
nsys2prv: from Nsight Systems to Paraver traces

Marc Clascà Ramírez

marc.clasca@bsc.es

48th VI-HPS Tuning Workshop

1



Introduction

2

When do we need to jump to Nsight Systems?

What can we see with these translated traces?

How do we translate traces?



BSC Tools overview

3

● System level parallel 
performance analysis

● Timestamped events, 
configurable semantics

● CUDA support improving 
in progress

● Requires MPI for 
distributed memory 
applications 

Extrae

● Configurable visualizations 
via DSL

● Suitable for large number 
of resources

Paraver

● Comprehensive 
workload-level 
performance

● System level information: 
different runtimes and 
hardware metrics

● Typical behaviors to study: 
synchronization, 
parallelization, data 
movement

● Trace visualization 
integrated, usable up to 
~8 processes

NVIDIA Nsight 
Systems

● Detailed CUDA kernel 
performance

● Isolated kernel execution 
information: requires 
replaying

● Typical behaviors to study: 
GPU utilization, kernel 
implementation, memory 
access

NVIDIA Nsight 
Compute



BSC Tools overview

4

● System level parallel 
performance analysis

● Timestamped events, 
configurable semantics

● CUDA support improving 
in progress

● Requires MPI for 
distributed memory 
applications 

Extrae

● Configurable visualizations 
via DSL

● Suitable for large number 
of resources

Paraver

● Comprehensive 
workload-level 
performance

● System level information: 
different runtimes and 
hardware metrics

● Typical behaviors to study: 
synchronization, 
parallelization, data 
movement

● Trace visualization 
integrated, usable up to 
~8 processes

NVIDIA Nsight 
Systems

● Detailed CUDA kernel 
performance

● Isolated kernel execution 
information: requires 
replaying

● Typical behaviors to study: 
GPU utilization, kernel 
implementation, memory 
access

NVIDIA Nsight 
Compute

System level overview
Individual kernel level



BSC Tools overview

5

● System level parallel 
performance analysis

● Timestamped events, 
configurable semantics

● CUDA support improving 
in progress

● Requires MPI for 
distributed memory 
applications 

Extrae

● Configurable visualizations 
via DSL

● Suitable for large number 
of resources

Paraver

● Comprehensive 
workload-level 
performance

● System level information: 
different runtimes and 
hardware metrics

● Typical behaviors to study: 
synchronization, 
parallelization, data 
movement

● Trace visualization 
integrated, usable up to 
~8 processes

NVIDIA Nsight 
Systems

● Detailed CUDA kernel 
performance

● Isolated kernel execution 
information: requires 
replaying

● Typical behaviors to study: 
GPU utilization, kernel 
implementation, memory 
access

NVIDIA Nsight 
Compute

Proprietary, rich information and metrics

Open-source, under 
development

Highly customizable, 
large-scale parallel traces



When should we use Nsight Systems?

• Distributed parallel runtimes not supported by other tracers
• Overview of GPU metrics
• Instrumentation with NVTX
• Mix of multiple programming models
• Anything that we don’t understand from our own tool…

6

LLMs !!



Nsight Systems profiling

7

Basic profiling session

$> nsys profile --gpu-metrics-devices=cuda-visible -t cuda,nvtx -o ./llm_all  
python TestLLAMA.py

• -t (API tracing) cuda,nvtx,openmp,mpi,openacc…
• –gpu-metrics-devices Obtain GPU hardware metrics, predefined set for device
• -o name of the report, allows %q{ENV_VAR}

This should output an .nsys-rep file

$> ls
 llm_all.nsys-rep



Instrumentation with NVTX

• Instrument application source code with markers and code regions.
• API also provides python decorators

8

from torch.cuda import nvtx

nvtx.range_push("region X")
# your Python code
nvtx.range_pop()

import nvtx

@nvtx.annotate("f()", color="purple")
def f():
  for i in range(5):
    with nvtx.annotate("loop", color="red"):
      # Python code goes here



Finer grain profiling with NVTX

$> nsys profile --gpu-metrics-devices=cuda-visible -t cuda,nvtx -o ./llm_all 
--capture-range=nvtx --env-var=NSYS_NVTX_PROFILER_REGISTER_ONLY=0 
--nvtx-capture=RANGE_NAME python TestLLAMA.py

In this example, we ask the profiler to only trace during the “RANGE_NAME” NVTX 
range, to get a trace for our phase of interest.

We can also start and stop the profiler directly with the API:

9

import torch.cuda

if epoch == 2:
  torch.cuda.cudart().cudaProfilerStart()

# train code

if epoch == 3:
  torch.cuda.cudart().cudaProfilerStop()



Metrics definition and CUPTI raw equivalent

• GPC Clock Frequency: GPC graphics clock, “Boost Clock” or “Base Clock” 
– gpc__cycles_elapsed.avg.per_second

• SM Issue rate: SM inst. issue rate. Each SM can issue 4 instructions per cycle.
– sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

• Tensor Active: Cycles the tensor pipe is active (% of peak)
– sm__pipe_tensor_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

• NVLink BW:  Number of bytes sent/recvd via NVLink for each type of packet (% 

of peak)
– NVL{RX,TX}.TriageCompute.nvl{rx,tx}__bytes_packet_{type}.avg.pct_of_peak_sustained_elapsed

