelich.de

	Copyright
	Cube User Guide
	Abstract
	Introduction
	Using the Display
	Performance Algebra and Tools

	CUBE4 API
	Creating CUBE Files

	Appendix
	File format of statistics files

	Bibliography

