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Introduction

When do we need to jump to Nsight Systems?
What can we see with these translated traces?

How do we translate traces?
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When should we use Nsight Systems?

« Distributed parallel runtimes not supported by other tracers

« Overview of GPU metrics \
« |nstrumentation with NVTX LLMs !

« Mix of multiple programming models
* Anything that we don’t understand from our own tool...
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Nsight Systems profiling
Basic profiling session

$§> nsys profile --gpu-metrics-devices=cuda-visible -t cuda,nvtx -o ./llm_all
python TestLLAMA.py

e -t (APl tracing) cuda,nvtx,openmp,mpi,openacc...
e —gpu-metrics-devices Obtain GPU hardware metrics, predefined set for device
* -0 name of the report, allows %q{ENV_VAR}

This should output an .nsys-rep file

S> 1s
1lm_all.nsys-rep
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Instrumentation with NVTX
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Instrument application source code with markers and code regions.
API also provides python decorators

from torch.cuda import nvtx

nvtx.range_push("region X")
# your Python code
nvtx.range_pop()

-

» GPU (0000:1b:00.0 - NVIDIA H100]
» CUDA HW (0000:1b:00.0 - NVIDIA |

» CUDA HW (Unknown GPU)
v Threads (4)
~ [49282] MPI Rank 0
MPI

NVTX

~ CUDA API

import nvtx

@nvtx.annotate("f()", color="purple")

def f():
for 1 in range(5):

with nvtx.annotate("loop",

# Python code goes here

color="red"):

Kernel
Memory
Kemnel
Memory
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Finer grain profiling with NVTX

$> nsys profile --gpu-metrics-devices=cuda-visible -t cuda,nvtx -o ./llm_all
--capture-range=nvtx --env-var=NSYS_NVTX_PROFILER_REGISTER_ONLY=0
--nvitx-capture=RANGE_NAME python TestLLAMA.py

In this example, we ask the profiler to only trace during the “RANGE_NAME” NVTX
range, to get a trace for our phase of interest.

We can also start and stop the profiler directly with the API:

import torch.cuda

if epoch == 2:
torch.cuda.cudart().cudaProfilerStart()

# train code

if epoch == 3:
torch.cuda.cudart().cudaProfilerStop()
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GPU metrics overview

Metrics definition and CUPTI raw equivalent
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GPC Clock Frequency: GPC graphics clock, “Boost Clock” or “Base Clock”

— gpc__cycles_elapsed.avg.per_second

SM lIssue rate: SM inst. issue rate. Each SM can issue 4 instructions per cycle.

— sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

Tensor Active: Cycles the tensor pipe is active (% of peak)

— sm__pipe_tensor_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

NVLink BW: Number of bytes sent/recvd via NVLink for each type of packet (%
of peak)

— NVL{RX, TX}.TriageCompute.nvl{rx, tx}__bytes_packet_{type}.avg.pct_of_peak_sustained_elapsed

PCle Bandwidth: Number of bytes sent/recvd by GPU (% of peak)

— PCI.TriageCompute.pci__{read,write}_bytes.avg.pct_of_peak_sustained_elapsed

Compute warps in flight: Number of compute shader warps in flight (% of peak)

— TPC.TriageCompute.tpc__warps_active_shader_cs_realtime.avg



GPU metrics overview

Metrics definition and CUPTI raw equivalent
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% For reference:
https://docs.nvidia.com/cupti/m

) i _ ain/main.html#enumeration
SM Issue rate: SM inst. issue rate. Each SM caniscuc .+ .icviucaciio por oyl

— sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

Tensor Active: Cycles the teksor pipe-is-active (% of peak)

— sm__pipe_tensof_cycles_active_re

NVLink BW:
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Compute warps in flight: Number of compute shader warps in flight (% of peak)

— TPC.TriageCompute.tpc__warps_active_shader_cs_realtime.avg

GPC Clock Frequency: GPC graphics clock, “Boost

— gpc__cycles_elapsed.avg.per_second
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Metric name | Unit instances aggregation
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What can we see/do?

* Multi-node, large-scale runs traces merged
« Analysis of NCCL behavior
« POP efficiency model!

* Derived metrics
— Attribution of GPU metrics to regions, kernels...
— Relationship between CUDA API calls and kernels
— Aggregations (of streams) per task or application
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Multi-node profiling

» Prefix “nsys profile” before your binary, after the launcher
— srun <args> nsys profile ./your_app <args> ...

* Nsight Systems creates one report for every profiler instance

* Use SLURM environment variables to tune nsys parameters, like:
— Report name: -o report_NS{SLURM_NODENAME}_S{SLURM_PROCID}
— Which GPUs to get metrics: —gpu-metrics-devices=SSLURM_LOCALID

.nsys .nsys .nsys .nsys
-rep -rep -rep -rep




Methodology - Efficiency model

Time lost
because
devices wait
for another
more loaded to
finish
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nsys2prv - What is it?

O Translate performance data acquired by Nsight Systems into Paraver timestamped records.
00 Merge multiple .nsys-rep reports, coming from a multi-node execution, into a single trace.

O And we provide all predefined configuration files for Paraver within the package to display all metrics
described in the article and in this presentation

pgthOﬂ Package released on PyPI

Package

! — ‘E‘[F! Index %/ https://pypi.org/project/nsys2prv/

nsys2prv U Source code publicly available on
4/ https://gitlab.pm.bsc.es/beppp/nsys2prv

Installed on the shared folder of MN5!

$> nsys2prv -t nvtx_pushpop_trace,cuda_api_trace,gpu_metrics \
-m ./11lm_O.nsys-rep ./1llm_1.nsys-rep ./llm_2.nsys-rep .. llm_translated
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https://pypi.org/project/nsys2prv/
https://gitlab.pm.bsc.es/beppp/nsys2prv

Translation workflow

BASE=/gpfs/scratch/nct_362/nsys2prv

.cfg
Application execution Trace ) _ Trace analysis
Application @% Paraver
N -~
g | (Y :
v o)
@% Extrae ~~
>

\ T A ‘ \ o }

- source $BASE/env/bin/activate
Performance metrics :

Application execution S| FPEER | Translate
CUDA : — i)

Application : =1 Nsys report
% I el B |

> Nsight -NSys nsys2prv . $BASE/model/

NVIDIA. Systems . \ -rep \ other tools /

- Adapted script in

© T .



How do we translate a trace?

$> module load intel mkl impi hdf5 python/3.12.1 sqlite3
$> source /gpfs/scratch/nct_362/nsys2prv/env/bin/activate

$§> nsys2prv -t nvtx,cuda_api_trace,gpu_metrics \
-m ./1lm_0@.nsys-rep ./llm_1.nsys-rep ./llm_2.nsys-rep

@

.. 11lm_translated



