nsys2prv: from Nsight Systems to Paraver traces

Marc Clasca Ramirez
marc.clasca@bsc.es
48th VI-HPS Tuning Workshop

= :arcolona i
ceneracionl) (@ &5
Centro Nacional de Supercomputacion

llllllllllll

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Introduction

When do we need to jump to Nsight Systems?
What can we see with these translated traces?

How do we translate traces?

BSC Tools overview

-~

@x

Extrae

System level parallel
performance analysis
Timestamped events,
configurable semantics
CUDA support improving
in progress

Requires MPI for
distributed memory

e

applications /
@ ! N

Paraver
Configurable visualizations

via DSL
Suitable for large number

of resources /

NVIDIA Nsight
Systems

Comprehensive
workload-level
performance

System level information:
different runtimes and
hardware metrics

Typical behaviors to study:
synchronization,
parallelization, data
movement

Trace visualization
integrated, usable up to

~8 processes

a BI04 I

NVIDIA Nsight
Compute

Detailed CUDA kernel
performance

Isolated kernel execution
information: requires
replaying

Typical behaviors to study:
GPU utilization, kernel
implementation, memory
access

/

BSC Tools overview .
System level overview

@<

Extrae

System level parallel
performance analysis
Timestamped events,
configurable semantics
CUDA support improving
in progress

Requires MPI for
distributed memory

applications

/
@ : N

Paraver
Configurable visualizations

via DSL
Suitable for large number

of resources /

RS)
NVIDIA Nsight
Systems

e Comprehensive
workload-level
performance

e System level information:
different runtimes and
hardware metrics

e Typical behaviors to study:
synchronization,
parallelization, data
movement

e Trace visualization
integrated, usable up to

~8 processes

Individual kernel level

NVIDIA Nsight
Compute

e Detailed CUDA kernel
performance

e |[solated kernel execution
information: requires
replaying

e Typical behaviors to study:
GPU utilization, kernel
implementation, memory
access

BSC Tools overview

Ope:en source(?(%g \

development

Extrae

System level parallel
performance analysis
Timestamped events,
configurable semantics
CUDA support improving
in progress

Requires MPI for
distributed memory

applications /

Paraver
Configurable visualizations

via DSL

Suitable for large number
of resources er ?ﬂ\/j

NVIDIA Nsight
Systems

Comprehensive
workload-level
performance

System level information:
different runtimes and
hardware metrics

Typical behaviors to study:

synchronization,
parallelization, data
movement

Trace visualization
integrated, usable up to
~8 processes

Proprietary, rich information and metrics

NVIDIA Nsight
Compute

1
[

1

1

1

[

1

1

1

[
Detailed CUDA kernel I
performance :
Isolated kernel execution I
information: requires :
replaying I
Typical behaviors to study: 1
GPU utilization, kernel :
implementation, memory
access [
1

1

1

[

1

When should we use Nsight Systems?

« Distributed parallel runtimes not supported by other tracers

« Overview of GPU metrics \
« |nstrumentation with NVTX LLMs !

« Mix of multiple programming models
* Anything that we don’t understand from our own tool...

@

Nsight Systems profiling
Basic profiling session

$§> nsys profile --gpu-metrics-devices=cuda-visible -t cuda,nvtx -o ./llm_all
python TestLLAMA.py

e -t (APl tracing) cuda,nvtx,openmp,mpi,openacc...
e —gpu-metrics-devices Obtain GPU hardware metrics, predefined set for device
* -0 name of the report, allows %q{ENV_VAR}

This should output an .nsys-rep file

S> 1s
1lm_all.nsys-rep

@

Instrumentation with NVTX

©

Instrument application source code with markers and code regions.
API also provides python decorators

from torch.cuda import nvtx

nvtx.range_push("region X")
your Python code
nvtx.range_pop()

-

» GPU (0000:1b:00.0 - NVIDIA H100]
» CUDA HW (0000:1b:00.0 - NVIDIA |

» CUDA HW (Unknown GPU)
v Threads (4)
~ [49282] MPI Rank 0
MPI

NVTX

~ CUDA API

import nvtx

@nvtx.annotate("f()", color="purple")

def f():
for 1 in range(5):

with nvtx.annotate("loop",

Python code goes here

color="red"):

Kernel
Memory
Kemnel
Memory

[- i"e‘?'é‘éT ,014 s! : |
ljf—allT_j—] gather KV [1,014 5 [1_

Finer grain profiling with NVTX

$> nsys profile --gpu-metrics-devices=cuda-visible -t cuda,nvtx -o ./llm_all
--capture-range=nvtx --env-var=NSYS_NVTX_PROFILER_REGISTER_ONLY=0
--nvitx-capture=RANGE_NAME python TestLLAMA.py

In this example, we ask the profiler to only trace during the “RANGE_NAME” NVTX
range, to get a trace for our phase of interest.

We can also start and stop the profiler directly with the API:

import torch.cuda

if epoch == 2:
torch.cuda.cudart().cudaProfilerStart()

train code

if epoch == 3:
torch.cuda.cudart().cudaProfilerStop()

@

GPU metrics overview

Metrics definition and CUPTI raw equivalent

@

GPC Clock Frequency: GPC graphics clock, “Boost Clock” or “Base Clock”

— gpc__cycles_elapsed.avg.per_second

SM lIssue rate: SM inst. issue rate. Each SM can issue 4 instructions per cycle.

— sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

Tensor Active: Cycles the tensor pipe is active (% of peak)

— sm__pipe_tensor_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

NVLink BW: Number of bytes sent/recvd via NVLink for each type of packet (%
of peak)

— NVL{RX, TX}.TriageCompute.nvl{rx, tx}__bytes_packet_{type}.avg.pct_of_peak_sustained_elapsed

PCle Bandwidth: Number of bytes sent/recvd by GPU (% of peak)

— PCI.TriageCompute.pci__{read,write}_bytes.avg.pct_of_peak_sustained_elapsed

Compute warps in flight: Number of compute shader warps in flight (% of peak)

— TPC.TriageCompute.tpc__warps_active_shader_cs_realtime.avg

GPU metrics overview

Metrics definition and CUPTI raw equivalent

©

% For reference:
https://docs.nvidia.com/cupti/m

) i _ ain/main.html#enumeration
SM Issue rate: SM inst. issue rate. Each SM caniscuc .+ .icviucaciio por oyl

— sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

Tensor Active: Cycles the teksor pipe-is-active (% of peak)

— sm__pipe_tensof_cycles_active_re

NVLink BW:

ofpe
{type |_elapsed

NV
operation (sum, max, min,
PCle Bandwidth: Nu avg), called m”up d by

— PCI.TriageCompute.pci_= e ! of _peak_sustained_ elapsed

Compute warps in flight: Number of compute shader warps in flight (% of peak)

— TPC.TriageCompute.tpc__warps_active_shader_cs_realtime.avg

GPC Clock Frequency: GPC graphics clock, “Boost

— gpc__cycles_elapsed.avg.per_second

altime.avg.pct_of_peek_sustained_elapsed

umber of bytes sent/recvd via NVLink fer_each type of packet (%

Metric name | Unit instances aggregation

11

https://docs.nvidia.com/cupti/main/main.html#enumeration
https://docs.nvidia.com/cupti/main/main.html#enumeration

What can we see/do?

* Multi-node, large-scale runs traces merged
« Analysis of NCCL behavior
« POP efficiency model!

* Derived metrics
— Attribution of GPU metrics to regions, kernels...
— Relationship between CUDA API calls and kernels
— Aggregations (of streams) per task or application

@

Multi-node profiling

» Prefix “nsys profile” before your binary, after the launcher
— srun <args> nsys profile ./your_app <args> ...

* Nsight Systems creates one report for every profiler instance

* Use SLURM environment variables to tune nsys parameters, like:
— Report name: -o report_NS{SLURM_NODENAME}_S{SLURM_PROCID}
— Which GPUs to get metrics: —gpu-metrics-devices=SSLURM_LOCALID

.nsys .nsys .nsys .nsys
-rep -rep -rep -rep

Methodology - Efficiency model

Time lost
because
devices wait
for another
more loaded to
finish

©

Time lost
because of

data movement.

Memory copies
and NCCL

Time idle
because the
host is not
giving work to
GPU

(eveennnn o)

Computation / communication
overlap (stream level)

Inflight kernels

Occupancy

Hardware metric aggregation
MFU

Tensor Core usage

Executed instructions
SMissue rate

/

nsys2prv - What is it?

O Translate performance data acquired by Nsight Systems into Paraver timestamped records.
00 Merge multiple .nsys-rep reports, coming from a multi-node execution, into a single trace.

O And we provide all predefined configuration files for Paraver within the package to display all metrics
described in the article and in this presentation

pgthOﬂ Package released on PyPI

Package

! — ‘E‘[F! Index %/ https://pypi.org/project/nsys2prv/

nsys2prv U Source code publicly available on
4/ https://gitlab.pm.bsc.es/beppp/nsys2prv

Installed on the shared folder of MN5!

$> nsys2prv -t nvtx_pushpop_trace,cuda_api_trace,gpu_metrics \
-m ./11lm_O.nsys-rep ./1llm_1.nsys-rep ./llm_2.nsys-rep .. llm_translated

©

https://pypi.org/project/nsys2prv/
https://gitlab.pm.bsc.es/beppp/nsys2prv

Translation workflow

BASE=/gpfs/scratch/nct_362/nsys2prv

.cfg
Application execution Trace) _ Trace analysis
Application @% Paraver
N -~
g | (Y :
v o)
@% Extrae ~~
>

\ T A ‘ \ o }

- source $BASE/env/bin/activate
Performance metrics :

Application execution S| FPEER | Translate
CUDA : — i)

Application : =1 Nsys report
% I el B |

> Nsight -NSys nsys2prv . $BASE/model/

NVIDIA. Systems . \ -rep \ other tools /

- Adapted script in

© T .

How do we translate a trace?

$> module load intel mkl impi hdf5 python/3.12.1 sqlite3
$> source /gpfs/scratch/nct_362/nsys2prv/env/bin/activate

$§> nsys2prv -t nvtx,cuda_api_trace,gpu_metrics \
-m ./1lm_0@.nsys-rep ./llm_1.nsys-rep ./llm_2.nsys-rep

@

.. 11lm_translated