• PCIe Bandwidth: Number of bytes sent/recvd by GPU (% of peak)
– PCI.TriageCompute.pci__{read,write}_bytes.avg.pct_of_peak_sustained_elapsed

• Compute warps in flight: Number of compute shader warps in flight (% of peak)
– TPC.TriageCompute.tpc__warps_active_shader_cs_realtime.avg

GPU metrics overview

10



Metrics definition and CUPTI raw equivalent

• GPC Clock Frequency: GPC graphics clock, “Boost Clock” or “Base Clock” 
– gpc__cycles_elapsed.avg.per_second

• SM Issue rate: SM inst. issue rate. Each SM can issue 4 instructions per cycle.
– sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

• Tensor Active: Cycles the tensor pipe is active (% of peak)
– sm__pipe_tensor_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

• NVLink BW:  Number of bytes sent/recvd via NVLink for each type of packet (% 

of peak)
– NVL{RX,TX}.TriageCompute.nvl{rx,tx}__bytes_packet_{type}.avg.pct_of_peak_sustained_elapsed

• PCIe Bandwidth: Number of bytes sent/recvd by GPU (% of peak)
– PCI.TriageCompute.pci__{read,write}_bytes.avg.pct_of_peak_sustained_elapsed

• Compute warps in flight: Number of compute shader warps in flight (% of peak)
– TPC.TriageCompute.tpc__warps_active_shader_cs_realtime.avg

Metric name Unit instances aggregation 
operation (sum, max, min, 
avg), called rollup

Submetric, metric transformation 
(e.g. events per second or % of 
peak sustained rate achieved 
during unit elapsed cycles)

🔖 For reference: 
https://docs.nvidia.com/cupti/m
ain/main.html#enumeration

GPU metrics overview

11

https://docs.nvidia.com/cupti/main/main.html#enumeration
https://docs.nvidia.com/cupti/main/main.html#enumeration


What can we see/do?

• Multi-node, large-scale runs traces merged
• Analysis of NCCL behavior
• POP efficiency model!
• Derived metrics

– Attribution of GPU metrics to regions, kernels…
– Relationship between CUDA API calls and kernels
– Aggregations (of streams) per task or application

12



Multi-node profiling

• Prefix “nsys profile” before your binary, after the launcher
– srun <args> nsys profile ./your_app <args> ...

• Nsight Systems creates one report for every profiler instance
• Use SLURM environment variables to tune nsys parameters, like:

– Report name: -o report_N${SLURM_NODENAME}_${SLURM_PROCID}
– Which GPUs to get metrics: –gpu-metrics-devices=$SLURM_LOCALID

13

.nsys
-rep

.nsys
-rep

.nsys
-rep

.nsys
-rep



Methodology - Efficiency model

14

Device Global Efficiency

Device Parallel Efficiency

Load Balance Communication 
efficiency

Orchestration 
efficiency

Device Computation Scalability

● Computation / communication 
overlap (stream level)

● Inflight kernels
● Occupancy
● Hardware metric aggregation
● MFU
● Tensor Core usage
● Executed instructions
● SM issue rate
● …

Time lost 
because 
devices wait 
for another 
more loaded to 
finish

Time lost 
because of 
data movement. 
Memory copies 
and NCCL

Time idle 
because the 
host is not 
giving work to 
GPU



nsys2prv - What is it?

🠊 Translate performance data acquired by Nsight Systems into Paraver timestamped records.

🠊 Merge multiple .nsys-rep reports, coming from a multi-node execution, into a single trace. 

🠊 And we provide all predefined configuration files for Paraver within the package to display all metrics 
described in the article and in this presentation 

15

$> nsys2prv -t nvtx_pushpop_trace,cuda_api_trace,gpu_metrics \

-m ./llm_0.nsys-rep ./llm_1.nsys-rep ./llm_2.nsys-rep … llm_translated

Package released on PyPI
🔗 https://pypi.org/project/nsys2prv/

Source code publicly available on
🔗 https://gitlab.pm.bsc.es/beppp/nsys2prv

📂 Installed on the shared folder of MN5!

https://pypi.org/project/nsys2prv/
https://gitlab.pm.bsc.es/beppp/nsys2prv


source $BASE/env/bin/activate

Translation workflow

16

 Extrae

Trace Trace analysis

Paraver.

Performance metrics

Application

 Nsight 
Systems

Application execution

CUDA
Application

Nsys report

.nsys
-rep

Translate

other tools

Nsys report

.nsys
-rep

Nsys report

.nsys
-rep

Nsys report

.nsys
-rep

$BASE/cfgs

.cfg.cfg.cfg.cfg

Adapted script in 
$BASE/model/

.py

Application execution

BASE=/gpfs/scratch/nct_362/nsys2prv



How do we translate a trace?

17

$> module load intel mkl impi hdf5 python/3.12.1 sqlite3

$> source /gpfs/scratch/nct_362/nsys2prv/env/bin/activate

$> nsys2prv -t nvtx,cuda_api_trace,gpu_metrics \

-m ./llm_0.nsys-rep ./llm_1.nsys-rep ./llm_2.nsys-rep … llm_translated


